
A Topology-Preserving Selection and Clustering
Approach to Multidimensional Biological Data

Hai Fang,1,2,* Yanzhi Du,2 Lu Xia,1 Junmin Li,1 Ji Zhang,1,2 and Kankan Wang1,2

Abstract

Multidimensional genome-wide data (e.g., gene expression microarray data) provide rich information and
widespread applications in integrative biology. However, little attention has been paid to the inherent rela-
tionships within these natural data. By simply viewing multidimensional microarray data scattered over hy-
perspace, the spatial properties (topological structure) of the data clouds may reveal the underlying
relationships. Based on this idea, we herein make analytical improvements by introducing a topology-preserving
selection and clustering (TPSC) approach to complex large-scale microarray data. Specifically, the integration of
self-organizing map (SOM) and singular value decomposition allows genome-wide selection on sound foun-
dations of statistical inference. Moreover, this approach is complemented with an SOM-based two-phase gene
clustering procedure, allowing the topology-preserving identification of gene clusters. These gene clusters with
highly similar expression patterns can facilitate many aspects of biological interpretations in terms of functional
and regulatory relevance. As demonstrated by processing large and complex datasets of the human cell cycle,
stress responses, and host cell responses to pathogen infection, our proposed method can yield better charac-
teristic features from the whole datasets compared to conventional routines. We hence conclude that the
topology-preserving selection and clustering without a priori assumption on data structure allow the in-depth
mining of biological information in a more accurate and unbiased manner. A Web server (http://www.cs
.bris.ac.uk/*hfang/TPSC) hosting a MATLAB package that implements the methodology is freely available to
both academic and nonacademic users. These advances will expand the scope of omics applications.

Introduction

With the development of genomics and the emerging
of other -omics in recent years, bioscience research

enters the era of shifting the emphasis from identifying indi-
vidual molecules to exploring interconnected relationships
among these biological molecules (Collins et al., 2003; Hood
et al., 2004). Microarray-based high-throughput technologies
provide a routine in the context of network-level under-
standing (Fang, et al., 2010; Imbeaud and Auffray, 2005;
Muller et al., 2008; Rapaport et al., 2007). It allows the si-
multaneous measurement of temporal changes in gene ex-
pression at the genome scale, producing massive amounts of
data that can be abundant in information underlying a given
biological process. However, such high-dimensional data are
also inherent with problematic traits, such as a large number
of missing values and small sample size versus huge gene

volume, thus limiting the power of conventional data mining
tools to effectively characterize the inherent data structure.
Even worse, few existing methods fully take into account the
topological structure of data and those methods without such
considerations will unavoidably tend to be biased and inef-
fective (Kohonen, 2001).

We view the topological structure of gene expression data
as inherent relationships within the data itself. Without loss of
generality, the more similar expression patterns the genes
exhibit, the closer space they occupy. To intuitively describe
these relationships, we conceptually express multidimen-
sional microarray data in terms of a vector space model. This
model considers expression values (typically, a log-2 trans-
formed ratio relative to a control) of a given gene across
N-related samples as coordinates of the gene in an N-dimen-
sional hyperspace. Accordingly, the set of G genes in the
primary expression matrix correspond to data clouds in the
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hyperspace. Data points around the origin of the hyperspace
are more likely to correspond to genes with no change in
expression or random variation, whereas those located far
away from the origin could be genes with an observable
expression pattern. In other words, the spatial properties of
the data clouds can be considered as a proxy for the topo-
logical structure of gene expression data. Although the
concept of topology should also involve their interconnec-
tions (Basener, 2006), we here ignore such description;
actually we rely on an artificial neuronal network [i.e., self-
organizing map (SOM); see below] to capture their connec-
tivity. One of the most prominent characteristics for the
topological structure in this context is that, featured and
informative data tend to be on the fringes of the hyperspace,
whereas randomized and artificial data are always centered
on the origin of the hyperspace. As shown in the main text
(see also Supplemental Fig. 2), the data clouds resulting from
the observed data matrix tend to be further away from the
origin of the hyperspace than those resulting from the ran-
domized matrix. Therefore, this topological structure of the
data provides a basis for the recognition and selections of
biologically meaningful genes. One advantage of such to-
pological preservation is to perform exploratory analysis of
large and complex multidimensional data, particularly
without a priori assumption of data structure.

