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Abstract

I introduce an open-source R package ‘dcGOR’ to provide the bioinformatics community with the ease to analyse ontologies
and protein domain annotations, particularly those in the dcGO database. The dcGO is a comprehensive resource for protein
domain annotations using a panel of ontologies including Gene Ontology. Although increasing in popularity, this database
needs statistical and graphical support to meet its full potential. Moreover, there are no bioinformatics tools specifically
designed for domain ontology analysis. As an add-on package built in the R software environment, dcGOR offers a basic
infrastructure with great flexibility and functionality. It implements new data structure to represent domains, ontologies,
annotations, and all analytical outputs as well. For each ontology, it provides various mining facilities, including: (i) domain-
based enrichment analysis and visualisation; (ii) construction of a domain (semantic similarity) network according to
ontology annotations; and (iii) significance analysis for estimating a contact (statistical significance) network. To reduce
runtime, most analyses support high-performance parallel computing. Taking as inputs a list of protein domains of interest,
the package is able to easily carry out in-depth analyses in terms of functional, phenotypic and diseased relevance, and
network-level understanding. More importantly, dcGOR is designed to allow users to import and analyse their own
ontologies and annotations on domains (taken from SCOP, Pfam and InterPro) and RNAs (from Rfam) as well. The package is
freely available at CRAN for easy installation, and also at GitHub for version control. The dedicated website with
reproducible demos can be found at http://supfam.org/dcGOR.
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Introduction

Proteins are of modular design, with structural units called

domains [1]. Domains often act as the operational units

responsible for many aspects of protein function, and some of

them are linked to phenotypic traits and diseased states. Despite

their importance in biology, domains are less studied than

proteins/genes in terms of ontology annotation; something

much-needed and only recently addressed by the dcGO database

[2]. This database provides a systematic annotation of domains

using a panel of ontologies; an ontology such as Gene Ontology

(GO) [3] is controlled vocabularies but organised in a hierarchy to

categorise a particular sphere of knowledge. The dcGO algorithm

was initially published as an improvement to the SUPERFAMILY

database [4]. The quality and utility of this resource were

evaluated in the Critical Assessment of Function Annotation

(CAFA) competition [5,6]. The webserver provides several mining

facilities, however, web-based facilities are limited in analytical

flexibility and scalability; there is a need to have a standalone tool

overcoming these limitations. Currently, there are no bioinfor-

matics tools that are specifically designed for analysing ontologies

and annotations at the domain level. Most, if not all, open-source

tools (such as ‘topGO’ [7], ‘GOSemSim’ [8] and ‘ontologizer’ [9])

are gene-centric and only deal with a very limited number of

ontologies, usually GO. To the best of my knowledge, these tools

do not provide the support for customised analysis according to

users’ own ontologies and annotations. To meet these needs, I

have developed ‘dcGOR’, a flexible R package that provides a

basic infrastructure suitable for representing ontologies and

annotations. More importantly, it supports various analytical

utilities tailored to this important resource. As demonstrated

below, dcGOR is capable of in-depth analyses of input domains;

structural bioinformatics/genomics community is increasingly

confronted with this type of analysis. With this package, users

are expected to understand their domains of interest: not just in

the relevance to functions, phenotypes and diseases, but also at a

network level. With this package, users are also able to perform

customised analysis using their own ontologies and annotations.

Design and Implementation

The dcGOR package is designed in a general way that allows

for representing and analysing three bits of information: domains,

ontologies and annotations. For it to be applicable in domain-

centric annotations, the backend is its built-in data that is
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pre-compiled from the latest version of the dcGO database [2].

There are a dozen or so ontologies, such as GO, Disease Ontology

(DO) [10] and Human Phenotype (HP) [11]. They are all used to

annotate both SCOP domain superfamilies and families [12]. Also

supported are GO annotations for domains taken from Pfam [13]

and InterPro [14], and for non-coding RNAs from Rfam [15].

Table 1 lists ontologies and annotations supported in the

package.

The dcGOR is exclusively implemented on the R software

environment. Three S4 classes are defined: ‘InfoDataFrame’ for

domains, ‘Onto’ for ontologies and ‘Anno’ for annotations. The

class ‘InfoDataFrame’ is used to store domain information. Since

an ontology is organised as a directed acyclic graph (DAG; a

directed graph without cycles), the class ‘Onto’ represents the

ontology as a directed graph in which both adjacency matrix and

node/term information are defined. For annotations, the class

‘Anno’ is defined to accommodate a sparse annotation matrix and

additional metadata on domains and terms. All these classes have

their class-specific S4 methods. This design of data representations

greatly simplifies domain ontology analyses. Table 1 outlines

supported analyses: domain-based enrichment analysis, semantic

similarity between pairs of annotated domains, and significance

analysis for estimating a contact network.

