
Bits

1

2

Binary questions
Everybody knows that computers use binary for
numbers and arithmetic, but:

Why?

Computer scientists need to know something about
binary, but:

How much?

Computers are good at binary arithmetic and translation
to and from decimal, so why not leave them to it?

3

Economics
One reason computers use binary is economics

A few early computers used decimal, but it needed
more circuitry, and more time, than using binary

Binary is just simpler, for a computer

4

https://en.wikipedia.org/wiki/Decimal_computer

Information
A second reason for using binary is that a binary
number is made up of bits

The bit is the fundamental unit of information, and it
makes sense to store all kinds of data in the same way

Computers use bit patterns to represent everything:
instructions, numbers, characters, pixels, ...

The word "binary" means "to do with bits", whether
numerical or not (e.g. binary file = non-text file)

5

How does the computer know?
A common question, when people look at computer
architecture for the first time, is "how does the
computer know whether a memory location holds an
instruction, number, character or pixel?" It doesn't

If the current operation is "execute", the bits are treated
as an instruction; if "add", as a number, if "print", as a
character, if "display", as a pixel

So, the knowledge of what each lump of memory
represents is embedded implicitly in the program's
instructions

6

Bit manipulation
Computer scientists need to know about binary, because
bit manipulation is needed by programmers in:

understanding architecture to program well
operating systems and device drivers
small devices such as smart phones
networking, protocols, the Web
efficient programs e.g. cryptography
file formats, e.g. audio, video, compression
pixel manipulation in graphics, image processing

7

Need to know
What do you need to know about binary:

arithmetic? no
counting? yes
handling of negative numbers? yes
translation to/from decimal? no
translation limits? yes

And bit manipulation:

pack numbers into groups of bits yes
unpack bits into a signed/unsigned number yes
floating point numbers? very little

8

Decimal Counting
With a decimal 4-digit counter, the rightmost digit rolls
round, and there may be carries:

2 3 9 9 2 4 0 0

Each position has 10 possible digits, so the counter can
display 10 x 10 x 10 x 10 = 10000 different
numbers, from 0000 to 9999

To avoid overflow (wrap-around) mistakes, you need to
avoid counting up from 9999 or down from 0000

9

Binary Counting
With a binary 4-bit counter, the rightmost digit rolls
round, and there may be carries:

1 0 1 1 1 1 0 0

Each position has 2 possible digits, so the counter can
display 2 x 2 x 2 x 2 = 16 different numbers,
from 0000 to 11112 (0..15)

To avoid overflow (wrap-around) mistakes, you need to
avoid counting up from 11112 or down from 0000

10

Bytes
A byte is like a binary counter with 8 digit positions

So it has 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 =
28 = 256 different possibilities

They run from 00000000 to 111111112 = 255

11

Decimal negatives
Having a minus sign in front is not natural for
mechanical counters or computers - instead, half the
possibilites are reserved as negative

2 4 0 0 2 3 9 9

0 0 0 0 9 9 9 9

By counting down from 0, we can see that 9999
represents -1: first digits 5..9 indicate negative
numbers, using the same counter

12

Working it out
How do you work out what 7385 means?

You subtract from 0000, and forget everything except
the four right most digits, to get -2615

What range of numbers does the counter cover?

From 5000 = -5000 to 4999

To avoid overflow, avoid counting down from 5000 or
up from 4999

This is called ten's complement arithmetic

13

https://en.wikipedia.org/wiki/Method_of_complements

Binary negatives
Half the possibilities are reserved as negative

0 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1

By counting down from 0, we can see that 11112
represents -1: first digit 1 indicates a negative number,
and the arithmetic circuitry in the processor is (almost)
identical

14

Working it out
How do you work out what 11012 means?

You subtract from 0000, and forget everything except
the four right most digits, to get -00112 = -3

What range of numbers does the counter cover?