Among various dimensionality reduction techniques to
capture such topological structure of the expression data
(Lee and Verleysen, 2007), is a SOM. The SOM has been
shown to be competent in preserving local and global to-
pological properties (Kohonen, 2001; Tamayo et al., 1999;
Xiao et al., 2003). This unsupervised nonlinear algorithm
configures output vectors into a topological preservation of
the input high-dimensional data in a nonlinear manner,
producing a SOM map in which genes with the same or
similar expression patterns can be mapped to the same or
nearby map nodes. For the sake of human-centered visuali-
zation, the topology of SOM usually refers to the lattice
structure on the two-dimensional map grid, and is trained by
following the structure of the input data. More importantly,
the SOM algorithm quantizes the input data [vector quan-
tization (VQ)] and carries out a nonlinear topological pre-
serving projection [vector projection (VP)] in an interactive
manner, allowing smoother neighborhood kernels to define
the extent of regularization that VP exerts on the VQ (Ko-
honen, 2001). In addition to the visual benefits provided by
the ordered map (Bi et al., 2009; Fang et al., 2008; Xiao et al.,
2003), the output matrix of the SOM with an appropriate
neighborhood kernel may be more powerful than the ex-
pression matrix for exploratory analyses. Depending on the
specific questions being addressed, neighborhood kernels
can be geared to tasks such as the topology-preserving pre-
processing and characterization of microarray data. Another
powerful method is singular value decomposition (SVD),
which reveals promising potentials in the recognition of
biologically meaningful features from microarray data (Alter
et al., 2000; Holter et al., 2000). It allows the linear transfor-
mation of expression data from a genes�samples hyper-
space to a greatly reduced eigengenes�eigensamples space,
capturing some characteristic variables that represent es-
sential patterns of temporal changes in gene expression.
Although this method is powerful for recognizing dominant
expression patterns, the effectiveness of SVD appears to be

largely dependent on the choice of data preprocessing
(Holter et al., 2000). Such a linear method, if directly applied
to complex microarray data, may lead to loss of information.
Therefore, it is appealing to first apply a nonlinear method
(i.e., SOM) for data preprocessing, followed by a linear
method (i.e., SVD) for dominant pattern recognition.

Here, we have introduced an approach termed as topology-
preserving selection and clustering (TPSC). It integrates
SOM for data pre-processing and SVD for pattern recognition,
thus allowing a topology-preserving selection of regulated
genes based on sound foundations of statistical inference.
Furthermore, we have complemented the approach with an
SOM-based two-phase gene clustering, resulting in the cate-
gorization of genes in a topology-preserving manner. By in-
corporating functional/regulatory enrichment analyses, these
gene clusters have revealed characteristic features relevant
to a given biological process. Potential utilities of these
approaches are illustrated by processing large and complex
data including datasets of the human cell cycle, various stress
responses, and host cell responses to pathogen infection, re-
sulting in the identification of characteristic features in a more
accurate and meaningful manner from the whole datasets.

Methods

Procedures to TPSC

Figure 1 summarizes the procedures to implement
topology-preserving gene selection and clustering. Also, this
figure can serve as a rational recipe for data mining. At the
core of TPSC are the sequential applications of SOM using two
different neighborhood kernels to complete gene selection
and gene clustering, respectively. The brief summary is de-
scribed below, and details on the underlying algorithms can
be found in the rest of this section.

First, the table-format multidimensional microarray data
are prepared from public database such as Stanford SMD
(Demeter et al., 2007) or NCBI GEO (Barrett et al., 2009). A
conventional gene expression matrix is usually tabulated in
matrix form, that is, an expression matrix of genes (rows)
against different experimental samples (columns).

Second, hybrid SOM–SVD is applied for topology-
preserving gene selection. The tabulated gene expression
matrix (as input matrix) is subjected to nonlinear transfor-
mation using the SOM algorithm with the Epanechikov (EP)
neighborhood kernel, with emphasis on vector quantization
(VQ). The resultant output matrix (i.e., nodes in rows�
samples in columns) serves as an intermediate format for
pattern recognition by SVD, which is sequentially followed by
dominant eigenvector selection, SVD subspace projection,
and distance statistic construction, significant node assess-
ment using the false discovery rate (FDR) procedure for
multiple hypothesis testing, and finally the selection of sig-
nificant nodes and their corresponding genes as defined by
the best-matching node (BMN). Those primary gene expres-
sion data selected through hybrid SOM–SVD form the char-
acteristic matrix, which proceeds to further analysis.

Third, a SOM-based two-phase gene clustering method is
utilized to cluster and visualize the characteristic matrix in a
topology-preserving manner. In the first phase, SOM training
with a Gaussian neighborhood kernel is applied to better
preserve the topology (VP), which can be visualized in com-
ponent plane presentations (CPPs). In the second phase, the
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resultant SOM is further partitioned based on distance matrix
to obtain bases/clusters without a priori assumption of the
data structure.