The function dcEnrichment conducts enrichment analysis based

on the hypergeometric/binomial distribution or Fisher’s exact test

[16]. It tests the statistical significance of the observed number of

domains overlapped between an input group of domains and

domains annotated by an ontology term. By default, all

annotatable domains are used as the test background, but the

user can specify this background. Taking as inputs a group of

domains, dcEnrichment reports ontology terms that are enriched

in this input domain group. To account for the ontology DAG, it

also implements several algorithms that were originally applied to

GO [7,9]. The basic idea is to estimate the significance of a term

after adjusting (e.g. removing) those annotations that its children

terms also have. Enrichment outputs are stored as an object of S4

class ‘Eoutput’, on which methods are defined for easy view and

save. Directly operating on this object, the function visEnrichment
visualises the top significant terms in the context of the ontology

DAG to aid intuitive interpretation.

Semantic similarity is a type of comparison to assess the degree

of relatedness between two entities (here domains) in meaning of

Table 1. A summary of ontologies, infrastructures and functions included in dcGOR.

Description

Ontologies

Gene Ontology Knowledge on functions; annotate domains from SCOP, Pfam, InterPro and
RNA families from Rfam

Disease Ontology Knowledge on human diseases; annotate SCOP domains only

Human Phenotype Knowledge on human phenotypes; annotate SCOP domains only

Mammalian Phenotype Knowledge on mouse phenotypes; annotate SCOP domains only

Enzyme Commission Knowledge on enzyme activities; annotate SCOP domains only

UniProtKB KeyWords Knowledge on functions and others; annotate SCOP domains only

UniProtKB UniPathway Knowledge on pathways; annotate SCOP domains only

Infrastructures

InfoDataFrame S4 class for representing data information (e.g. domains)

Onto S4 class for representing ontologies

Anno S4 class for representing domain-centric annotations

Eoutput S4 class for storing enrichment outputs

Dnetwork S4 class for storing domain networks

Coutput S4 class for storing RWR-based contact outputs

Cnetwork S4 class for storing contact networks

Functions for customised data building

dcBuildInfoDataFrame Create an object of S4 class ‘InfoDataframe’ from an input file

dcBuildOnto Create an object of S4 class ‘Onto’ from input files

dcBuildAnno Create an object of S4 class ‘Anno’ from input files

Functions for analysis and visualisation

dcEnrichment Enrichment analysis; return an object of S4 class ‘Eoutput’

visEnrichment Enrichment output visualisation

dcDAGdomainSim Semantic similarity calculation; return an object of S4 class ‘Dnetwork’

dcRWRpipeline Random walk with restart; return an object of S4 class ‘Coutput’

dcDAGannotate Annotation propagation according to true-path rule

dcConverter Conversion between different graph classes

dcRDataLoader Loading RData into the current environment

doi:10.1371/journal.pcbi.1003929.t001

dcGOR: Software for Ontologies and Domain Annotations

PLOS Computational Biology | www.ploscompbiol.org 2 October 2014 | Volume 10 | Issue 10 | e1003929



their annotations [17]. Semantic similarity between domains is

calculated based on their annotation by ontology terms. To do so,

information content (IC) of a term is defined as the negative 10-

based log-transformed frequency of domains annotated to that

term. This definition considers the actual usage of a term (the

frequency of annotated domains it has) to measure how specific

and informative the term is. The function dcDAGdomainSim first

calculates semantic similarity between terms, which is then used to

derive similarity between domains. All popular IC-based semantic

similarity measures [8,17] are supported. From pairwise term

similarity, dcDAGdomainSim has several methods to calculate

similarity between pairs of domains, including 3 best-matching

(BM) based methods: average, maximum, and complete. For a

term in either domain, all these BM-based methods first calculate

maximum similarity to any terms in the other domain. For more

detail, the reader is referred to this review [17]. The resulting

domain (semantic similarity) network is stored as an object of S4

class ‘Dnetwork’, a weighted undirected graph in which domains

are nodes and their semantic similarity scores as the edge weights.

