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Abstract: The accumulations of biological data in various 
knowledge domains (biological themes) provide rich resources 
for extracting deeper biological insights into biosystems. 
However, relations among these biological themes remain 
uncharacterized. Here, we present a systematic approach to 
the discovery of these relationships using a single human 
network of gene associations. We first constructed the network 
by incorporating the compiled human interactome and the 
predicted human associatome resulting from the Bayesian 
supervised integration of functional annotation data, model 
organism functional linkage data, and human functional 
linkage data. Using the network, we then performed the 
binomial distribution-based enrichment assessment to examine 
the high-level relationships among biological themes. 
Applications of the approach in biological processes from the 
Gene Ontology indicated that, although intra-process 
connections are of highly modular, distinct processes differ 
considerably in their abilities to interconnect with others. We 
also showed that such interconnectedness of processes cannot 
be explained by the modular constraints, but is largely due to 
the connectivity of their individual members to other 
processes. Moreover, we extended applications in other 
biological themes to find connections among regulatory 
profiles of transcription factors and microRNAs. These results 
demonstrated the feasibility of the approach, combining 
network biology with systematic information, to characterize 
high-level connections of any new biological themes. 

Keywords: human gene network; gene associations; biological 
themes; interconnectedness matrix 

 INTRODUCTION 
Recent advances in technologies have propelled the rapid 

accumulation of large-scale biological data in various 
knowledge domains (biological themes). On one hand, the 
high-throughput omics technologies quantify genome-wide 
biological information at the multiple levels. On the other 
hand, technologies in the field of computational biology and 
bioinformatics speed up curations of biological annotated 
databases, as highlighted by databases of gene annotations 
(e.g., Gene Ontology [1;2]), transcription factor�–targeted 
genes (e.g., TRANSFAC [3]), microRNA target genes (e.g., 
miRBase [4]). With the availability of these quantified 
biological information and curated databases, the next task is 
to how to explore higher level relations among these 
biological themes. Integrated gene networks [5;6] offer 
promising opportunities for exploring such relationships. In a 
variety of species, networks constructed through Bayesian 

integration of multiple sources of data have proved powerful 
to predict gene function and perturbation phenotypes [7-9].  

In this study, we aim to construct a single human network 
of gene associations with high-coverage and high confidence 
with the tasks of inferring the relationships among various 
biological themes. We reason that these high-level 
relationships are principally encoded in the gene-level 
topological structure of the network. The strength of 
relationships can be measured by the enrichment of the 
observed links against the expected links under the binomial 
distribution-based model. As demonstrated by characterizing 
interplays among diversified biological themes, our proposed 
approach provides an analytical framework for systems-level 
surveys in the diversified aspects of human biomedicine. 

METHODS 

A. Outline 
The procedures to implement the approach described in 

this setting are summarized in Figure 1. We first constructed 
the network (HumanNet) through the Bayesian supervised 
integration of four predictive data sets, and the further 
compilation of the existing human interactome data (Figure 
1A). To quantify the relationships of biological themes, we 
then calculated binomial transformed Z-scores, measuring 
the strength of topological links of their individual members 
mapped to HumanNet. After the calculation of Z-scores of 
the observed links against the expected links under the 
binomial distribution-based model, we applied hierarchical 
clustering of the Z-score matrix, followed by the subsequent 
statistical significance assessment. The resultant 
interconnectedness matrix permits a global view of these 
relationships, wherein some biological themes tend to be 
highly connected together while others are disconnected into 
single nodes corresponding to specific themes (Figure 1B). 

B. The probabilistic supervised Bayesian formalism 
Bayesian statistical approach [5;6] provides a supervised 

learning framework for integrating highly heterogeneous 
types of data into a single coherent network of gene 
associations in human. The approach measures the likelihood 
of associations between gene pairs conditioned on the 
predictive data sets considered using Bayes rule. Taking into 
account the dependencies among the predictive data sets and 
to avoid the overestimation, only the data set with largest 
data-set likelihood ratio remains for the integration. Thus, the 
maximum likelihood ratio (LR) is calculated to measure the  
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likelihood of associations between gene pairs, given the 
presence of predictive data sets (Eq. 1).  

( ) ( )
( )Ad

Ad
MaxddLR

i

i
n

in ~Pr
Pr

,,
11 =

=  [Eq. 1] 

Where ( )AdiPr  and ( )Adi ~Pr  are respectively the 
conditional probabilities for gene pairs to be associated (A) 
or not to be associated (~A), predicted by the considered data 
set id , respectively. 