Last, the potential utility of bases/clusters is to facilitate
many aspects of in-depth mining of biological information,
such as downstream functional/regulatory enrichment anal-
ysis using external biological annotation resources like Gene
Ontology (GO) (Gene Ontology, 2008) and TRANSFAC
(Matys et al., 2006).

Data mining using SOM with either
an EP or Gaussian kernel function

Based on a vector space model, a gene expression matrix
(G�N) forms a specific data cloud in the N-dimensional hy-
perspace R

N , reflecting the topological structure of the data.
Artificial neuronal network-based SOM (Kohonen, 2001)
mimics the data structure of the input space RN by converting
the nonlinear relationships between input vectors~xx 2 R

N into
simple geometric relationships on a regular two-dimensional
hexagonal grid of map nodes. Each node i is represented by
two kinds of vectors: the location vector on the two-dimen-
sional map grid (r

p

i 2 R
2), and the codebook/prototype vector

in the N-dimensional hyperspace (~mmi 2 R
N). Typically, the

topology of SOM refers to the lattice structure on the two-
dimensional map grid, and is heuristically determined based
on the input training data. Given a gene expression matrix

(G�N) as the input, the number M of nodes (i.e., the product
of the side lengths of the map grid) is initially calculated based
on the heuristic formula M¼ 5 ·

ffiffiffiffi
G
p

. Then, the ratio between
the side lengths is set to the square root of the two biggest
eigenvalues of the training data. Therefore, the actual side
lengths are then finely set so that their product is as close to M
as possible. Through VQ and VP in an interactive manner,
SOM is trained as follows.

First, the winner map node c is chosen, whose prototype
vector is closest to the input vector~xx:

jj~xx�~mmcjj ¼ min
i
fjj~xx�~mmijjg, i¼ 1, . . . , M, (1)

where ~mmi stands for a prototype vector of node i, ~mmc for the
prototype of the winner node c, ~xx for an input vector of the
gene, and jj � jj for the Euclidean norm.

Next, the winner node c and its topological neighbors are
stretched toward the input vector~xx in the input space R

N by

~mmi(tþ 1)¼~mmi(t)þ a(t)hci(t)[~xx(t)�~mmi(t)], (2)

where a(t) is the learning rate at training time t, and hci(t) is a
smoother neighborhood kernel function centered on the
winner node c. The neighborhood kernel hci(t) dictates the
topology of the map grid, and thus defines the extent of reg-
ularization that VP exerts on VQ. In terms of the EP or
Gaussian function, it can be written respectively as

FIG. 1. Schematic flow diagram of the proposed methodology.
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hci(t)¼ max 0, 1� jj
~rrc�~rrijj2

r2(t)

( )
or (3)

hci(t)¼ exp � jj
~rrc�~rrijj2

2r2(t)

 !
, (4)

where the positive integer s(t) defines the width of the kernel
at training time t, and~rrc and~rri are respectively the location
vectors of map node c and i on the map grid. They both share
the property that the value equals one when jj~rrc�~rrijj ¼ 0, and
goes to zero as jj~rrc�~rrijj ! 1. The EP neighborhood kernel
places relatively more emphasis on local topological rela-
tionships than the Gaussian function and prefers VQ to VP,
whereas the Gaussian neighborhood kernel better preserves
global topology relationships and thus prefers VP to VQ.
Accordingly, we propose the use of EP function for tasks such
as topology-preserving gene selection and use of Gaussian
function with the aim of global gene clustering.

Hybrid SOM–SVD for topology-preserving
gene selection

Decomposition by SVD. The output matrix A (M
nodes�N samples) created by SOM with EP function (Eq. 3) is
then decomposed by SVD into

A¼USVT , (5)

where U is an M�N matrix whose columns are the left singular
vectors (eigensamples), VT is an N�N matrix whose rows are
the right singular vectors (eigenvectors), and S is an N�N di-
agonal matrix of singular values, whose on-diagonal entries
(eigenexpressions) are in descending order (Alter et al., 2000).

Selection of the dominant eigenvectors. Relative eigen-
expression is defined to indicate the relative significance of the
kth eigenvector in terms of the fraction of the overall variation
captured:

RVk ¼ s2
k

,XR

j

s2
j , (6)

where sk is the kth singular value and R is the rank of the
matrix A. SVD is performed on a row- and column-wise
permutation of the output matrix A to get the relative eigen-
expression spectrum of randomized variables. The similar
complete randomization as the reference has been initialized
in SVD analysis (Holter et al., 2000). Repeat such randomi-
zations multiple times (e.g., 100) and select those eigenvectors
as dominant eigenvectors, the observed relative eigenex-
pression of which is beyond the maximum random relative
eigenexpression at the probability of at least 99% (corre-
sponding to p< 0.01).

