
Input & Output

1

IO = Input & Output 2

Idioms
Input and output in C are simple, in theory, because
everything is handled by function calls, and you just
have to look up the documentation of each function

When the I/O library for C was written, it was a
masterpiece because, for the first time, all I/O used the
same functions, regardless of device

But in practice, there are a lot of details, and a lot of
pitfalls, and online tutorials tell you rubbish

If you don't understand the details, then just stick to the
idioms provided in this chapter

3

Summary
We are going to cover:

operation using functions
command lines main
read chars from file fopen, fgetc, feof, fclose
read bytes from file fopen, fgetc, feof, fclose
read lines from file fopen, fgets, feof, fclose
read chars from stdin getchar, feof
read lines from stdin fgets, feof
write chars to file fopen, fputc, fclose
write bytes to file fopen, fputc, fclose
write lines to file fopen, fprintf, fclose

never use these getline, readline, gets, scanf, fscanf

4

Command line arguments
One way to provide a small amount of input to a
program is to put it on the program's command line

For example, an echo program could be given some
items to print out like this:

./echo one two

5

echo.c

Writing echo
To access these items, define main with two arguments:

/* Print out command line arguments */
#include <stdio.h>

int main(int n, char *args[n]) {
 for (int i=0; i<n; i++) {
 printf("Arg %d is %s\n", i, args[i]);
 }
}

6

https://csijh.gitlab.io/COMS10008/lectures/io/echo.c

Running echo
Let's try running the program

$ clang -std=c11 -Wall echo.c -o echo
$./echo one two
Arg 0 is c:\users\ian\echo.exe
Arg 1 is one
Arg 2 is two

7

Conventions
The first argument to main is the number of words on
the command line, including the name of the program
at the beginning, often declared as int argc,
("argument count") but n seems a better name

The second argument to main is an array of strings
representing the words on the command line, usually
declared as char *argv[argc] or char *argv[]
or char **argv, ("argument vector") though args
seems a better name (it is actually an array of pointers
to characters)

8

Program path
The first argument, the program name, is expanded to
the full file-system path of the compiled program file

This provides the only simple, reasonably platform-
independent way of finding the installation directory of
the program - a program can be distributed as a zip file

The main alternatives involve re-packaging the program
for installation, separately for each platform

9

Command line processing
The command line is chopped up into words by the
operating system (terminal window program) before it
reaches the program

This makes the details independent of programming
language, but dependent on the platform

The basics are very similar on all platforms, though

10

Special characters
You should assume that any character typed on the
command line will have some special effect, except for
letters, digits, and decimal points

Spaces form word-boundaries

Single or double quotes allow phrases with spaces or
other special characters in to be treated as single words

./echo one "two words" three

./echo "one*" "two?"

11

codes.c

Read chars from file
To read a text file one character at a time, try this:

/* Print character codes from a file */
#include <stdio.h>
#include <stdbool.h>

int main() {
 FILE *in = fopen("in.txt", "r");
 char ch = fgetc(in);
 while (! feof(in)) {
 printf("%d\n", ch);
 ch = fgetc(in);
 }
 fclose(in);
}

12

https://csijh.gitlab.io/COMS10008/lectures/io/codes.c

End of file
Note that feof doesn't give true until after
unsuccessfully reading a character beyond the end

This helps with interactive or network streams, which
mustn't be read too far ahead

But it is logically awkward, because you need one more
call to fgetc than there are characters in the file

13

The break style
Many programmers use break, like this:

while (true) {
 char ch = fgetc(in);
 if (! feof(in)) break;
 printf("%d\n", ch);
}

It avoids repetition of the fgetc line, and avoiding
repetition is good

But the logic is obscure (it looks like an infinite loop,
but it is actually an n+1/2 loop) so it is not as good

14

The EOF style
In most tutorials, you see this traditional variation

int ch;
while ((ch = fgetc(in)) != EOF) {
 ...
}

it unintuitively needs int
it needs too many brackets
it has poor structure: statement inside expression
it has poor logic: side effect inside test
it risks confusion between = and ==

