
Functions

1

Procedures
C is a procedural language, i.e. programs are made out
of procedures

Traditionally, these procedures are called functions

The name isn't really right because procedures can do
things as well as returning a result

Pure functions belong to the Haskell world

2

What functions do

A function may calculate a result, or manipulate data, or
call other functions, or interact with the outside world,
e.g. read a file or print out text or control a device

3

hello.c

Hello World
It is traditional to start with a Hello World program,
though this version is a bit different:

/* Example program: say Hi. */
#include <stdio.h>

int main() {
 setbuf(stdout, NULL);
 printf("Hello World!\n");
 return 0;
}

Download it, or copy-paste it, or type it, save it as
hello.c, then compile it, and run it

4

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Compiling and running
To compile and run in a terminal window:

$ clang -std=c11 -Wall hello.c -o hello
$./hello
Hello World!
$

Options -std=c11 and -Wall are essential, and
others are desirable, so use make and a Makefile

See the aside on make to see how the make command
works

5

https://csijh.gitlab.io/COMS10008/asides/make.html

Program files
In the lab, or on your Linux or Mac computer, the
compiler produces a new file called hello, which is a
program ready to run

On Windows, it is called hello.exe so you may have
to type:

$ clang -std=c11 -Wall hello.c -o hello.exe

6

hello.c

Comments
Let's dissect the Hello World program

The first line is for human readers only, not the
computer, to explain what the program is for

/* Example program: say Hi. */

A program without a comment to explain it is rubbish,
and hello.c is often copied to start the next program

A /*...*/ comment can run over many lines

Blank lines are also for human consumption only

7

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

hello.c

Library modules
The next line says "this program needs to use the
stdio library functions (standard input/output)"
because it is going to print something

#include <stdio.h>

stdio.h is a 'header' file describing the library
module, which is included into your program

The angle brackets mean "look in the standard place" (in
the labs, that's /usr/include/stdio.h)

8

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

hello.c

Functions
The rest of the program is a function

int main() {
 setbuf(stdout, NULL);
 printf("Hello World!\n");
 return 0;
}

Functions provide a way of dividing up a program into
pieces (the 'procedural decomposition' design strategy)

9

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

hello.c

Main function
Every C program must have a function called main

int main() {
 ...
}

The system calls main to start the program running

main is a rubbish name - it ought to be called run
because you run programs, you don't main them, but it
is too late to change the convention

Every useful language has lots of rubbish in it

10

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

hello.c

Defining a function
A function has a return type, a name, arguments, a body

int main() {
 ...
}

The int type means "small-ish integers"

The main function actually has two arguments:

int main(int n, char *args[n]) ...

In main, you are allowed to ignore them

11

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

hello.c

Buffered output
The name stdout refers to the stream of text which
the program is going to produce when it runs

setbuf(stdout, NULL);

Output is often buffered - the text is gathered up until
there is a reasonable amount to send efficiently

For stdout, that is exceedingly confusing

Many systems detect that stdout is going directly to
the screen, and switch buffering off, but not all (e.g.
MSYS2), so this line explicitly switches off buffering

12

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Why?
The line setbuf(stdout,NULL); is not usually
needed, and it is not needed in Hello World

But the Hello World program is often used to copy-
paste into any program when you start writing it

So it should contain anything you might need

If you are using MSYS2 to write native Windows
programs, you need it it at the start of main

Otherwise you probably won't need it, so I won't
mention it again

13

hello.c

Printing
The printf function is the commonest one for output

...
 printf("Hello World!\n");
...

It prints a string, but can also print out values

The \n at the end is a newline - always include it,
otherwise lots of things can go wrong

Add printf calls to your program to debug it, if you
can't work out what's wrong

14

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

Names
printf is a rubbish name

format_and_print, or print (or write or show
to avoid suggesting a printer) would have been better

Many library functions have rubbish names, because:

nobody had any idea in the early days how
important names are - bad names cause bugs
there was originally a six-letter limit on names

A name should be short, readable and evocative

15

hello.c

Returning
A function returns a value at the end (unless its return
type is void)

int main() {
 ...
 return 0;
}

main returns 0 to tell the system it succeeded, or an
error value, usually 1, if it failed

16

https://csijh.gitlab.io/COMS10008/lectures/functions/hello.c

What if you forget to return?
What if you leave out the return at the end?