SVD subspace projection and distance statistic construc-
tion. The matrix A, thus, can be represented by the chosen L
eigenvectors in the subspaces RL obtained by SVD. Projection
of each prototype vector onto the SVD subspaces are per-
formed to obtain the different projection values, forming the
projection vector ~qq 2 R

L. Let the coordinate-wise zero point
be the origin (denoted as~oo). For each node, different projection
values are integrated into distance statistic (DS),

DS¼ jj~qq�~oojj2, (7)

the larger value of which likely indicates significance of the
node. The intuition behind the distance statistic construction
is to incorporate the prototype vector of each node in the SVD
subspace into a unified yet quantized value.

Assessment of significant nodes. Based on distance sta-
tistic, the statistical significance of a node (and its prototype
vector) can be assessed by the method of FDR (Benjamini and
Hochberg, 1995) to account for multiple hypothesis tests. The
steps for selecting significant nodes, and subsequently genes,
are described as follows. First, compute the node-specific
projection vector~qq and construct DS from~qq to~oo (Eq. 7), and
order the distances: DSr1 � DSr2 � � � � � DSrM. Second, ob-
tain b¼ 1, . . . , B (i.e., 1,000) reference datasets, forming a
M�N matrix Ab, which is generated by randomly permuting
the output matrix A in both row and column directions.
Analogously, compute the projection values of the reference
prototype vectors on the chosen L eigenvectors to obtain
projection vector~qqb, and then construct DSb from~qqb to~oo (Eq.
7), and order the distances: DSb

r1 � DSb
r2 � � � � � DSb

rM. Third,
assess the statistical significance of each node in terms of the
FDR. For the rith node as ordered, compute the number of
nodes called significant (rM – riþ 1), and then calculate the
median number of nodes falsely called significant by calcu-
lating the median number of nodes among each of the B sets of
reference data, whose DSb

rj satisfy: DSb
rj � DSri, j¼ 1, . . . , M.

Thus, the FDR for the rith ordered node can be quantized as
the median number of falsely called nodes divided by the
number of nodes called significant. Finally, identify signifi-
cant nodes to control the FDR, and subsequently select their
corresponding genes. After these steps, the characteristic
matrix is extracted in a topology-preserving manner.

SOM-based two-phase gene clustering

The distance matrix-based clustering of SOM (Vesanto and
Sulkava, 2002) is utilized to characterize the genes selected by
hybrid SOM–SVD. In the first phase, the input data are
trained by SOM with the Gaussian kernel (Eq. 4) to better
preserve the topology of the data. In the second phase, the
trained map is divided into a set of bases/clusters using a
region growing procedure, which starts with local minima of
the distance matrix as seeds (Eq. 8). The set of seed nodes i can
be found by

f (~mmi, Ni) � f (~mmj, Ni), 8j 2 Ni, (8)

where ~mm stands for the prototype vector, Ni and Nj for the sets
of neighboring map nodes i and j, and the function
f (~mmi, Ni)¼medianfjj~mmi�~mmkjj j k 2 Nig for the median dis-
tance between the map node i and its neighboring map nodes
Ni. Then, let each local minimum be one base and find each
unassigned neighboring node with smallest distance to each
base. The step is repeated until all the remaining nodes are
finally designed to the corresponding base.

Functional/regulatory enrichment analysis

External annotated biological databases such as Gene On-
tology (GO) and TRANSFAC can be used for interpretation of
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bases/clusters in terms of functional/regulatory relevance.
The search for GO functional enrichments in each base/
cluster was conducted with the MAPPFinder program (a
component of GenMAPP version 2.0) (Doniger et al., 2003).
The Westfall-Young adjusted p-value after multiple hypoth-
esis testing was calculated as a statistical measure of signifi-
cance for each GO functional category according to the
published protocols. Conserved targets of transcription fac-
tors, as represented by positional weight matrix (PWM) in
TRANSFAC, were curated (Xie et al., 2005) and utilized for
hypergeometric distribution-based regulatory enrichment
analysis in each base/cluster. Hypergeometric p-values were
first calculated, and then, the Benjamini-Hochberg (BH)-
derived step-up procedure of FDR (Benjamini and Hochberg,
1995) was applied to account for multiple hypothesis testing.
Hypergeometric distribution-based BH-derived FDR was
used to assess the significance of the PWM regulatory en-
richments.