Notably, the higher the semantic similarity score is, the more

similar the domain pair is (the edge weight). There is no hard

threshold for the semantic similarity scores, but it is advisable to

focus on the edges with highest weights (e.g. the top 50% of all

edges).

Given a domain network (e.g. the one resulting from

dcDAGdomainSim), the function dcRWRpipeline performs ran-

dom walk with restart (RWR) for estimating contact strength and

significance between two input groups of domains (as seeds). It is

based on the earlier work [18], but has been generalised to allow

for weighting domain seeds, and done so in a single step. RWR-

based contact outputs are stored as an object of S4 class ‘Coutput’,

including a contact (statistical significance) network that is also a

weighted undirected graph (an object of S4 class ‘Cnetwork’).

In addition to the analyses above, dcGOR also has several

auxiliary functions for data load, annotation propagation, graph

class conversion, and fast computation. The function dcRData-
Loader is the hub for loading all kinds of package built-in data; this

simplifies data use and also makes room for the future data

expansion. The function dcDAGannotate is supposed to propagate

annotations. According to the true-path rule, a domain annotated

to a term is also annotated by all its ancestor terms (propagated to

the root). This ensures that only the valid part of the ontology (in

terms of domain annotations) is used properly. The function

dcConverter is able to convert an object between newly defined

graph classes and the one used in packages ‘igraph’ [19] and ‘dnet’

[20]. This conversion enables network visualisation. Visualisation

for pairwise semantic similarity matrix is done by package

‘supraHex’ [21]. To relieve computational burden, dcGOR

utilises vectorised and parallelised operations. This high-perfor-

mance parallel computing is realised via executing loops in

parallel, aided by two packages ‘doMC’ and ‘foreach’.

Results

The most common use case is to analyse a list of protein

domains of interest. As a proof of principle, I use two interesting

lists of domains (one from SCOP, the other from Pfam) to

demonstrate the functionalities supported in the dcGOR package,

particularly enrichment analysis and network analysis. Also, I

show how users can benefit from this package to analyse their own

domains, ontologies and annotations. All these examples are

reproducible following step-by-step demos on the package website,

from which results can also be found.

Analysing SCOP domains gained in human compared to
Metazoa

First, I analyse a list of SCOP domain superfamilies that have

been gained by the human genome since the ancient ancestral

‘Metazoa’ (animal). According to this report [22], a total of 1,112

SCOP domain superfamilies are present in human, among which,

Figure 1. Domain-based enrichment analysis using GOBP terms. Only the most significant 5 terms/nodes (outlined in black; explained in the
bottom-right panel) are visualised along with their ancestral terms. Nodes are coloured according to adjusted p-values.
doi:10.1371/journal.pcbi.1003929.g001
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Figure 2. In-depth analysis for network-level understanding. (A) Heatmap visualisation of the semantic similarity between pairs of domains
according to their annotations by Disease Ontology (DO). (B) Network representation of the pairwise domain semantic similarity. It is a weighted and
undirected network, with edge thickness indicating semantic similarity between a pair of domains/nodes. Nodes are labeled by both numeric id and
textual description. (C) A table listing GOMF terms and their annotated domains (used as domain seeds for random walk with restart, RWR). Notably,
terms used here are only those with at least 3 annotatable domains that are also in the domain network (see Figure 2B). (D) Contact (statistical
significance) network between GOMF terms in Figure 2C, as estimated by RWR on the domain network in Figure 2B. Only those significant contacts/
edges (adjusted p-values,0.1) are shown, with thickness indicating the contact strength (z-score).
doi:10.1371/journal.pcbi.1003929.g002
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58 were absent in the ancient Metazoan ancestor. Thus, these 58

domains were de novo gained during the evolution of the human

lineage. To shed insight into these domains in the relevance to

functions, phenotypes and diseases, I use dcEnrichment to perform

enrichment analysis using all domains in Metazoa as the

background. GO Biological Process (GOBP) enrichments suggest

that they are of functional relevance to ‘multicellular organismal

development’ and ‘toll-like receptor signalling pathway’; Figure 1
illustrates these top enriched terms in the context of GO hierarchy.

This is consistent with the fact that more complex functions

evolved along the human lineage. Enrichment analysis using DO

also reveals a significant link with ‘disease of cellular proliferation’.

