Functions

Procedures

C s a procedural language, 1.e. programs are made out
of procedures

Traditionally, these procedures are called functions

The name 1sn't really right because procedures can do
things as well as returning a result

Pure functions belong to the Haskell world

What functions do

A function may calculate a result, or manipulate data, or
call other functions, or interact with the outside world,
e.g. read a file or print out text or control a device

Hello World

It 1s traditional to start with a Hello World program,
though this version 1s a bit different:

/* Example program: say Hi. */ hello.c
#include <stdio.h>

int main() {
setbuf(stdout, NULL);

printf("Hello World!\n");
return 0;

}

Download 1t, or copy-paste 1t, or type 1t, save 1t as
hello.c, then compile 1t, and run 1t

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Compiling and running

To compile and run 1n a terminal window:

$ clang -std=cll -Wall hello.c -o hello
$./hello
Hello World!

$

Options —std=c11 and -Wall are essential, and
others are desirable, so use make and a Makefile

See the aside on make to see how the make command
works

https://csijh.gitlab.io/COMS10008/asides/make.html

Program files

In the lab, or on your Linux or Mac computer, the
compiler produces a new file called hel lo, which 1s a

program ready to run

On Windows, 1t 1s called hello. exe so you may have
to type:

$ clang -std=cll -Wall hello.c -o hello.exe

Comments

Let's dissect the Hello World program

The first [ine 1s for human readers only, not the
computer, to explain what the program 1s for

/* Example program: say Hi. *x/ hello.c

A program without a comment to explain 1t 1s rubbish,
and hel lo. c 1s often copied to start the next program

A /*..x/ comment can run over many lines

Blank [ines are also for human consumption only

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Library modules 8

The next line says "this program needs to use the
stdio library functions (standard input/output)"
because 1t 1s going to print something

#include <stdio.h> hello.c

stdio.h1s a'header’ file describing the library
module, which 1s included 1nto your program

The angle brackets mean "look 1n the standard place” (in
the labs, that's /usr/include/stdio.h)

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Functions

The rest of the program 1s a function

int main() { hello.c
setbuf(stdout, NULL);

printf("Hello World!\n");
return 0;

}

Functions provide a way of dividing up a program into
pieces (the 'procedural decomposition’ design strategy)

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Main function 10

Every C program must have a function called main

int main() { hello.c

}

The system calls main to start the program running

mainis a rubbish name - 1t ought to be called run

because you run programs, you don't main them, but 1t
1s too late to change the convention

Every useful language has lots of rubbish 1n 1t

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Defining a function "

A function has a return type, a name, arguments, a body

int main() { hello.c

}

The int type means "small-1sh 1integers"

The main function actually has two arguments:

int main(int n, char xargs[n]) ...

In main, you are allowed to 1ignore them

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Buffered output 12

The name stdout refers to the stream of text which
the program 1s going to produce when 1t runs

setbuf(stdout, NULL); hello.c

Output 1s often buffered - the text 1s gathered up until
there 1s a reasonable amount to send efficiently

For stdout, that 1s exceedingly confusing

Many systems detect that stdout 1s going directly to
the screen, and switch buffering off, but not all (e.g.
MSYS2), so this line explicitly switches off buffering

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Why? 3

The line setbuf (stdout,NULL) ; 1s not usually
needed, and 1t 1s not needed 1n Hello World

But the Hello World program 1s often used to copy-
paste 1nto any program when you start writing 1t

So 1t should contain anything you might need

Ifyou are using MSYS2 to write native Windows
programs, you need 1t 1t at the start of main

Otherwise you probably won't need 1t, so | won't
mention 1t again

Printing 4
The printf function s the commonest one for output

. hello.c
printf("Hello World!\n");

It prints a string, but can also print out values

The \n at the end 1s a newline - always 1nclude 1t,
otherwise lots of things can go wrong

Add printf calls to your program to debug 1t, 1f you
can't work out what's wrong

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Names 15

printf is a rubbish name

format_and_print, or print (or write or show
to avoid suggesting a printer) would have been better

Many library functions have rubbish names, because:

® nobody had any 1dea 1n the early days how
1mportant names are - bad names cause bugs
* there was originally a six-letter [imit on names

A name should be short, readable and evocative

Returning 16

A function returns a value at the end (unless 1ts return
type 1s void)

int main() { hello.c

return 0;

}

main returns O to tell the system 1t succeeded, or an
error value, usually 1, 1f 1t failed

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

What if you forget to return? 7

What 1f you leave out the return at the end?