Results

Identification of many more cell cycle
genes with a characteristic period

Unlike many other algorithms (Lee and Verleysen, 2007),
SOM has properties of both VQ and VP, carrying out a to-
pologically preserving projection of the prototype vectors
from a high-dimensional input space onto a low-dimensional
grid (Kohonen, 2001). The dimensionality reduction by this
nonlinear projection algorithm may allow the retaining of
information inherent to the original data. To test this as-
sumption, we first selected a cell-cycle dataset from HeLa cells
as a model system. This dataset contains expression values of
29,621 genes (represented by 43,198 cDNA elements) across
48 samples (representing 47 time points) (Whitfield et al.,
2002). Through normalization from original publication and a
standard clean-up procedure, with a threshold missing value
of less than 20%, 36,549 cDNA elements were selected and
subsequently used for SOM training with their original ex-
pression values. SOM training was conducted with 962
(37�26) nodes using the EP kernel function. As shown in
Figure 2A, numerical values of the output matrix were first
illustrated by CPPs, demonstrating visual advantages for the
detection of genome-scale transcriptional features for each of
the samples during the time course (Du et al., 2006; Fang et al.,
2010; Wang et al., 2009; Zheng et al., 2005). To further examine
the tightness/accuracy of local gene clustering, nodes are
compressed with genes that have highly similar expression
patterns (as exampled in Fig. 2B), implicating that the output
matrix is well representative of the original data matrix in
terms of information inherent. Because features and artifacts
are separated to different nodes, this output matrix may
function as an intermediate format for the selection of bio-
logically meaningful genes.

To establish an automated procedure for pattern recogni-
tion and subsequent gene selection, we applied SVD com-
plemented with an FDR-based method to the output matrix.
As shown in the Figure 3A, the decomposition of the output
matrix by SVD results in the formation of three matrices U, S,
and VT, in which the temporal pattern of any node can be
expressed as a linear combination of eigenvectors, analo-
gously described in previous publications (Alter et al., 2000;
Holter et al., 2000). To set up a threshold with statistical in-

ference for selection of those observed dominant eigenvectors,
the output matrix was randomly permuted in both row/node
and column/sample directions, and then similarly decom-
posed by SVD to generate a set of randomized eigenvectors
for multiple times. By comparing the relative contribution to
the overall variation of each observed eigenvector with that of
randomly generated eigenvectors, the first seven dominant
eigenvectors ( p< 0.01) were selected to form a seven-dimen-
sional SVD subspace (see Methods). Contributions of eigen-
vectors (observed) and randomized eigenvectors from a
randomization were illustrated on the left panel in Figure 3B.
To address impacts of the permutations used on the estima-
tion of dominant eigenvectors (Supplemental Doc. 1), we also
generated randomized matrix only by row-wise permutation
or only by column-wise permutation (Supplemental Fig. 1A).
Compared to these partially randomized matrices, the si-
multaneously permutated matrix allowed us to identify all
dominant eigenvectors from those minor eigenvectors (Sup-
plementary Fig. 1B). Moreover, pairwise scatter plots pro-
jected on the SVD seven-subspace showed that distribution
resulting from the output matrix consistently stayed further
away from the origin of the space than that resulting from the
simultaneously permutated matrix (Supplemental Fig. 2).
Based on this observation, we took advantage of spatial
structure and constructed DS through the calculation of Eu-
clidian distance of each data point (observed or randomized)
to the origin of the subspace. The significance of each node
was assessed in terms of FDR accounting for multiple hy-
pothesis tests. Under the FDR of 0.1, 514 nodes were selected
and subsequently used for analysis. As indicated in the grid
map (the right panel in Fig. 3B), most of the selected nodes are
organized to edge or corner areas of the map, whereas filtered
nodes are mapped to center areas of the map. As exemplified
in Figure 2, nodes with periodic gene expression patterns in-
deed locate at the corner of the map, whereas those nodes
without periodic variations tend to be at the center (data not
shown), thus allowing the selection in a topology-preserving
fashion.

To further show that information inherent to the primary
data was largely retained in the output matrix retained, we
applied Fast Fourier transform (FFT) (Duhamel and Vetterli,
1990) to the selected nodes and found that 61 of them (re-
presenting 1,896 cDNA elements) revealed characteristic
patterns of the cell cycle period of 15.67 h, which was the most
dominant cycle period in this setting of dataset. Of these
cDNA elements, 1,158 well matched the cycle period. In
contrast, when the same criteria were applied to previously
identified cell cycle-related cDNA elements (Whitfield et al.,
2002), it yielded only 758 cDNA elements matching the cycle
period. As compared in Figure 3C, the overlaps between re-
sults of two analyses are represented by 536 cDNA elements,
whereas the nonoverlaps are respectively represented by 622
and 222 cDNA elements. This demonstration partially vali-
dates the power of the output matrix of SOM for pattern
recognition and can allow for topology-preserving gene se-
lection when coupled with SVD.