From 10002 = -10002 = -8 to 01112 = 7

For bytes, the range is 100000002 = -27 = -128
up to 011111112 = 27-1 = 127

This is called two's complement arithmetic

15

https://en.wikipedia.org/wiki/Two's_complement

How does the computer know?
When a number is stored in a byte, how does the
computer know whether it unsigned (0..255) or
signed (-128..127)? It doesn't

You tell the computer to do unsigned/signed arithmetic
or to print out the number unsigned/signed or whatever

The knowledge resides in the instructions

16

Integers
Computers also use two-byte integers, giving an
unsigned range 0..65535 or signed range
-32768..32767

Computers also use four-byte integers, giving an
unsigned range 0..4294967295, i.e. about 4 billion,
or signed range -2147483648..2147483647

Computers also use eight-byte integers, giving 0..264-
1, i.e. about 18 quintillion, or -263..263-1

17

Sex
It has never been clear whether multi-byte integers
should be stored big-endian or little-endian - the choice
is sometimes called the sex of the computer, (though
nobody knows which is which, and some are bi)

Decimal numbers in English are written big-endian, but
(a) simple arithmetic is done right to left (b) in a
calculator, typed digits emerge from the right and (c)
there is a story that we stole the notation from
documents in a right-to-left Arabic languages, without
realising we should have reversed it

18

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/SEX_(computing)

Does it matter?
When does it matter whether a computer is big- or
little-endian? Answer: rarely

if you store integers in binary files
if you send integers over the net
if you re-interpret an integer in memory as an
array of bytes or vice versa, e.g. with pixels

19

Hex
Hex, short for hexadecimal, is base 16. It is used as a
shorthand for binary (1 hex digit = 4 bits)

int n = 0x3C0; // 0011 1100 0000

Beware: 0377 in C means octal, now obsolete

Hex is used when emphasizing bit patterns, but is often
used inappropriately, e.g. character 0x3C0 instead of
960 for π or colour 0x00FF00 instead of
(0%,100%,0%) for green

20

https://en.wikipedia.org/wiki/Hexadecimal

Example: hex printing
To print an int in hex, in order to check its bit pattern:

printf("%08x\n", n);

%x means print in hex

%8x means 8 columns

%08x means leading zeros, not spaces

For 1, 2, 4, 8 byte integers, use %02x, %04x, %08x,
%016lx (add letter l for long arguments)

21

C integer types
Integer variables in C have roughly types:

char (one byte, one ascii character)
unsigned char
short (two bytes)
unsigned short
int (four bytes)
unsigned int
long (eight bytes)
unsigned long

22

Advice: use unsigned char
If you are manipulating bytes, you could just use the
char type

But you don't know whether it is signed or unsigned
(the standard says it depends on the computer)

And if it is signed, char c = 0x80 may give a
compiler warning because hex constants are unsigned

So I recommend defining a byte type:

typedef unsigned char byte;

23

Warning
Technically, C types are represented in "the most
convenient way on the current computer" - in practice:

char is sometimes unsigned - use signed char or
unsigned char for bytes

short is almost always two bytes

int is almost always four bytes (past 2, future 8)

long is usually eight bytes, but is four bytes on 32-bit
systems and native 64-bit Windows (so use Cygwin)

24

https://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models

Variations
Sometimes "the most convenient representation" is right

But for truly portable software, it isn't, so for example,
the stdint.h header provides types ending with _t:

int8_t, int16_t, int32_t, int64_t
uint8_t, uint16_t, uint32_t, uint64_t

And, e.g, stdlib.h provides size_t meaning "best
type to hold sizes, up to the memory limit"

The headers vary, so your programs don't have to!

25

Coercion
When different types are combined, there are subtle
rules of conversion, called coercion, that are applied
implicitly by the C compiler

Conversion to a bigger type includes sign extension, e.g.
if a negative short is copied into an int, the top 16
bits are set to 1 so that it represents exactly the same
number:

short s = -42;
int n = s;
if (n == -42) printf("ok\n");

26

https://en.wikipedia.org/wiki/Type_conversion

Assignment
In an assignment x = ..., if the type of the right
hand side is bigger than the variable can hold, the extra
bits are thrown away.