15

Initial f
Many I/O functions are paired up, e.g. fgetc and
getc, but the relationship varies

Generally, the version without the f is less safe, e.g.
getc is a macro, so fails if the argument has a side
effect, and gets has different conventions which cause
security loopholes, so it should never be used

16

Closing files
You should close a file when you have finished with it

If you don't, the file isn't closed until the program ends,
and you may reach the (small) limit on the number of
open files on your system

Or, if it is an output file, the last part of the output
won't get written out to the file (because of buffering)

Or, you may develop a bad habit which will bite you
later

17

Read bytes from file
To read bytes from a binary file, use this

FILE *in = fopen("in.mp3", "rb");
unsigned char b = fgetc(in);
while (! feof(in)) {
 ...
 b = fgetc(in);
}
fclose(in);

Depending on your application, you might choose
signed char, but avoid just char which is
sometimes signed and sometimes not

The "b" (binary) switches off newline handling

18

lines.c

Read lines from file
To read a text file one line at a time, assuming it has
short lines, use this

FILE *in = fopen("in.txt", "r");
fgets(line, max, in);
while (! feof(in)) {
 printf("Line %s", line);
 fgets(line, max, in);
}
fclose(in);

Note: the printf has no \n, because the string in the line
array contains a \n or \r\n

19

https://csijh.gitlab.io/COMS10008/lectures/io/lines.c

phone.c

Numbers and names
/* Read a number and name per line.
Note the limits on lengths. */
#include <stdio.h>

int main() {
 const int max = 100;
 char line[max], name[50];
 int n;
 FILE *in = fopen("in.txt", "r");
 fgets(line, max, in);
 while (! feof(in)) {
 sscanf(line, "%d %s", &n, name);
 printf("Number %d name %s\n", n, name);
 fgets(line, max, in);
 }
 fclose(in);
}

20

https://csijh.gitlab.io/COMS10008/lectures/io/phone.c

Using sscanf
To read in numbers, one per line, you could do this:

sscanf(line, "%d %s", &n, name);

The number argument is &n ('address of n') because
otherwise sscanf would just be passed a copy of n
and couldn't change the original

The name argument has no & in front, because arrays
are passed by reference, not by value - what is passed is
a pointer to the start of the array

21

Removing newlines
If you want to get rid of the newline at the end of a
string you've just read in, this is a compact technique:

line[strcspn(line, "\r\n")] = '\0';

This is cross-platform (it handles \n and \r\n) and it
works on strings which don't have a newline

It's a bit obscure, but you'll find it quickly enough if you
Google C remove newline string

As with other tricks, you could wrap it in a function
with a comment

22

Libraries
Rule: never use functions like getline or readline

That's because they are not part of the standard libraries

So when you change platforms, you find that the
function doesn't exist, or behaves completely differently

23

sscanf
Use the sscanf function to scan a string, chopping it
up and converting parts into numbers etc.

Beware: %s reads in a word up to the next space, instead
use %[...] for strings with spaces, e.g. %[^,]%*c to
read everything up to a comma and then discard the
comma

Beware: phone numbers can start with 0 which mustn't
be thrown away, so it is better to treat phone numbers
as strings with %s, not numbers

24

fscanf problems
Advice: don't use fscanf, use fgets and sscanf

Never use it with unlimited %s or %[...], there is no
check that the array is big enough, so there is a bug, and
over the net it becomes a security loophole

Other problems are: a space means any white space
including newlines, %s means a 'word' (up to the next
white space), and the newline at the end of a line
doesn't get read in (technically it gets read in and
pushed back, so not suitable for interaction) and there is
no validation (so not suitable for user input)

25

Proper fscanf
It is possible to use fscanf for fixed format files,
though most programmers get it wrong

For phones: fscanf("%50s %50[^\n]%*c"...)
(50 limits the strings, %*c discards the newline)

But the max size has to be explicit, not a variable, which
is very inflexible, and the rest of a line that's too long is
not discarded, and there is no validation, so it is still not
recommended when the text file is provided by a user