Probing into the global structure of genes regulated
during various stress responses

To further explore the power of combining SOM with SVD
for topology-preserving gene selection, we chose a second
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model dataset containing expression values of 25,802 genes
(represented by over 40,000 cDNA elements) across 76 sam-
ples (i.e., three human cell lines of three different stress
treatment series excluding zero time points) (Murray et al.,
2004). Similarly, the expression matrix was first trained by
SOM with 972 (36�27) nodes using the EP kernel function
(Supplementary Fig. 3). Also, SVD was applied to decompose
the output matrix of the SOM, followed by the eigenvector
selection procedure (Supplementary Fig. 4A). Following an
FDR procedure based on eight selected dominant eigenvec-
tors ( p< 0.01; Supplementary Fig. 4B), a stringent cutoff
(FDR< 0.01) allowed the selection of 491 nodes, representing
17,524 cDNA elements.

To characterize these cDNA elements in a more compre-
hensive manner, we introduced an SOM-based two-phase
gene clustering approach. Direct benefits of this approach
include the reduction of the complexity of the clustering task,
and the ability to get more reliable estimates of clusters in a
topology-preserving manner. As shown in Figure 4A, the

output matrix of the SOM is displayed by CPPs, showing
transcriptome responses of each cell type to different stress
conditions. Figure 4B illustrates the second phase of the gene
clustering, in which nodes are well organized into bases/
clusters according to their neighborhood relationships. A total
of 46 bases were identified, without a priori assumption of
data structure. Comparatively, direct application on primary
data distorted the topology of global clustering, and using
different clustering approaches could not obtain topology-
preserving clusters (see Supplementary Doc. 2, and Supple-
mentary Figs. 5 and 6).

When genes in each of the 46 bases are illustrated through
color-coded displays, highly similar patterns of gene expres-
sion are observed (Fig. 5). This provides evidence that highly
accurate gene clustering at the genome-wide scale is obtain-
able through our integrated approach. Importantly, this
highly accurate gene clustering may facilitate many aspects of
in-depth mining of functional and regulatory features. Sear-
ches for GO functional annotations enriched in bases were

FIG. 2. Nonlinear transformation of HeLa cell proliferation dataset using SOM with EP kernel function. (A) Component
plane presentations of the SOM outputs, depicting genome-wide transcriptional changes during the proliferation. Each
presentation illustrates a sample-specific transcriptome map, in which all the upregulated (in red), downregulated (in
blue), and moderately regulated (in yellow and green) genes are well delineated. Notably, the same position in all
presentations contains the same group of coexpressed genes. Color coding index stands for expression values of genes,
with the brighter color denoting the higher value. DT_H denotes double-thymidine synchronization of cell proliferation.
On the right panel is enlarged illustration of DT_H_7h, wherein those indexed nodes below are indicated. (B) Illustration of
gene expression patterns in nodes with typical cell cycle periods through simple line graphs, as exampled by nodes 852, 21,
58, and 20.
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performed with MAPPFINDER program (Doniger et al.,
2003). Also, we utilized transcription factor (TF) putative
conserved targets (Xie et al., 2005) to perform PWM regula-
tory enrichment analysis to infer common regulatory features
associated with these bases.

Our automated approaches produce more biologically
meaningful results than those published previously. The
representative expression patterns during various stress re-
sponses in cultured human cells can be identified in a concise
yet unbiased manner. As illustrated in Figure 5, the bases/
clusters obtained provide a meaningful representation of bi-
ologically relevant expression patterns inherent in microarray
data, as highlighted by stress condition-specific bases (Fig.
5A), stress-specific response bases (Fig. 5B), general stress
response bases (Fig. 5C), fibroblast-dependent bases (Fig. 5D),
bistress response bases (Fig. 5F), and cell cycle-relevant bases
(Fig. 5G). Moreover, these well-organized gene bases can fa-
cilitate in-depth mining of functional/regulatory relevance.