However, depending on the compiler, if the right hand
side is a constant, and strict options are used, there may
be a warning if the value changes:

short s = 65535;

The number 65535 consists of 16 digits, so it fits in a
short variable. But the value becomes negative.

27

Casts
This can be fixed if you know what you are doing by
explicitly casting a value of one type to another:

short s = (short) 65535;

You can also specify the type of constants:

long n = 4L * 1024L * 1024L * 1024L;

Without the L, the right hand side would be an int
which wouldn't hold the result accurately.

Casts indicate that some dirty trick is being used, so
they should be very rare!

28

Integer promotion
You also need to be aware of integer promotion.

In integer expressions, all variables, constants and
intermediate values are 'promoted'.

That means they are expanded to int (or possibly
uint, long or ulong). This matches what processors
typically do, when they hold integer values in registers.

29

https://en.wikipedia.org/wiki/Processor_register

Bit operators
The bit operators in C are:

& bitwise and
| bitwise or
^ bitwise xor
~ bitwise not
<< shift left
>> shift right

C uses the pow function, not ^, for powers

The ~ operator changes all the bits

30

Masking
The & operator is most often used for masking

That means isolating just some of the bits from a
pattern

Suppose n holds 111010112 and we want to split this

into two blocks of four bits each

The hex constant 0x0F represents the rightmost four
bits, and n & 0x0F gives 10112

The hex constant 0xF0 represents the other four bits,
and n & 0xF0 gives 111000002

31

https://en.wikipedia.org/wiki/Mask_(computing)

Example: testing odd
To test whether an integer is odd:

if ((n & 0x1) == 0x1) ...;

You could write (n & 1) == 1, but it is usually
more readable to use hex constants during bit
manipulation, to emphasise the bit patterns

Advice: use lots of brackets round bit operations,
because the precedences of the bit operators are
"wrong" (like ||, && instead of +, *)

32

Shifting right
The >> operator shifts a number to the right by a given
number of bits.

If n holds bit pattern 101102 or 101112, then

n >> 1 gives 10112.

That means n >> 1 divides n by 2 (discarding any
remainder), n >> 2 divides n by 4, and so on.

Use n / 2 when doing arithmetic, n >> 1 when
manipulating bits, and trust the compiler to choose the
best instruction.

33

Shift right ambiguity
When >> is used to shift a negative number to the
right, what happens?

If a number is signed, does the >> do sign extension to
preserve the sign?

The C standard doesn't require a processor to have an
instruction which does that, so the result is undefined.

So, >> should only be used on unsigned numbers.

34

Shifting left
The << operator shifts a number to the left by a given
number of bits.

If n holds bit pattern 10112, then n << 1 gives

101102.

That means n << 1 multiplies n by 2, n << 2
multiplies n by 4, and so on (except for overflow).

Use n * 2 when doing arithmetic, n << 1 when
manipulating bits, and trust the compiler to choose the
best instruction.

35

Shift left ambiguity
When << is used to shift a negative number to the left,
what happens?

There is no ambiguity about what the resulting bit
pattern should be, on the vast majority of processors
anyway, but a number could switch from unsigned to
signed or vice versa.

This counts as another undefined situation, which the
sanitize option will give an error or warning for.

So, << should only be used on unsigned numbers.

36

Packing
Suppose that compression is needed in a file, or a
network packet, or a program with lots of data

Then you might want to pack several pieces of data into
one variable

For example, in graphics, a colour is often three
numbers, each 0..255, for red, green and blue
components (ignoring opacity) packed into one integer

37

Example: Colour packing
Let's write a function using the | (or) operator and
shifts to pack the three component numbers into one
integer

// Pack three components, each 0..255, into a colour
int pack(int r, int g, int b) {
 unsigned int ur = r, ug = g, ub = b;
 return (ur << 16) | (ug << 8) | ub;
}

Programmers often write x+y instead of x|y, which is
the same if there no common bits, but it is more
readable to use | when manipulating bits

