
Arrays

1

2

add.c

Sums
Here's a (poor) program to add three numbers

/* Add three numbers */
#include <stdio.h>

int main() {
 int numbers[3];
 numbers[0] = 16;
 numbers[1] = 12;
 numbers[2] = 14;
 int sum = 0;
 for (int i=0; i<3; i++) sum = sum + numbers[i];
 printf("sum = %d\n", sum);
}

3

https://csijh.gitlab.io/COMS10008/lectures/arrays/add.c

Declaring arrays
The array declaration is:

int numbers[3];

The type (int) is the type of each element

The length (3) is the number of elements

Amount of memory is sizeof(numbers)
= 3 * sizeof(int) = 3*4 = 12

4

Variable length arrays
The length of an array can be a variable (in C11)

int calculate(int n) {
 int numbers[n];
 ...
}

The variable can even be read in from the user or a file

The length of an array can't change after it is declared
(it only varies between function-calls or program-runs)

5

Starting from zero
Sometimes, programmers focus on the elements of an
array, sometimes on the positions, i.e. gaps in between

That is like counting or like measuring:

Counting and measuring both start at 0 so that there
are fewer problems (out-by-one errors or special cases)

6

Example: substring
Suppose you want to write a substring function

How do you say where the substring starts and ends?

If you count the characters, the usual convention is
"from the i'th to the j'th characters inclusive"

But the length of the substring is then j-i+1, and
empty substrings must have j less than i

With 0-based positions, the length is j-i and empty
substrings have j==i

7

Bugs
There are fewer problems when indexing from 0, but it
is still easy to make mistakes, especially ones like:

int numbers[3];
numbers[3] = 42;

The element numbers[3] doesn't exist, so either this
updates some other variable, or the memory doesn't
even belong to your program

C does not automatically detect this, so the program
may run on and produce stupid results, or crash

8

segfault.c

Segmentation faults
A segmentation fault or segfault is when your program
tries to access memory which doesn't belong to it

/* Generate a segfault. */
#include <stdio.h>

int main() {
 int numbers[3] = {3, 4, 5};
 int n = 1000000000;
 printf("%d\n", numbers[n]);
}

This program will probably end in a segfault

9

https://csijh.gitlab.io/COMS10008/lectures/arrays/segfault.c
https://en.wikipedia.org/wiki/Segmentation_fault

Undefined behaviour
There are many situations besides running off the end
of an array which result in undefined behaviour
(i.e. crashes or random results)

The C standard does not insist that a compiler or run-
time system detects these errors, because that would
make it a lot less efficient

It used to be a big problem for C programmers

But now, you can use the -fsanitize=undefined
option (which works on Linux/MacOs and half works on
Windows)

10

Debugging
The C language cannot warn you about all your bugs

Often, your program does the wrong thing, and you
have to find the bug

This skill, see aside: debugging, is an essential one in
programming

It is almost impossible to teach in lectures - it is lab
experience that counts - ask if you get stuck

It is really important to reduce your debugging to, say,
less than 50% of your development time - by practice,
practice, practice

11

https://csijh.gitlab.io/COMS10008/asides/debugging

Initialising arrays
For efficiency, arrays are not initialised, and their
contents are rubbish (whatever happens to be in the
allocated memory)

So, each entry must be written before it is read

Constant-length arrays can be initialised compactly:

int numbers[3] = {16, 12, 14};

Note: when curly brackets are used for initialisation,
you need a semicolon after the close bracket, unlike
with block brackets

12

The compiler can count
You can write this:

int numbers[] = {16, 12, 14};

The compiler can work out the length of the array (3)

13

sum.c

Passing arrays
Let's try a separate function for summing:

// Demo: pass an array
#include <stdio.h>

// Add three numbers
int sum(int items[3]) {
 int sum = 0;
 for (int i=0; i<3; i++) sum = sum + items[i];
 return sum;
}

int main() {
 int numbers[3] = {16, 12, 14};
 printf("sum = %d\n", sum(numbers));
}

14

https://csijh.gitlab.io/COMS10008/lectures/arrays/sum.c

Array lengths
The sum function would be much better if it could
accept an array of any length

But there is no way to find the length of an array

Instead, you have to remember how big it was when
you created it, and store that length somewhere else

15

sum2.c

Generalized sum
That means the length of an array has to be passed to a
function, as well as the array itself:

// Demo: pass an array
#include <stdio.h>

// Add up an array of numbers
int sum(int n, int items[n]) {
 int sum = 0;
 for (int i=0; i<n; i++) sum = sum + items[i];
 return sum;
}

int main() ...

16

https://csijh.gitlab.io/COMS10008/lectures/arrays/sum2.c

Passing array lengths
The argument notation (int n, int items[n]) is
a recent one, which only works if n is before
items[n] in the argument list

Also common is (int n, int items[]) because
the compiler doesn't need to know the length of items,
it just needs to do what it is told with n

Also common is (int n, int *items) (see later
chapter) because the compiler treats "array" and "pointer
to start of array" as the same thing (almost)

17

pass.c

Pass by value or reference?
Does this work?

/* Test array-passing */
#include <stdio.h>

// Initialise elements of array
void init(int n, int items[n], int v) {
 for (int i=0; i<n; i++) items[i] = v;
}

int main() {
 int numbers[3] = { 0, 0, 0 };
 init(3, numbers, 42);
 printf("n0 = %d\n", numbers[0]);
}

18

https://csijh.gitlab.io/COMS10008/lectures/arrays/pass.c

Pass by value
Ordinary variables are passed by value

That means, the variable (or constant or calculated
expression) is copied into the argument variable

Any changes made to the argument variable have no
effect on the original

int square(int x) { x = x*x; return x; }
...
int n = 7, s = square(n);
printf("%d %d\n", n, s);

The function square has no effect on n

19

Pass by reference
Arrays are passed by reference

That means the argument variable is made to refer to
the original array, because copying a large array would
be expensive

That means that if a function changes any of the
elements of the array, those changes are seen in the
caller's array (the array has two names)

20

Returning arrays
Arrays can't be returned from functions

Pointers to arrays can be returned (see later chapter)

For now, to design a function which adds two vectors,
you can pass a third argument to hold the result, which
works because of pass-by-reference

void add(int n, int a[n], int b[n], int c[n]) {
 ...
}

21

Multi-dimensional arrays
A two dimensional array in C is just an array of arrays:

int matrix[3][2] = {{1,2},{3,4},{5,6}};
printf("bottom right = %d\n", matrix[2][1]);

22

Printing a matrix
When passing a multi-dimensional array, the compiler
does need to know the length of each dimension (except
the first), so the modern notation is essential:

void print(int h, int w, int matrix[h][w]) {
 for (int r=0; r<h; r++) {
 for (int c=0; c<w; c++) {
 if (c > 0) printf(" ");
 printf("%d", matrix[r][c]);
 }
 printf("\n");
 }
}

23

Concerns
Most programmers worry about allocating large arrays,
because they are allocated on the stack, and the stack
may have a limited size (see memory chapter)

Also, the strict lifetime of an array (allocated on a call
and deallocated on a return) is not flexible enough

So, sooner or later, you have to switch to dynamic
allocation (see later chapter) - most programmers use
dynamic allocation most of the time

24