int main() {
setbuf(stdout, NULL);
printf("Hello World!\n");

}

The standard says a function like that returns
"undefined” (1t returns whatever rubbish value happens
to be 1n the return register)

The main function 1s an exception (for backwards
compatibility 1t returns 0) - so this 1s legal, but bad

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

Example: paint

/* Find the area of paint I need. */ paint.c

#include <stdio.h>

// Calculate area of walls and ceiling
int area(int length, 1int width, int height) {
int sides = 2 * length * height;
int ends = 2 * width * height;
int ceiling = length * width;
return sides + ends + ceiling;

}

// Find area of paint for my room.

int main() {
int total = area(5, 3, 2);
printf("The paint area is %d\n", total);
return 0;

19

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Function order 20

The program has two functions

paint.c

}}.Calculate area of walls and ceiling
int area(int length, 1int width, int height)

int main()

It 1s iImportant that area 1s defined first, so that the
compiler knows about 1t when main calls 1t

area has three arguments

A line starting // 1s a one-line comment

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Function calls 21

You call a function by passing 1t some values for its
arguments, then catching the result that 1s returned

int main() { paint.c
int total = area(5, 3, 2);
}

The arguments must be 1n the right order, e.g. the
height must be last 1n any call to area (think about 1t!)

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Printing again 22

The main function also contains a call to printf:

printf("The paint area 1is %d\n", total); paint.c

The printf function is the only commonly used
function with a variable number of arguments

The %d means 'print an 1integer 1n decimal format here,
and the 1nteger to print 1s an extra argument to the
function

You can use %1 1nstead of %d, but %d 1s more
conventional

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Statements 23

A function contains a sequence of statements, each
ending 1n a semicolon ;

paint.c

int area(int length, +int width, int height) {

}

int sides = 2 * length * height;
int ends = 2 * width * height;
int ceiling = length * width;
return sides + ends + ceiling;

Say "sides becomes ..." or "set sides equal to ..."

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Expressions 24

Calculations are done using expressions

.. 2 *x length * height ... paint.c
.. 2 * width * height ...

. length * width ...

. sides + ends + ceiling ...

It 1s up to you how you split things up: some people
would write:

return 2 *x length * height + 2 * width * height + length * width;

This 1s less readable: 1t doesn't explain 1tself

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Integers 25

So far, for Integers, we've been using type 1nt, which
uses binary with 32 bits, one of which 1s for the sign

So the range 1s —2147483648 to 2147483647

If you need more, use Long, with 64 bits, range roughly
plus or minus 9 quintillion

A pla

Platforms 26

tform 1s a combination of processor, operating

system, device drivers, libraries, compiler, run time
system, versions and settings of all those, and anything
else which affects programs

Usually, we abbreviate by talking about Linux, MacOS,
Windows, and the mobile versions Android, 10S, mobile

Windows, but these are really extensive families of
platforms

https://en.wikipedia.org/wiki/Computing_platform

Platform differences 27

Technically 1nt s the "best" integer type provided by
the processor (was 16 bits, and may become 64 bits)

We are 1n a happy time where 1nt 1s usually 32 bits
and long is usually 64

The main exceptions are tiny embedded processors, and
native Windows platforms where Long 1s 32 bits

Cross-platform programs 28

In this unit, you must write cross-platform programs
because (a) 1t 1s the right thing to do and (b) your

submitted programs won't be marked on your

The main techniques for this are sticking rigid
language standard, and switching on all comp:
messages, and gaining experience

hlatform

ly to the

ler error

Minority platforms 29

It s not recommended to try to write programs for all
platforms, because the 1ssues on native Windows and
tiny processor platforms are too numerous, too
restrictive, and too difficult to test

The best approach 1s (a) write a majority cross-platform
program first (b) run through the platform issues one
by one (c) use conditional compilation for the fixes

So: let's all assume int s 32 bits and Long 1s 64

Double 30

The paint program uses int, but we may want non-
nteger lengths, producing a non-integer area

Just replace 1int by doub le everywhere appropriate

The double type 1s the type of "double precision
floating point numbers”, and 1t 1s the normal type to use
for approximate real numbers

In printf, use %f (floating point) instead of %d
(decimal)

Example: double paint 31

/* Find the area of paint I need. %/ dpaint.c
#include <stdio.h>

// Calculate area of walls and ceiling
double area(double length, double width, double height) {
double sides = 2 * length * height;
double ends = 2 * width * height;
double ceiling = length * width;
return sides + ends + ceiling;

}

// Find area of paint for my room.