int main() {
 setbuf(stdout, NULL);
 printf("Hello World!\n");
}

The standard says a function like that returns
"undefined" (it returns whatever rubbish value happens
to be in the return register)

The main function is an exception (for backwards
compatibility it returns 0) - so this is legal, but bad

17

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

18

paint.c

Example: paint
/* Find the area of paint I need. */
#include <stdio.h>

// Calculate area of walls and ceiling
int area(int length, int width, int height) {
 int sides = 2 * length * height;
 int ends = 2 * width * height;
 int ceiling = length * width;
 return sides + ends + ceiling;
}

// Find area of paint for my room.
int main() {
 int total = area(5, 3, 2);
 printf("The paint area is %d\n", total);
 return 0;
}

19

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

paint.c

Function order
The program has two functions

...
// Calculate area of walls and ceiling
int area(int length, int width, int height) ...

int main() ...

It is important that area is defined first, so that the
compiler knows about it when main calls it

area has three arguments

A line starting // is a one-line comment

20

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

paint.c

Function calls
You call a function by passing it some values for its
arguments, then catching the result that is returned

int main() {
 ...
 int total = area(5, 3, 2);
 ...
}

The arguments must be in the right order, e.g. the
height must be last in any call to area (think about it!)

21

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

paint.c

Printing again
The main function also contains a call to printf:

printf("The paint area is %d\n", total);

The printf function is the only commonly used
function with a variable number of arguments

The %d means 'print an integer in decimal format here',
and the integer to print is an extra argument to the
function

You can use %i instead of %d, but %d is more
conventional

22

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

paint.c

Statements
A function contains a sequence of statements, each
ending in a semicolon ;

int area(int length, int width, int height) {
 int sides = 2 * length * height;
 int ends = 2 * width * height;
 int ceiling = length * width;
 return sides + ends + ceiling;
}

Say "sides becomes ..." or "set sides equal to ..."

23

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

paint.c

Expressions
Calculations are done using expressions

... 2 * length * height ...

... 2 * width * height ...

... length * width ...

... sides + ends + ceiling ...

It is up to you how you split things up: some people
would write:

return 2 * length * height + 2 * width * height + length * width;

This is less readable: it doesn't explain itself

24

https://csijh.gitlab.io/COMS10008/lectures/functions/paint.c

Integers
So far, for integers, we've been using type int, which
uses binary with 32 bits, one of which is for the sign

So the range is -2147483648 to 2147483647

If you need more, use long, with 64 bits, range roughly
plus or minus 9 quintillion

25

Platforms
A platform is a combination of processor, operating
system, device drivers, libraries, compiler, run time
system, versions and settings of all those, and anything
else which affects programs

Usually, we abbreviate by talking about Linux, MacOS,
Windows, and the mobile versions Android, iOS, mobile
Windows, but these are really extensive families of
platforms

26

https://en.wikipedia.org/wiki/Computing_platform

Platform differences
Technically int is the "best" integer type provided by
the processor (was 16 bits, and may become 64 bits)

We are in a happy time where int is usually 32 bits
and long is usually 64

The main exceptions are tiny embedded processors, and
native Windows platforms where long is 32 bits

27

Cross-platform programs
In this unit, you must write cross-platform programs
because (a) it is the right thing to do and (b) your
submitted programs won't be marked on your platform

The main techniques for this are sticking rigidly to the
language standard, and switching on all compiler error
messages, and gaining experience

28

Minority platforms
It is not recommended to try to write programs for all
platforms, because the issues on native Windows and
tiny processor platforms are too numerous, too
restrictive, and too difficult to test

The best approach is (a) write a majority cross-platform
program first (b) run through the platform issues one
by one (c) use conditional compilation for the fixes

So: let's all assume int is 32 bits and long is 64

29

Double
The paint program uses int, but we may want non-
integer lengths, producing a non-integer area

Just replace int by double everywhere appropriate

The double type is the type of "double precision
floating point numbers", and it is the normal type to use
for approximate real numbers

In printf, use %f (floating point) instead of %d
(decimal)

30

dpaint.c

Example: double paint
/* Find the area of paint I need. */
#include <stdio.h>

// Calculate area of walls and ceiling
double area(double length, double width, double height) {
 double sides = 2 * length * height;
 double ends = 2 * width * height;
 double ceiling = length * width;
 return sides + ends + ceiling;
}

// Find area of paint for my room.
int main() {
 double total = area(5, 3, 2);
 printf("The paint area is %f\n", total);
 return 0;
}