26

Efficiency
Often, physical I/O is very slow, so the efficiency of the
code is irrelevant

When it matters, reading a line at a time is faster than
reading a character at a time

For maximum efficiency, read the whole file in

FILE *fp = fopen(path, "rb");
fseek(fp, 0, SEEK_END);
long length = ftell(fp);
fseek(fp, 0, SEEK_SET);
fread(s, length, 1, fp);
fclose(fp);

27

upper.c

Read chars from stdin
To read characters of standard input, e.g. to echo
everything in upper case, use:

char ch = getchar();
while (! feof(stdin)) {
 printf("%c", toupper(ch));
 ch = getchar();
}

However, this should be rare, because you almost
always want to read the standard input a line at a time

28

https://csijh.gitlab.io/COMS10008/lectures/io/upper.c

End of stream
while (! feof(stdin)) ...

It is good practice to recognise the end of the stream (in
case the user pipes a file into the standard input)

You can end the standard input by typing CTRL/D
(usually), but the effects are a bit platform dependent

You could end with CTRL/C, but that causes a program
'crash', not a clean shut down

Normally, your program should recognise something,
e.g. typing quit, as well as feof to end the program

29

type.c

Read lines from stdin
To read a line of standard input, use this

printf("...prompt...");
fgets(line, max, stdin);

To extract numbers etc. from a string such as a line that
you have read in, use sscanf

30

https://csijh.gitlab.io/COMS10008/lectures/io/type.c

gets
Rule: never use the gets function

You give it an array to read the line into, but there is no
check that it is big enough

You cannot prevent the user from giving a line which is
too long, so your program contains a bug

Worse, if your program can be used over the net, it has
a security loophole for hackers to use

31

scanf problems
Advice: don't use scanf, use fgets and sscanf

As with fscanf, never use it with unlimited %s or
%[...], because of the security loophole

Other problems are that a space means any white space
including newlines, %s means a 'word' (text up to the
next white space), and the newline at the end of a line
doesn't get read in (so related print statements are often
too soon or too late)

32

Proper scanf
It is possible to use scanf, though most programmers
get it wrong

To read in a line: scanf("%100[^\n]%*c"...)

But it is hard to get everything right, having to specify
the available space explicitly is inflexible, and there is
no validation, so it is still not recommended

As with files, to get rid of the newline at the end of a
string you've just read in with fgets, try this:

line[strcspn(line, "\r\n")] = '\0';

33

Write chars to a file
To write characters to a text file, use this

FILE *out = fopen("out.txt", "w");
... fputc(ch, out); ...
fclose(out);

On Windows, fputc('\n'...) will write out \r\n
to match the Windows newline convention

Don't forget the fclose, or the file will be incomplete

34

Write bytes to a file
Writing bytes is almost identical to writing characters:

FILE *out = fopen("out.txt", "wb");
... fputc(ch, out); ...
fclose(out);

The only difference is "wb", which prevents special
processing of newlines

35

Write lines to a file
To write lines to a text file, use this

FILE *out = fopen("out.txt", "w");
... fprintf(out, "Line\n"); ...
fclose(out);

fprintf will output \n as the 'correct' newline

You could also use fputs for plain strings, but beware
- it is less flexible and it has a different argument order

36

Writing partial lines
To write a line to a text file in two parts:

fprintf(out, "Hello"); ...
fprintf(out, " world!\n");

If the output stream is interactive, and you want to
make sure the user sees the partial line before the
second call, either call setbuf, or add
fflush(out); between the calls

37

Checking errors
Strictly speaking, after every I/O call, you should check
whether it failed for some reason

It is common to leave this out for prototype programs,
but tighten everything up for production programs or
libraries

The fopen function is the one that most needs
checking

38

Checking fopen
Here's an approach to checking fopen:

FILE *fopenCheck(char *file, char *mode) {
 FILE *p = fopen(file, mode);
 if (p != NULL) return p;
 fprintf(stderr, "Can't open %s: ", file);
 fflush(stderr);
 perror("");
 exit(1);
}

...
FILE *in = fopenCheck("in.txt", "r");

39