38

Example: Colour packing
unsigned int ur = r, ug = g, ub = b;

Unsigned copies of the arguments need to be made, so
that it is unsigned integers that are shifted

It would be a mistake to define these as unsigned
char, because then they would get promoted to int
before being shifted

Even if the arguments r, g, b were declared as
unsigned char, they would need to be copied into
unsigned int variables

39

Unpacking
To unpack some numbers that have been packed, you
can use shifting and masking:

// Unpack the three components from a colour
void unpack(int c, int rgb[3]) {
 unsigned int uc = c;
 rgb[0] = (uc >> 16) & 0xFF;
 rgb[1] = (uc >> 8) & 0xFF;
 rgb[2] = uc & 0xFF;
}

You can mask and then shift, but then the masks are
longer

40

Signed pieces
Sometimes, the pieces to be packed and unpacked are
signed and can be negative

Suppose one int is to be used to hold (x,y) coordinates,
where each coordinate is a signed 16 bit number (range
-32768..32767)

41

Example: packing coordinates
Here is a function to pack two coordinates:

// Pack two signed 16-bit coordinates
int pack(int x, int y) {
 unsigned int ux = x, uy = y;
 int p = ((ux & 0xFFFF) << 16) | (uy & 0xFFFF);
 return p;
}

If an int is guaranteed to be 32 bits, then the first mask
is unnecessary (shifting discards bits that don't fit)

The resulting position variable may be negative (if x is
negative)

42

Hex constants
int p = ((ux & 0xFFFF) << 16) | (uy & 0xFFFF);

A hex constant 0xFFFF is always positive

It is normally promoted to int, so it becomes signed

But here, it is promoted to unsigned int to match
the other integers

43

Sign extension
Unpacking is more difficult, because the leading 1 bits
in a negative number have to be recovered explicitly

There are several ways to do this:

explicit
double shift
numerical
use minus one
use the ~ operator

The last one is the best

44

Explicit sign extension
Suppose x holds 16 bits, with the leftmost of the 16 a 1,
e.g. 00000000000000001101011001111011 and
we want to make it a negative int

The most obvious explicit way is with:

x = 0xFFFF0000 | x;

This adds in the missing bits but (a) it is easy to get the
hex bit pattern wrong, and (b) it depends on knowing
that an int has 32 bits

44a

Double shift
Another way of doing it that is recommended in many
places is:

x = (x << 16) >> 16;

This is no good because of the ambiguity of shifts for
negative numbers, and it won't work on all platforms

44b

Numerical approach
Here's a numerical approach:

x = x - 65536;

This works because x - 65536 is x + (-65536)
and -65536 is 0xFFFF0000

But (a) it is obscure and (b) it is bad style because it is
better to do bit manipulation with bit operators rather
than with arithmetic

44c

Use minus one
Here's a clever approach:

x = (-1 << 16) | x;

This works because -1 consists of 32 ones

But with some compilers it will generate a warning
because -1 is a 'numerical' operation

44d

Use the ~ operator
A similar clever approach is:

x = (~0U << 16) | x;

The constant 0U is zero, forced to have the type
unsigned int

This works because ~ swaps 0s and 1s, so ~0U consists
of 32 ones

This is pure bit manipulation with no assumption of 32
bits in it, so it can be used quite generally

44e

Example: unpacking coords
Here is a function to unpack two coordinates:

// Unpack two signed 16-bit coordinates
void unpack(int p, int xy[2]) {
 unsigned int up = p;
 int x = (up >> 16) & 0xFFFF;
 if ((x & 0x8000) != 0) x = (~0U << 16) | x;
 xy[0] = x;
 int y = up & 0xFFFF;
 if ((y & 0x8000) != 0) y = (~0U << 16) | y;
 xy[1] = y;
}

45

Advice:
A summary of general tips is:

use -fsanitize=undefined to ensure cross-
platform safety
use unsigned integers when shifting
use hex constant and bit operators, avoiding
decimal constants and arithmetic operators
use lots more brackets than usual

46