Integer constants 2, 5,... get converted to double

31

https://csijh.gitlab.io/COMS10008/lectures/functions/dpaint.c

32

sum.c

Example: triangle numbers
The nth triangle number is the sum of the numbers
from 1 to n

/* Find the n'th triangle number. */
#include <stdio.h>

// Find the sum of the numbers from 1 to n.
int sum(int n) {
 if (n == 1) return 1;
 else return n + sum(n-1);
}

int main() {
 int t10 = sum(10);
 printf("The 10th triangle number is %d\n", t10);
 return 0;
}

33

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

sum.c

The sum function
The important part of the program is the sum function:

// Find the sum of the numbers from 1 to n.
int sum(int n) {
 if (n == 1) return 1;
 else return n + sum(n-1);
}

It has an argument variable n

The argument n is local, it is created at the start of a
call, and destroyed when the function returns

The function is recursive, i.e. it calls itself

34

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

sum.c

A row of friends
To get the hang of recursion, imagine a row of 10
friends who cooperate in solving the problem

Each friend has a copy of the instructions:

int sum(int n) {
 if (n == 1) return 1;
 else return n + sum(n-1);
}

The main function calls sum(10), which is like
handing the sum(10) problem to one friend, let's say
Alice who writes n = 10 on her piece of paper

35

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

sum.c

The next friend
Alice obeys this instruction:

return n + sum(n-1);

This involves a function call sum(9), which is like
handing the sum(9) problem to the next friend, let's
say Bob, who writes n = 9 on his piece of paper

36

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

sum.c

The last friend
The requests go down the line until the problem
sum(1) is handed to Joe who obeys this instruction:

return 1;

Irene receives 1 and adds it to the number on the paper,
2, and returns 3

37

https://csijh.gitlab.io/COMS10008/lectures/functions/sum.c

Back up the line
The answers go back up the line

Friend Henry receives 3 and returns 6

Friend Grace receives 6 and returns 10

...

Friend Alice receives 45 and returns 55

38

Local variables
The argument variable n is local

It is created when the call is made, set to the number
passed in the call, and it lasts until the call returns

It is like a friend's piece of paper

It can't be accessed from outside the function - it
belongs to the function - you can think of it as 'trapped'
by the curly brackets

39

Call stack
A processor has a call stack, containing stack frames, like
a pile of pieces of paper with local variables written on,
one for each function call which is in progress

Later, when we get to pointers, we will have a look at its
layout

It is very efficient, especially since call and return
instructions are built into the processor

40

Termination
It is a good thing the sum function doesn't always call
itself

Otherwise, there would be an unlimited chain of calls
(often called an 'infinite loop') and the program would
keep going until it ran out of memory

Recursion always needs a termination condition ('get out
clause')

41

Is recursion important?
Recursion is much rarer in C than in Haskell, because
loops are often used instead:

int sum(int n) {
 int result = 0;
 for (int i=1; i<=n; i++) result = result + i;
 return result;
}

But occasionally, recursion is essential or natural, as the
clearest solution to a problem

42

43

Design
The C language hasn't changed all that much over time

The way C programmers design programs has changed

To illustrate, on the next couple of slides, there is a
before and after example of a prime number program in
the old style and in the new style

You don't need to understand it all

The difference doesn't matter much for small programs,
but becomes crucial for bigger ones

44

oldprimes.c

Old primes
/*
 * This program generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 *
 * Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
 * d. c. 194, Alexandria. The first man to calculate the
 * circumference of the Earth. Also known for working on
 * calendars with leap years and ran the library at Alexandria.
 *
 * The algorithm is quite simple. Given an array of integers
 * starting at 2. Cross out all multiples of 2. Find the next
 * uncrossed integer, and cross out all of its multiples.
 * Repeat untilyou have passed the square root of the maximum
 * value.
 *
 * @author Alphonse
 * @version 13 Feb 2002 atp
 * From book "Clean Code", adapted from Java by Ian Holyer
 * Compile with: clang -o oldprimes oldprimes.c -lm
 * Run with: ./oldprimes 10
 */

45

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

oldprimes.c

Old primes 2
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(int argc, char **argv) {
 if (argc < 2) { printf("Please give a maximum number\n"); exit(1); }
 // maxValue is the generation limit.
 int maxValue = atoi(argv[1]);
 if (maxValue >= 2) { // the only valid case
 // declarations
 int s = maxValue + 1; // size of array
 int f[s];
 int i;
 // initialize array to true.
 int false = 0, true = 1;
 for (i = 0; i < s; i++)
 f[i] = true;
 // get rid of known non-primes
 f[0] = f[1] = false;