C. The construction of human gene network 
Diverse types of data sets differ considerably in their 

utility for inferring human gene associations. Such gene 
associations can be either direct or indirect. The direct 
associations are highlighted by human physical protein-
protein interactions (i.e., BIND [10], DIP [11], IntAct [12], 
Reactome [13] and HPRD [14]), representing gold-standard 
associations. These interactions are compiled into human 
interactome network (termed as InteractomeNet). The 
indirect associations are functional, rather than physical, 
which can be predicted and transferred from heterogeneous 
functional genomic data across organisms. Four predictive 
data sets are integrated in a maximum Bayesian model into 
human associatome network (termed as AssociatomeNet), 
including shared molecular function annotations of GO 
(GOMF) [2], yeast functional gene network (YeastNet) [8], 
C.elegans functional gene network (WormNet) [9] and 
human functional linkages (STRING) [15]. Using the gold-
standard references of associations and non-associations, 
likelihood ratios can be calculated for each predictive data 
set to determine how the predictive data set impacts the 
chance that gene pairs are associated. 

The gold-standard positive (GSP) and negative (GSN) 
gene associations are defined as references to evaluate and 
integrate predictive data sets. GSP gene associations are 
based on HPRD, containing 34,989 distinct interactions 
among 9,456 distinct protein-encoding genes. As for GSN 
gene associations, lists of gene pairs assigned to separate 
subcellular compartments (i.e., plasma membrane vs. nucleus 
according to Gene Ontology) are first created, and then 
restricted to those annotated in HPRD, resulting in 1,372,503 
unique gene pairs of non-associations in total. Thus, 
estimations of the conditional probabilities ( )AdiPr  and 

( )Adi ~Pr  in Eq. 1 can be obtained by calculating the 

fraction of gene pairs in the data set id  that are found in the 
GSP or GSN, respectively (Eq. 2). 

( ) ( )
( )GSNd

GSPd
MaxddLR

i

i
n

in Pr
Pr

,,
11 =

=  [Eq. 2] 

Gene pairs that share the small, specific molecular 
functions are more likely to be associated than those sharing 
large, general functions. Molecular function annotations are 
downloaded from the Gene Ontology (GO), deriving 28,169 
assignments of 15,850 genes to one or more of 1,557 
molecular functions. As a measure of functional similarity, 
the smallest shared molecular function (SSMF) for each pair 

 Figure 1. Schematic flow diagram of the proposed 
methodology to connect the biological themes using a 
human network of gene associations. (A) The 
construction of the human gene network (HumanNet). 
Four predictive data sets (GOMF, �‘shared molecular 
function annotations of GO; YeastNet, �‘yeast functional 
gene network; WormNet, �‘C.elegans functional gene 
network; STRING, �‘human functional linkages) are first 
rescored with likelihood ratio, and then integrated in a 
maximum Bayesian model into human associatome 
network (AssociatomeNet) under the empirical cutoff 
determined by receiver operator characteristic (ROC) 
and precision-recall (PR) analyses. Additional 
associations from human interactome network 
(InteractomeNet, �‘BIND, DIP, IntAct, Reactome and 
HPRD) are also included to create the final network of 
high-confidence and high-coverage associations. (B) 
The network-oriented enrichment analysis in terms of 
high-level relations among biological themes. The 
biological themes compiled from diversified resources 
are first mapped into the network, followed by the 
Binomial distribution-based enrichment analysis of the 
observed links against the expected links among their 
members. The resultant Z-score matrix is subjected to 
hierarchical clustering and statistical significance 
assessment of each relationship, resulting in 
interconnectedness matrix as the representation of 
potential relationships among biological themes.  
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of annotated genes is first identified. Then, gene pairs with 
increasing number of SSMF (i.e., 5, 10, 50, 100, 500, and 
1,000) are binned, followed by the calculation of likelihood 
ratios for each bin by testing against GSP and GSN (Eq. 3).  

( ) ( )
( )GSNGOMF

GSPGOMF
GOMFLR

Pr
Pr

=  [Eq. 3] 

The yeast functional gene network (YeastNet) covers 
102,803 linkages among 5,483 yeast genes. Each linkage is 
associated with log-likelihood score (LLS) which measures 
the probability of a true functional linkage between two 
yeast genes. Using yeast-human homology data retrieved 
via INPARANOID [16], YeastNet is transferred into 
humanized functional network, involving 14,281 functional 
associations among 1,375 human orthologs. These 
associations are then binned by LLS to assess the likelihood 
ratios, based on the intersection with GSP and GSN (Eq. 4).  

( ) ( )
( )GSNYeastNet

GSPYeastNet
YeastNetLR

Pr
Pr

=  [Eq. 4] 

The C.elegans functional gene network (WormNet) 
comprises 384,700 linkages among 16,113 worm genes. LLS 
of each linkage indicate the probability of a true functional 
linkage between two C.elegans genes. Complemented by 
INPARANOID human-worm homology data [16], 
humanized functional network is created from WormNet, 
containing 36,201 functional associations among 2,661 
human orthologs. Following the calculation of overlaps 
between LLS-binned associations with GSP and GSN, the 
likelihood ratios for WormNet data set can be assessed (Eq. 
5).  

