
Lists

1

2

Lists
A list is like an array, except that the length changes

Items are added to a list over time, and you don't know
in advance how many there will be

This chapter implements lists in two ways in C

The same ideas apply to lists in almost every other
programming language

3

Two approaches
There are two approaches that you can take:

array lists
linked lists

Array lists are better when the most common
operations are to add or remove at one end

Linked lists are better when frequently inserting and
deleting in the middle

4

Array list of int
Suppose we want a list of ints

We can use a flexible array, with a length variable to
say how full it is:

int length = 0, capacity = 4;
int *items = malloc(capacity * sizeof(int));
...
if (length >= capacity) {
 capacity = capacity * 3 / 2;
 items = realloc(items, capacity * sizeof(int));
}
...

5

First attempt
It seems as though we need an add function, for adding
an int to the list, like this:

void add(int length, int capacity, int *items, int n) {
...

We would need to pass the length and capacity as well
as the array and new item

6

Failure
The function doesn't work because it can't update the
caller's length variable, the caller's capacity
variable, or the caller's items variable in case the array
is moved by realloc

Even if the function did work, it is tiresome passing
around the three variables separately

7

Second attempt
We could pass in all three variables in one go, and pass
the updated versions of those three variables back as a
result:

struct list { int length, capacity, *items; };
typedef struct list list;

list add(list ns, int n) {
 ...
}
...
ns = add(ns, 42);

8

Poor attempt
The second attempt does work, but has two flaws

it is too easy to make the mistake of writing
add(ns,n) instead of ns = add(ns,n)
if a function needs to return some other result, as
well as the updated list, we are stuck again

9

Third attempt
How do we achieve really simple function calls like
add(ns,n) ?

Answer, pass the list structure by pointer:

struct list { int length, capacity, *items; };
typedef struct list list;

void add(list *ns, int n) {
 ...
}

This treats a list as an 'object'

10

Picture
We now need a good picture of the situation

struct list { int length, capacity, *items; };
typedef struct list list;

list *ns;

11

Pointer purposes
The pointers in the picture have two different purposes

The first, ns, allows functions to update the list
structure in place

The second, items, allows the array to be moved and
resized

12

arraylist.c

Array list demo program
To make a demo program, it is useful to write main
first, to see what we want the function calls to look like:

int main() {
 list *numbers;
 numbers = newList();
 add(numbers, 3);
 add(numbers, 5);
 add(numbers, 42);
 print(numbers);
}

The functions that make this possible have been kept
small, and designed as if they were library functions, to
keep everything under control

13

https://csijh.gitlab.io/COMS10008/lectures/lists/arraylist.c

arraylist.c

A creation function
Here's a function to make a new list:

// Make a new empty list
list *newList() {
 list *ns = malloc(sizeof(list));
 int *items = malloc(4 * sizeof(int));
 *ns = (list) { 0, 4, items };
 return ns;
}

14

https://csijh.gitlab.io/COMS10008/lectures/lists/arraylist.c

arraylist.c

An expand function
Here's a function to expand a list:

// Make a list bigger
void expand(list *ns) {
 ns->capacity = ns->capacity * 3 / 2;
 ns->items = realloc(ns->items, ns->capacity);
}

15

https://csijh.gitlab.io/COMS10008/lectures/lists/arraylist.c

arraylist.c

An add function
Here's a function to add an int to the list:

// Add an int to a list
void add(list *ns, int n) {
 if (ns->length >= ns->capacity) expand(ns);
 ns->items[ns->length] = n;
 ns->length++;
}

16

https://csijh.gitlab.io/COMS10008/lectures/lists/arraylist.c

arraylist.c

A print function
Here's a function to print the list:

// Print a list
void print(list *ns) {
 for (int i=0; i<ns->length; i++) {
 if (i > 0) printf(", ");
 printf("%d", ns->items[i]);
 }
 printf("\n");
}

17

https://csijh.gitlab.io/COMS10008/lectures/lists/arraylist.c

Testing
How would you test a list module like this?