int main() {
double total = area(5, 3, 2);
printf("The paint area is %f\n", total);
return 0;

Integer constants 2, 5,... get converted to double

https://csijh.gitlab.io/COMS10008/lectures/functions/dpaint.c

Example: triangle numbers 3

The n'h triangle number is the sum of the numbers
from 7to n

/* Find the n'th triangle number. x/ sum.c
#include <stdio.h>

// Find the sum of the numbers from 1 to n.
int sum(int n) {

if (n == 1) return 1;

else return n + sum(n-1);

}

int main() {
int t10 = sum(10);
printf("The 10th triangle number -is %d\n", t10);
return 0;

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

The sum function 34

The important part of the program 1s the sum function:

// Find the sum of the numbers from 1 to n. sum.c
int sum(int n) {

if (n == 1) return 1;

else return n + sum(n-1);

}

It has an argument variable n

The argument n s [ocal, 1t 1s created at the start of a
call, and destroyed when the function returns

The function 1s recursive, 1.e. 1t calls 1tself

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

A row of friends 35

To get the hang of recursion, Imagine a row of 10
friends who cooperate 1n solving the problem

Each friend has a copy of the instructions:

int sum(int n) {
if (n == 1) return 1;
else return n + sum(n-1);

sum.c

}

The main function calls sum(10), which 1s like

handing the sum(10) problem to one friend, let's say
Alice who writes n = 10 on her piece of paper

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

The next friend 36

Alice obeys this instruction:

return n + sum(n-1); sum.c

This involves a function call sum(9), which s like
handing the sum(9) problem to the next friend, let's
say Bob, who writes n = 9 on his piece of paper

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

The last friend 37

The requests go down the line until the problem
sum (1) 1s handed to Joe who obeys this instruction:

return 1; sum.c

Irene receives 1 and adds 1t to the number on the paper,
2, and returns 3

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

Back up the line

The answers go back up the line

Friend Henry receives 3 and returns 6

Friend Grace receives 6 and returns 10

Friend Alice receives 45 and returns 55

Local variables

The argument variable n 1s local

It 1s created when the call 1s made, set to the number
passed 1n the call, and 1t lasts until the call returns

It 1s like a friend's piece of paper

t can't be accessed from outside the function - 1t

pelongs to the function - you can think of 1t as ‘trapped’
oy the curly brackets

39

Call stack 40

A processor has a call stack, containing stack frames, like
a pile of pieces of paper with local variables written on,
one for each function call which 1s 1n progress

Later, when we get to pointers, we will have a look at 1ts
layout

It 1s very efficient, especially since call and return
nstructions are built 1nto the processor

Termination 41

It 1s a good thing the sum function doesn't always call
1tself

Otherwise, there would be an unlimited chain of calls
(often called an infinite loop’) and the program would
keep going until 1t ran out of memory

Recursion always needs a termination condition ('get out
clause’)

Is recursion important? 42

Recursion 1s much rarer in C than 1n Haskell, because
loops are often used 1nstead:

int sum(int n) {
int result = 0;
for (int di=1; i<=n; 1i++) result = result + 1;
return result;

}

But occasionally, recursion 1s essential or natural, as the
clearest solution to a problem

Design

44

The C language hasn't changed all that much over time

The way C programmers design programs

To 1llustrate, on the next couple of slides, t

nas changed

nere 1s a

before and after example of a prime number program 1n

the old style and 1n the new style

You don't need to understand 1t all

The difference doesn't matter much for small programs,

but becomes crucial for bigger ones

Old primes 4

N
*

oldprimes.c
This program generates prime numbers up to a user specified
maximum. The algorithm used +is the Sieve of Eratosthenes.

Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya —-
d. ¢c. 194, Alexandria. The first man to calculate the
circumference of the Earth. Also known for working on
calendars with leap years and ran the library at Alexandria.

The algorithm is quite simple. Given an array of 1integers
starting at 2. Cross out all multiples of 2. Find the next
uncrossed 1integer, and cross out all of +its multiples.
Repeat untilyou have passed the square root of the maximum
value.

