
Development

1

Progression
You should be aiming in your degree to move through
these stages:

coder: able to get programs to work
programmer: understand design, precision, style,
algorithms, data structures, libraries, efficiency, ...
developer: able to handle larger programs, work
in teams, follow industry practices, ...

2

Size and speed
You probably have a personal program size limit of tens
or hundreds of lines

You may take much longer to write a program than you
should, because debugging takes up too much of your
time

You can view this chapter as providing techniques to
push your limit up to thousands of lines, while reducing
your debugging time to a low percentage

3

Golden rules
We will cover some very basic and practical
development issues, relevant to programmers working
on their own

They are presented here as golden rules

4

Take small steps

Your program should always be in a working state

Only write one or two more lines before re-compiling
and re-running

Start with a hello world program and gradually make it
do more

5

The farmer's response
A tourist lost in the countryside asks for directions from
a farmer

The farmer thinks for a while and says: "If I were you,
I wouldn't start from here"

If you don't pay attention to the small steps rule, and
you ask someone for help, this may be the only possible
response they can give

If you've only written 2 lines since the program was last
under your control, you know where to look for the bug

6

Design using tiny functions

Each function should be responsible for doing "one
thing", and should be so short you can see it is correct

Aim for about 5 lines - a function should be visible all at
once without scrolling

Then you can develop and test one function at a time,
with the previous functions giving you a solid
foundation for the next one

7

Cleverness
Brian Kernighan, one of the creators of C, said:

"Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough to
debug it."

Don't try to be too 'clever' and out-smart yourself

So don't try to do too much in one function

And don't write code which is too compact

8

Top down or bottom up?
Should you work top down (start with the whole
problem and break it down into smaller pieces) or
bottom up (start with low level functions and build up)?

The answer is both

You must do some top-down design, to work out what
functions you are going to need

You must develop the functions bottom up, otherwise
you can't test them

To some extent, you can alternate

9

Example: Noughts and crosses
You might break the problem into two: (a) handling the
3x3 grid, (b) user interaction, then (a) breaks down into:

a data structure for storing the grid
a function to check if a cell is empty
a function to put O or X into a cell
a function to check for three in a row

You can now write and test the structure and the three
functions

Then you can go back and do some design work on the
user interaction

10

Keep your code DRY

DRY stands for Don't Repeat Yourself

If ever you see similar-looking code in two or more
places, it is a symptom of potential problems - some
people call these symptoms smells

11

http://en.wikipedia.org/wiki/Code_smell

Example: Noughts and crosses
A function for checking for a win might be:

if (g[0][0] == 'X' && g[0][1] == 'X' && g[0][2] == 'X' ||
 g[1][0] == 'X' && g[1][1] == 'X' && g[1][2] == 'X' ||
 g[2][0] == 'X' && g[2][1] == 'X' && g[2][2] == 'X' ||
 ...

This is repetitive, not very readable, and error-prone

if (row(g,0,'X') || row(g,1,'X') || row(g,2,'X') || ...

This is better, re-using a small testable function

12

Do automated testing

Every developer knows that this is the only thing that
works, but there seems to be a big psychological barrier
that programmers have to overcome before they do it

That's why we try to get you do it from day one

Look up unit testing, but beware that people rarely
explain properly that it is supposed to be automated,
and they make it over-complicated

13

How much?
The rule is not about doing lots of testing

The purpose of testing is to boost your confidence

So how much testing you do, and which tests you write,
is entirely up to you and your experience

But follow this rule: do however much testing you think
is right for you, but make sure you automate it, not run
your program over and over again looking at the results
by eye

14

Automation
In 1945, before there were any computers to speak of,
Alan Turing said:

"There need be no real danger of it [computing] ever
becoming a drudge, for any processes that are quite
mechanical may be turned over to the machine itself."

In other words, if you find anything boring, automate it

Testing tends to be boring, so automate it

15

Regression testing
Experience shows that programs break as you develop

Things that used to work stop working

So if you run your program in a certain way to test it,
you will need to repeat that test many times to make
sure that it continues to work

So, build all your tests into your program, i.e. automate
them and never delete them

16

Design for testing
You can't retro-fit testing into your program

You've got to design the program from the beginning
with easy testing in mind

Keep functions self-contained, so that they can be tested
in isolation

Especially, make sure functions don't include any user
interaction or other I/O whenever possible

Separate out the I/O, and test the rest

17

Refactor programs

This means re-organise, i.e. rewrite, your program,
ready for the next stage

You have to break your program, but the automated
tests will give you the confidence to know you have
repaired it

18

Use a versioning system

Use git to keep track of versions of your program, and
gitlab to back it up in the cloud

See the aside on version control for details

19

http://localhost:8080/COMS10008/asides/versions.html