You need to use all your programming skills

creatively design the testing
improve the design as you go along
use small functions and small amounts of progress
develop tests alongside the functions

18

Setup
Here's how the testing might end up

First a function to set up an example list (made of
integers 0 to 9)

static list *setup(char *digits) {
 list *ns = newList();
 for (int i = 0; i < strlen(digits); i++) {
 int n = digits[i] - '0';
 add(ns, n);
 }
}

19

Call
Next a function to call an operation by name

static int call(list *ns, char *op, int arg) {
 int result = 0;
 if (strcmp(op, "add") == 0) add(ns, arg);
 if (strcmp(op, "get") == 0) result = get(ns, arg);
 if (strcmp(op, "expand") == 0) expand(ns);
 ...
 return result;
}

Imagine there is a get function to find the n'th item in
a list

20

Check
Next a function to check the contents of the list after
the operation

static bool check(list *ns, char *digits) {
 if (ns->length != strlen(digits)) return false;
 for (int i = 0; i < strlen(digits); i++) {
 int n = digits[i] - '0';
 if (get(ns, i) != n) return false;
 }
 return true;
}

21

Run test
Next a function to run a given test

static bool test(char *op, char *pre, char *in,
 char *post, char *out) {
 list *ns = setup(pre);
 int arg = in[0] == '\0' ? 0 : in[0] - '0';
 int ret = out[0] == '\0' ? 0 : out[0] - '0';
 int result = call(ns, op, arg);
 return result == ret && check(ns, post);
}

A brand new list is set up for every test, so that tests
can't affect each other

22

The tests
Finally a function to carry out the tests

int listMain() {
 assert(test("add", "1234", "5", "12345", ""));
 assert(test("get", "1234", "2", "1234", "3"));
 assert(test("expand", "1234", "", "1234", ""))
 ...
}

23

Templates
Each of the functions costs some effort to write

By keeping them short and developing them one at a
time, it is possible to keep everything under control

The outcome is worth it, for the simplicity of the calls

The functions only work on ints

But in another project, even if a list of some other type
is needed, these functions will make good templates

24

Array lists of structures
Suppose we want an array list of structs

We can copy the int functions, and change int to
(say) struct point (maybe using a typedef)

Then the items field in the list structure would be an
array of raw structures

It is a pity C doesn't (convincingly) support "list of
anything", and we have to rename one set of functions if
we want to use both in one program

25

Big structures
What if the structs are big?

Then there are two problems

The fact that the array is not full means that there is a
large amount of wasted space because of the unfilled
structures

More important, perhaps, is that the structures will get
copied into the list, instead of being shared with
versions held in other places (and updates to the
originals will not be reflected in the copies)

26

Object lists
That suggests that we use our functions as a template
still, but replacing int with struct x *, i.e. we
store a list of pointers to structures

This now means that our list has three layers of
pointers: a pointer to the list structure, a pointer from
there to the array, and then the array consists of
pointers to the item structures

The complexity can be worth it, and it is what is done in
object oriented languages (with the pointers being
automated)

27

Linked lists
A problem with array lists is that, to insert or delete an
item in the middle, lots of items have to be moved up or
down to make space

Can we find a way of storing a list so that items never
have to be moved?

One way is to introduce a pointer to go with each item,
pointing to the next item

28

Example: primes
A linked list of primes (without 5) might look like this

29

Example: insertion
After inserting 5, it might look like this

30

Insertion
To insert 5 into the list, these steps are needed:

find the structures containing 3 and 7
allocate some space for a new structure
set the first field to 5
set the second field to point to the 7 structure
change 3's pointer to point to the new structure

The list entries end up scattered in memory, but it
doesn't matter where they are

31

Stack
The easy and efficient operations on a linked list are
called the stack operations:

push: insert an item at the start of the list
pop: remove an item from the start of the list
top: look at the first item (sometimes called peek)
isEmpty: check if there are any items

32

Design problem
As before, with lists, we have a design problem

Suppose a stack is just a pointer to the first item

Then the push and pop operations need to change the
stack variable

With push, we could use stack = push(stack,n),
catching the returned updated list

But we want pop to return the first item - it can't easily
also return the updated list

So let's have a separate list structure as well, like before

33

stack.c

Stack demo
Here's the main function of a stack demo, so we can see
what the function calls look like:

int main() {
 list *stack;
 stack = newStack();
 push(stack, 3);
 push(stack, 5);
 push(stack, 7);
 printf("top %d\n", top(stack));
 while (! isEmpty(stack)) {
 int n = pop(stack);
 printf("%d\n", n);
 }
}

34

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Stack structures
The structures needed for the stack demo are:

struct cell {
 int item;
 struct cell *next;
};

struct list {
 struct cell *first;
};