@author Alphonse

@version 13 Feb 2002 atp

From book "Clean Code", adapted from Java by Ian Holyer
Compile with: clang -o oldprimes oldprimes.c -1lm

Run with: ./oldprimes 10

% ok % ok ok ok % ok Ok ok % ¥ Kk Ok %k ¥ ¥ * %

*
N

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

Old primes 2 46

#include <stdio.h> oldprimes.c
#include <math.h>
#include <stdlib.h>

int main(int argc, char *xargv) {
if (argc < 2) { printf("Please give a maximum number\n"); exit(l); }
// maxValue 1is the generation limit.
int maxValue = atoi(argv([1]);
if (maxValue >= 2) { // the only valid case
// declarations
int s = maxValue + 1; // size of array
int f[s];
int 1
// initialize array to true.
int false = 0, true = 1;
for (i = 03 1 < s3 i++)
f[i] = true;
// get rid of known non-primes
f[0] = f[1] = false;

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

Old primes 3 47

}

else // maxValue < 2

// sieve oldprimes.c
int j;
int root = (int)sqrt((double)s);
for (i = 25 i1 < root + 1; 1i++) {
if (f[i]) { // if i 1is uncrossed, cross its multiples.
for (J = 2 * 1d; j < s; J += 1)
f[j]l] = false; // multiple is not prime
}
}
for (i = 0; 1 < s3 i++) {
if (f[i]) printf("%d\n", 1);
}

return 0;

return 1; // return program failure if bad 1input.

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

New primes 48

/* Generate primes up to a maximum using primes.c
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

Compile with: clang -std=cll -Wall primes.c -lm -0 primes

Run with: ./primes 10

*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>

// Extract 'max' from the command line, add one to make array size.
int findSize(int n, char *args[n]) {
if (n 1= 2) {
fprintf(stderr, "Use: ./primes max\n");
exit(1l);
}
return atoi(args[l]) + 1;

}

// Clear the array of booleans, so only ® and 1 are crossed out.
void uncrossAll(int size, bool crossedOut[size]) {
for (int i=0; -i<size; -+i++) crossedOut[i] = false;
crossedOut[0] = crossedOut[1l] = true;

}

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

New primes 2 49

// Cross out multiples of a number n primes.c
void crossOutMultiples(int size, bool crossedOut[size], int n) {
for (int m = 2%n; m < size; m = m + n) crossedOut[m] = true;

}

// See wikipedia: every composite has a prime factor <= 1its square root
// so we only need to cross out multiples of numbers up to sqrt(size)
int findIterationLimit(int size) {

double root = sqrt((double)size);

return (int) root;

}

// Cross out all composite numbers
void crossOutComposites(int size, bool crossedOut[size]) {
int limit = findIterationLimit(size);
for (int i = 2; i <= limit; +i++) {
if (! crossedOut[i]) crossOutMultiples(size, crossedOut, 1i);
}
}

// Follow the algor-ithm

void generatePrimes(int size, bool crossedOut[size]) {
uncrossAll(size, crossedOut);
crossOutComposites(size, crossedOut);

}

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

New primes 3 50

// Print the un-crossed-out numbers primes.c
void printPrimes(int size, bool crossedOut[size]) {
for (int i = 2; i < size; i++) {
if (! crossedOut[i]) printf("%d\n", 1);
}

}

void test() {
bool expected[12] = {1,1,0,0,1,0,1,0,1,1,1,0};
bool crossedOut[12];
generatePrimes (12, crossedOut);
for (int i = 0; i < 12; 1i++) if (crossedOut[i] != expected[i]) {
fprintf(stderr, "Wrong result for %d\n", 1i);

exit(l);
}
printf("All tests pass.");
}
// Run

int main(int n, char *args[n]) {
if (n == 1) test();
int size = findSize(n, args);
bool crossedOut[size];
generatePrimes(size, crossedOut);
printPrimes(size, crossedOut);

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

Modern design

The modern design style 1s:

* tiny functions, visible at a glance

® each has one clear responsibility

® each 1s quite readable

* calculation 1s separated from 1nput/output
 calculation functions are autotested

51

Prime improvements 52

The program as a whole 1s more readable

The functions are self-documenting at the 'how' level
The comments are brief, external, adding the 'why'
Commenting-out can be used during development
Each function 1s short enough to see 1t 1s correct

The functions can be developed one by one

Automatic testing adds confidence

Commenting out 53

Suppose you change something radical, so all the
functions 1n the program need to be changed

You can surround them all with a /*...x / comment,
then move them out of the comment one by one

But /*...x/ comments don't nest, so this doesn't work 7f
you use /*..x / comments before function definitions

So using one-line // comments before functions makes
commenting-out easy

Side Effects

A function can do these things

1. return a result

2. change data passed as arguments
3. Input or output

4. change global variables

A function that only does 11s pure, see Haskell
Functions that do 2, 3 or 4 are said to have side effects

In C, 21s normal, but 1t 1s best to separate out 3 and
avoild 4, because 1 and 2 can be auto-tested

54