To further understand the relevance of these 58 domains to

diseases, I use dcDAGdomainSim to construct a domain network

according to domain-centric annotations by DO. This is done via

calculating the semantic similarity between pairs of domains

(Figure 2A). The resulting domain (semantic similarity) network

contains 11 disease domains; they are similar to each other but to a

varying degree (Figure 2B). Finally, based on the resultant

domain network, I use dcRWRpipeline to estimate the contact

strength and significance between sets of domains. The example

domain set used here is a GO Molecular Function (GOMF) term

and its annotated domains (see Figure 2C). The statistically

significant contacts between terms are visualised in Figure 2D.

These results suggest that (i) domains de novo gained during the

evolution of the human lineage tend to form a disease similarity

domain network, and that (ii) this network has a functional

preference. Taken together, this example greatly encourages

domain-centric approaches to genome evolution, function and

phenotype/disease.

Figure 3. Enrichment analysis of promiscuous Pfam domains using GOBP terms (left) and GOMF terms (right). Only the most
significant terms/nodes (adjusted p-values,0.05; outlined in black) are visualised along with their ancestral terms. Nodes are coloured according to
adjusted p-values.
doi:10.1371/journal.pcbi.1003929.g003
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Analysing promiscuous Pfam domains
Next, I extend the analysis to a list of Pfam domains that tend to

occur in diverse domain architectures; this tendency is called

‘promiscuous’. In this study [23], a total of 215 domains were

identified as strongly promiscuous, in which 76 domains were

taken from Pfam. Enrichment analysis of these 76 Pfam domains

using GOBP terms and GOMF terms identifies two most

significant terms ‘mismatch repair’ and ‘ATPase activity’ (Fig-
ure 3). These two functional categories are consistent with

previous report, however, there is a lack of the statistical support

for the relevance to ‘signal transduction’ as claimed previously

[23]. Unlike DO, GO contains three sub-ontologies GOBP,

GOMF and GO Cellular Component (GOCC). Therefore, the

semantic similarity between pairs of these 76 domains was first

calculated separately for each GO sub-ontology and then

additively summed up to obtain the GO overall semantic similarity

(Figure 4).

Analysing users’ own domains, ontologies and
annotations

Unique to this package, dcGOR supports customised analysis

using data files provided by users. From input files (containing

Figure 4. Heatmap visualisation of the GO overall semantic similarity between pairs of promiscuous Pfam domains. Domains are
ordered according to hierarchical clustering by the package ‘supraHex’.
doi:10.1371/journal.pcbi.1003929.g004
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relevant information on domains, ontologies and annotations),

three functions (dcBuildInfoDataFrame, dcBuildOnto and dcBuil-
dAnno) are able to create objects newly defined in the package

(Table 1). Similar to the built-in data, the customised data

(created objects) can be subsequently used for all analyses

supported in the package. The online demo (http://supfam.org/

dcGOR/demo-Customisation.html) provides detailed instructions

on how to analyse (starting with input files) the InterPro2GO

mapping [24].

Availability and Future Directions

As open-source software, the dcGOR package is freely available

under the GPL-2 license (see Software S1). For ease of

installation (R package dependencies), it is distributed as part of

CRAN, http://cran.r-project.org/package=dcGOR. For ease of

version control, it is also distributed at GitHub, https://github.

com/hfang-bristol/dcGOR. The details on documentations and

demos can be found at http://supfam.org/dcGOR. As missed in

most R packages, online documentations and demos are user-

friendly; users can see both illustrated codes and executed outputs.

This will dramatically reduce the learning curve and promote the

wide adoption as users can exactly reproduce what they see.

The dcGOR is a general open-source tool for ontology and

annotation analysis, providing a relatively complete framework. As

demonstrated, it is able to analyse three most popular domain

types (SCOP, Pfam and InterPro) and Rfam RNA families as well,

and to support customised analysis. For example, users can analyse

domains with different definitions, such as the partner members of

the InterPro consortium [14]. The package is designed to be

generic to all ontologies, not merely GO (as is the case with most

existing tools) but also organism-specific ontologies. The future

intention is to include those in the Open Biomedical Ontologies

consortium [25]. Here I only describe a handful of analyses that

are routinely required for ontology analysis, but the package is

scalable for further development. Other than the data expansion

aforementioned, future developments will focus on developing

utilities for genome function and phenotype prediction. As the

standard has been set in dcGOR, it should be much easier for

ontology users/developers to extend this software to meet their

needs. Also, there is no reason not to apply the similar design

principles for ontology analysis at the gene level.

Supporting Information

Software S1 Package ‘dcGOR’ (version 1.0.3) including source

code, documentation and data.
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