The first is for the individual items, the second is for
the list as a whole (and you can add the usual typedefs)

35

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

New stack
The function to create a new stack is:

list *newStack() {
 list *new = malloc(sizeof(list));
 new->first = NULL;
 return new;
}

NULL is a special pointer which doesn't point anywhere
- it is used for empty lists, and in the last cell in a list

(It is usually defined as address 0, a part of memory
which never belongs to your program, so it causes a
segmentation fault crash if you follow it)

36

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Check stack empty
The function to check if a stack is empty is:

bool isEmpty(list *stack) {
 return stack->first == NULL;
}

37

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Push onto stack
The function to push an item onto a stack is:

void push(list *stack, int n) {
 cell *new = malloc(sizeof(cell));
 *new = (cell) { n, stack->first };
 stack->first = new;
}

Before and after picture:

38

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Classic mistake
A very common mistake with pointer handling is to do
things in the wrong order:

void push(list *stack, int n) {
 cell *new = malloc(sizeof(cell));
 stack->first = new; // BAD CODE
 *new = (cell) { n, stack->first };
}

39

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Stack errors
It is a good idea to have a function to call if something
goes disastrously wrong:

void fail(char *message) {
 fprintf(stderr, "%s\n", message);
 exit(1);
}

The function prints to stderr, and stops the program
with an error code (as if returning 1 from main) to
play nicely with any scripts that include the program

40

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Top of stack
The function to look at the top item is:

int top(list *stack) {
 if (stack->first == NULL) fail("top of empty stack");
 return stack->first->item;
}

If the caller tries to get the top item from an empty
stack, the fail function is called

Otherwise, the program might do rubbish things

41

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

stack.c

Pop from stack
The function to remove the top item is:

int pop(list *stack) {
 cell *first = stack->first;
 if (first == NULL) fail("pop of empty stack");
 stack->first = first->next;
 int n = first->item;
 free(first);
 return n;
}

This has to be written incredibly carefully, saving the
first cell in a variable before removing it from the list,
and extracting its fields before freeing up its space

42

https://csijh.gitlab.io/COMS10008/lectures/lists/stack.c

Visualising pop
The main steps in pop are:

43

Structure lists
To store structures instead of ints, you could include the
next field in the structure, e.g.

struct cell {
 char *name;
 int number;
 struct cell *next;
};

The next field can be ignored everywhere except in
the list functions

Although this is common in tutorials etc., it doesn't
allow an item to be stored in more than one list

44

Object lists
A more flexible approach is to store objects, i.e. pointers
to structures, in lists:

struct cell {
 struct entry *item;
 struct cell *next;
};

This has an extra layer of pointers, but now an object
can appear in any number of lists, and updates to
objects are shared by all occurrences

45

Efficiency
There is an efficiency problem with what we have done

All the stack functions are supposed to be O(1), but they
may not be

That is because of the cost of malloc and free which
can, at worst, have O(n) behaviour

46

Free list
To overcome the problem, it is common for a list
structure to contain a free list, i.e. a list (stack) of cells
which are currently unused but are free to be re-used

struct list {
 struct cell *first;
 struct cell *free;
};

You put cells on the free list instead of calling free

And when you want a new cell, you get it from the free
list if possible, and only allocate a new one if the free
list is empty

47

Modules
Once you have built a good implementation of stacks, it
is natural to re-use it in other programs

To do that, you put the stack functions into a separate
module

And you make sure that programs cannot access the
cells being used, and in fact cannot tell how the stack is
being implemented - it is just a service, and a robust
one

48

List variations
keep track of the last cell in the list structure, to
allow adding at the end
keep track of the length of the list
keep track of a current position within the list, to
allow traversal and insertion in the middle
keep track of the cell before the current one in
the list, to allow deletion of the current item
have a previous pointer as well as a next pointer
in each cell, to make deletions easier
have dummy cells which go before the first one
and after the last, to simplify the code by getting
rid of NULL tests

49

The real truth
For implementing general lists, and stacks, an array list
is almost always better than a linked list

Linked lists use a lot of memory, the efficiency of
insertion and deletion in the middle is offset by the cost
of finding or keeping track of the right place in the list,
and they are difficult to encapsulate well

But the idea of linked lists comes up a lot in computer
science, they are often used as part of something else
(e.g. hash tables), and variations are often used (e.g. a
linked list in an array)

50