For instance, genes in base 20 and 16 (Fig. 5C) reveal more
general responses to various stress treatments. Genes in base
20 (upregulated) are significantly related to cell homeostasis
and ER transporting networks, suggesting the occurrence of
cellular reorganization upon various stress treatments. Reg-
ulatory enrichment analysis shows that genes in base 20 are
largely regulated by multiple stress-responsive transcription
factors such as XBP1, ATF3, ATF4, and ATF6. On the contrary,
genes in base 16 (downregulated) are functionally associated
with DNA metabolism, RNA processing and ribosome bio-
synthesis, and are mostly regulated by survival-related tran-
scription factors (e.g., NRF1, YY1, and MYC), implicating the
suppression of cell growth related activities upon various
stress treatments. Notably, genes in bases 1 and 2 of Figure 5G
are prominently downregulated in late stages of ER stress and
oxidative agent-treated fibroblasts. They are functionally in-
volved in various aspects of cell cycle and regulated by cell
cycle-specific transcription factors (i.e., NFY, E2F). Further

FIG. 3. Linear decomposition by SVD, feature selection and cell cycle period recognition by Fourier transformation. (A)
Decomposition of the output matrix by SVD. The matrix is decomposed into U, S, and VT. Values of eigensamples (columns
of U), eigenexpressions (on-diagonal entries of S), and eigenvectors (rows of VT) are coded either by color spectrum or gray
magnitude. (B) Topology-preserving selection through the integration of FDR. Bar displays on the left respectively illus-
trate contributions of eigenvectors (observed) and randomized eigenvectors from a randomization. The grid map on the
right demonstrates nodes selected (in heavy gray) or omitted (in white) under the indicated FDR. (C) Fourier transfor-
mation for the recognition of cell cycle genes with a typical period of 15.67 h. The cDNA elements unique to this study are
indicated in the upper part, whereas those unique to the previous selection are shown in the lower part. The overlaps
between the results of two analyses are in the middle. Expression patterns within each region are ordered by phase
information from �p to p.
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examination by cell cycle genes identified in the previous case
(Fig. 3C), about a half of the genes clustered in cell cycle bases
belong to the category periodically regulated by cell cycle
(15.67 h).

Revealing the impacts of host variability on responses
to pathogen infection

To test the broad utilities of our automated approach, we
chose a third dataset generated by Affymetrix GeneChip HG-
U133A (Tailleux et al., 2008). The dataset was relevant to time
course transcriptome profiles between pathogen (i.e., Myco-
bacterium tuberculosis)-infected human dendritic cells (D) and
macrophages (M) in nine independent healthy donors/hosts.
Compared to the corresponding reference transcriptome at the
0 time point of infection, there remained expression values of
22,283 probesets across 54 samples, i.e., nine donors (1–9)�two
cell types (D and M)�three infection time points (4, 18, and
48 h). The gene expression matrix was then subjected to the

hybrid SOM–SVD for gene selection, resulting in 5,280 probe-
sets. Those selected probesets were then subjected to gene
clustering and visualized by CPP-SOM (Fig. 6A), and followed
by sample classification with the unsupervised hierarchical
algorithm (Fig. 6B), yielding much more meaningful results
than those published previously (Tailleux et al., 2008).

Similar to the previously published results, dendritic cells
and macrophages were consistently classified into two
groups, independent of the infection time points and donors.
Within each group, samples at the 4-h infection time point
were clustered together, independently of the donors ana-
lyzed, whereas samples at the other two time points were not
separated. Unlike the previous results, macrophages from the
same donor infected at the 18- and 48-h time points were
exclusively clustered together, but the same biases were not
observed with dendritic cells. This result indicates that donor-
to-donor variability for macrophages at the 18- and 48-h time
points is greater than that for dendritic cells. The preferential
impact of donors on macrophages at the 18- and 48-h time

FIG. 4. SOM based two-phase gene clustering of various stress response dataset. (A) Component plane presentations of the
SOM outputs. (B) Ideogram illustration of 46 gene bases on a SOM grid map. The index of each base is marked in the seed
node as indicated. Abbreviations of stress responses of various cell type to different conditions are listed as follows, that is,
stress responses (heat shock, HS; ER stress, ER; oxidative stress, OS) of various cell type (fibroblasts, F; HeLa, H; K-562, K) to
different conditions (HS: cells shifted from 37 to 428C; ER: cells induced by tunicamycin, T, or DDT, D; OS: cells induced by
hydrogen peroxide, H, or menadione, M). For example, OS_FM_36h denotes oxidative stress (OS) in fibroblasts (F) induced
by menadione (M) at 36 h.
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points was not detected in the original publication. Further
results revealed by our approaches can be found in Supple-
mentary Figs. 7–9.