46

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

oldprimes.c

Old primes 3
 // sieve
 int j;
 int root = (int)sqrt((double)s);
 for (i = 2; i < root + 1; i++) {
 if (f[i]) { // if i is uncrossed, cross its multiples.
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }
 for (i = 0; i < s; i++) {
 if (f[i]) printf("%d\n", i);
 }
 return 0;
 }
 else // maxValue < 2
 return 1; // return program failure if bad input.
}

47

https://csijh.gitlab.io/COMS10008/lectures/functions/oldprimes.c

primes.c

New primes
/* Generate primes up to a maximum using
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
Compile with: clang -std=c11 -Wall primes.c -lm -o primes
Run with: ./primes 10
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>

// Extract 'max' from the command line, add one to make array size.
int findSize(int n, char *args[n]) {
 if (n != 2) {
 fprintf(stderr, "Use: ./primes max\n");
 exit(1);
 }
 return atoi(args[1]) + 1;
}

// Clear the array of booleans, so only 0 and 1 are crossed out.
void uncrossAll(int size, bool crossedOut[size]) {
 for (int i=0; i<size; i++) crossedOut[i] = false;
 crossedOut[0] = crossedOut[1] = true;
}

48

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

primes.c

New primes 2
// Cross out multiples of a number n
void crossOutMultiples(int size, bool crossedOut[size], int n) {
 for (int m = 2*n; m < size; m = m + n) crossedOut[m] = true;
}

// See wikipedia: every composite has a prime factor <= its square root
// so we only need to cross out multiples of numbers up to sqrt(size)
int findIterationLimit(int size) {
 double root = sqrt((double)size);
 return (int) root;
}

// Cross out all composite numbers
void crossOutComposites(int size, bool crossedOut[size]) {
 int limit = findIterationLimit(size);
 for (int i = 2; i <= limit; i++) {
 if (! crossedOut[i]) crossOutMultiples(size, crossedOut, i);
 }
}

// Follow the algorithm
void generatePrimes(int size, bool crossedOut[size]) {
 uncrossAll(size, crossedOut);
 crossOutComposites(size, crossedOut);
}

49

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

primes.c

New primes 3
// Print the un-crossed-out numbers
void printPrimes(int size, bool crossedOut[size]) {
 for (int i = 2; i < size; i++) {
 if (! crossedOut[i]) printf("%d\n", i);
 }
}

void test() {
 bool expected[12] = {1,1,0,0,1,0,1,0,1,1,1,0};
 bool crossedOut[12];
 generatePrimes(12, crossedOut);
 for (int i = 0; i < 12; i++) if (crossedOut[i] != expected[i]) {
 fprintf(stderr, "Wrong result for %d\n", i);
 exit(1);
 }
 printf("All tests pass.");
}

// Run
int main(int n, char *args[n]) {
 if (n == 1) test();
 int size = findSize(n, args);
 bool crossedOut[size];
 generatePrimes(size, crossedOut);
 printPrimes(size, crossedOut);
}

50

https://csijh.gitlab.io/COMS10008/lectures/functions/primes.c

Modern design
The modern design style is:

tiny functions, visible at a glance
each has one clear responsibility
each is quite readable
calculation is separated from input/output
calculation functions are autotested

51

Prime improvements
The program as a whole is more readable

The functions are self-documenting at the 'how' level

The comments are brief, external, adding the 'why'

Commenting-out can be used during development

Each function is short enough to see it is correct

The functions can be developed one by one

Automatic testing adds confidence

52

Commenting out
Suppose you change something radical, so all the
functions in the program need to be changed

You can surround them all with a /*...*/ comment,
then move them out of the comment one by one

But /*...*/ comments don't nest, so this doesn't work if
you use /*...*/ comments before function definitions

So using one-line // comments before functions makes
commenting-out easy

53

Side Effects
A function can do these things

1. return a result
2. change data passed as arguments
3. input or output
4. change global variables

A function that only does 1 is pure, see Haskell

Functions that do 2, 3 or 4 are said to have side effects

In C, 2 is normal, but it is best to separate out 3 and
avoid 4, because 1 and 2 can be auto-tested

54

