
Hash tables

1



Faster search
For fixed data in an ordered array, the binary search
algorithm gives O(log(n)) search

For data which varies, a binary tree gives O(log(n))
search, provided it is kept balanced

Can we search any faster?

Yes!

We can use hash tables

2



The hash table idea
Suppose we have a set of words, a dictionary, and we
want search repeatedly to see if a word is included

And let's suppose the words contain only lower case
letters

We can speed up search by using an array with 26
entries, one for the words starting with each letter

Suppose each array entry contains a linked list

3



Hash table picture
Here is a 26-entry hash table for three-letter animal
names:

On the left is an array of pointers, pictured vertically,
indexed by 0 up to 25 by subtracting 'a' from the
first letter

4



Problems
This hash table could reduce the lookup time to n/26,
but there are two problems

First, if the words are not evenly distributed between
the 26 slots (about the same number in each), then the
search time will be worse than n/26

Second, n/26 is still O(n), and we want less than O(n),
in fact less that O(log(n))

5



Hash functions
A function which calculates a number from a string (or
other data) is called a hash function

We have been using h = s[0] - 'a'

We want (a) the number to be pseudo-random, so that
the words generate a good spread of numbers (b) all of
the letters to contribute (c) the numbers to be ints, so
that large hash tables can be used

6



A hash function
As with pseudo-random number generators, you should
be careful not to invent your own bad one

The first one in the Java language used only a few
characters at the start and end of a string, which made
it bad for URLs (lots of URLs got the same number, e.g.
http://www.../index.html)

Now the Java hash function for strings is 
for (..i..) h = 31*h + s[i] ignoring
overflow (and it is cached for efficiency)

7



Hash table size
To reduce search time below O(n), you need a hash
table size which is roughly equal to the number of
items to be stored

One way is to choose something big and hope the
speedup is enough

Another way is to estimate the amount of data in
advance

Another way is to make the array dynamic, rehashing
all the items into the larger table each time you increase
the size

8



Hash table indexing
A number from a hash function has to be turned into an
index, usually just by forming h % size to give a
number from 0 to size-1

Most hash functions have a weakness - the least
significant bits are not very random

So one (old) approach is to choose a table size which is a
prime, so that h % size is still well spread

Better is to design a hash function where the least
significant bits are more random, so that arbitrary hash
table sizes can be used

9