Discussion

Our proposed approach TPSC (including hybrid SOM–
SVD for gene selection, two-phase gene clustering in a
topology-preserving manner) (Fig. 1) shows several distinct
advantages. First, hybrid SOM–SVD takes spatial properties
of data into consideration and permits topology-preserving
selection of genes that show statistically significant changes in
expression, omitting conventional arbitrary gene selection
procedures. In particular, data preprocessing through EP
kernel function based SOM yields an output matrix, allowing
the separation of features, artifacts, and nonsignificant vari-
ables into different nodes. Linear decomposition of the output
matrix by SVD illustrates the relative contributions of these
feature- and artifact-containing nodes. Further integration of
an FDR-based procedure permits the entire gene selection
process to be defined on the basis of statistical inference. As
demonstrated in the processing of human cell cycle data (Figs.
2 and 3), Fourier transformation of the genes selected through
our automated process is much more effective than that of the
genes selected through other methods.

Second, the two-phase gene clustering approach allows the
clustering of all the selected genes into well-organized bases/
clusters in a topology-preserving fashion, producing much

accurate and complete gene clustering without a priori as-
sumption of data structure. The comprehensive view of global
clustering is of great use, especially for large and complex
microarray data. For example, it is straightforward to perform
downstream in-depth analyses of gene clusters in terms of
functional/regulatory relevance. As demonstrated in the
processing of the various stress response data (Figs. 4 and 5),
most gene clusters well represent characteristic expression
patterns under various stress responses and each associated
with specific functional/regulatory features.

Third, TPSC can be applicable to other high-dimensional
biological data (e.g., clinical sample plus time course-based
microarray data). As demonstrated by the processing of
pathogen-infected host cell response data (Fig. 6), we have re-
vealed the preferential impacts of donor-to-donor variability
on macrophages, thus generating new sound hypotheses.

Last but not least, we emphasize the topology-preserving
nature of the methodology compared to our previous work
(Xiao et al., 2003) or others (Tamayo et al., 1999). As shown in
Figure 4A and Supplemental Figure 5, direct application of
the clustering method on primary data may distort the to-
pology of global clustering. Hence, we first select character-
istic expression patterns from primary microarray data (while
filtering out those noisy data at the center of data hyperspace)
through hybrid SOM–SVD in a topology-preserving manner,
which are then subjected to topology-preserving gene clus-
tering. Considering the fact that SOM can preserve both local
and global topological properties of high-dimensional data

FIG. 5. Illustration of gene expression patterns, corresponding GO and transcription factor enrichments in exampled bases.
(A) Stress condition-specific bases. (B) Stress-specific response bases. (C) General stress response bases. (D) Cell line-de-
pendent bases. (E, F) Complex response bases. (G) Cell cycle bases. The cDNA elements periodically regulated by cell cycle in
the category of G are marked in red within the bar on the right.
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(Kohonen, 2001), our work will greatly enrich the other ex-
isting SOM-derived methods such as an SOM–support vector
machine (SVM) approach (Wu et al., 2005). To the best of our
knowledge, authors in this study used SOM to improve the
supervised classification performance of the SVM. In this
sense, our method can be considered to be unsupervised; it
follows the data structure for topology-preserving gene se-
lection and clustering.

Conclusions

In summary, we started this project with the awareness:
how to exploit the topological structure of multidimensional

microarray data might be required for in-depth mining of
information relevant to a biological process of interest. Based
on initial efforts (Fang et al., 2010; Wang et al., 2009), we here
report an automated approach for topology-preserving gene
selection and gene clustering at the genome scale. As dem-
onstrated, our analytical approach works well in extracting
characteristic features from the whole dataset, and seems to be
superior in terms of genome-wide selection and clustering in a
topology-preserving manner. Also, the implemented pack-
ages are provided so that potential readers (and users) can
easily follow the accompanying protocols to test the proposed
methodology or analyze the microarray data of interest.
Promisingly, these approaches may interest a wide range of

FIG. 6. The preferential impacts of host variability on macrophages rather than dendritic cells in response to pathogen
infection. (A) Component plane presentations integrated SOM visualizations of gene expression data, following hybrid SOM–
SVD to process time course (4 h, 18 h, and 48 h) transcriptome data between pathogen-infected human dendritic cells (D) and
macrophages (M) in nine independent healthy donors/hosts (1–9). Intuitively, 6_M_48h denotes the infection response of
macrophages in the sixth donor at 48 h. (B) Radial dendrogram of unsupervised hierarchical samples, which were classified
using those transcriptome data processed by hybrid SOM–SVD. Of note, macrophages from the same donor exclusively
stayed together at the infection of 18- and 48-h time points, but not for dendritic cells. Comparatively, the method in the
original publication did not detect the preferential impact of donors on macrophages at the 18- and 48-h time points (Tailleux
et al., 2008).
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investigators and thus expand the scope of omics applications
in bioscience research.
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