( ) ( )
( )GSNWormNet

GSPWormNet
WormNetLR

Pr
Pr

=  [Eq. 5] 

STRING contains a comprehensive body of known and 
predicted protein-protein associations, containing 545,521 
associations among 13,297 human genes. Each binary 
association is annotated with a combined confidence score 
resulting from three different types of evidence: genomic 
context associations (conserved gene neighborhood, gene 
fusion, and phylogenetic co-occurrence), high-throughput 
experimental data (physical protein interactions and gene 
coexpression), and the mining of databases and literatures. 
Combined scores are grouped into 6 bins of increasing 
confidence (i.e., 250, 400, 550, 700, 850, 1000), which are 
subsequently tested against GSP and GSN to assign the 
likelihood ratios for STRING data set (Eq. 6).  

( ) ( )
( )GSNSTRING

GSPSTRING
STRINGLR

Pr
Pr

=  [Eq. 6] 

Since the possible correlations and redundant information 
among the predictive data sets (i.e., GOMF, YeastNet, 
WormNet, STRING), especially those multiple resources-
curated functional gene networks, the likelihood rations from 
these predictors are integrated in the maximum Bayesian 
approach to obtain the most conservative estimations LRMax. 
To determine the cutoff that achieves high accuracy of 
predictions while maintaining high coverage, analyses of 
receiver operator characteristic (ROC) and precision-recall 

(PR) are employed, respectively. Within the true 
associations (i.e., GSP) and the true non-associations (i.e., 
GSN) as a function of the specific threshold LRMax

cutoff, 
ROC analysis measures the true-positive prediction rate 
(sensitivity/recall) vs. the false-positive prediction rate (1-
specificity), while PR analysis calculates the rate of 
predicted associations that are truly positive (precision) vs. 
recall. An LRMax

cutoff of 200, corresponding to a minimum 
95% specificity, 80% sensitivity and 95% precision, is 
determined to define the high accuracy and coverage of 
associations. This ROC and PR-based cutoff results in 
136,237 high-confidence associations among 12,181 genes 
(i.e., AssociatomeNet).  

D. Enrichment analysis in terms of high-level relationships 
among biological themes 
Given any two biological themes αT  (and the number 

αn of its members) and βT  (and the number βn of its 
members), the number of observed links between their 
members in the HumanNet is labeled as αβm (excluding 
self-associations if genes annotated to both themes). The 
number of possible links when their members are randomly 
distributed can be approximatively modeled by Binomial 
distribution, resulting in the expected number of links αβm  

(Eq. 7) and its variance 2
αβσ  (Eq. 8).  

)1(
2

−
=

NN
Mnnm βααβ  [Eq. 7] 

)
)1(

21(
)1(

22

−
−

−
=

NN
M

NN
Mnn βααβσ  [Eq. 8] 

Where M and N represent the total number of links and the 
total number of genes in the HumanNet, respectively.  

Thus, statistically significant deviations of observed 

links αβm  from its expected links αβm  can be assessed by 

Binomial transformed Z-score αβZ  (Eq. 9). The larger the 
Z-score between two themes within the network, the more 
likely it is that their members topologically interact.  

αβ

αβαβ
αβ σ

mm
Z

−
=  [Eq. 9] 

In particular, for one given biological theme αT , the 

likelihood of the number ααm  of interacting with each 

other in the network can be similarly assessed by ααZ  (Eq. 
10-12).  

)1(
2

2
)1(

−
−=

NN
Mnnm αα

αα  [Eq. 10] 

)
)1(

21(
)1(

2
2

)1(2

−
−

−
−=

NN
M

NN
Mnn αα

αασ  [Eq. 11] 
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αα

αααα
αα σ

mmZ −=  [Eq. 12] 

Where ααm  and 2
αασ  respectively represent the expected 

number of links (Eq. 10) and the corresponding variance 
(Eq. 11) when the members of the biological theme αT  are 
randomly distributed in the network.  

Taken together, Z-score matrix αβZ  encodes the 
network-oriented relationships among biological themes. 
After hierarchical clustering of the Z-score matrix, the 
resultant map provides a global view of such relationships.  
When simultaneously comparing multiple hypothesis tests, 
statistical significance of each relationship can be estimated 
by the method of false discovery rate (FDR) [17]. Briefly, a 
randomized network was first generated by randomly 
shuffling the biological theme-gene associations while 
keeping the adjacency matrix of the network unchanged. 

From this network, an expected Z-score matrix bZαβ  was 
then similarly calculated to obtain a random distribution for 
observed Z-score matrix. By repeating randomization-
calculation steps B (i.e., 1,000) times, the resulting random 

distributions of Z-score matrix BbZ b ,,1, =αβ  were 
used to estimate the FDR value by determining the number 
of relationships called significant (i.e., those with Z-scores 
no less than a specific value tZ ) and dividing by the median 
number of relationships falsely called significant (i.e., the 
median number of Z-scores among each of B Z-scores 

matrix, whose bZαβ  satisfy: BbZZ t
b ,,1, =≥αβ ).  

RESULTS AND DISCUSSION 

A. Constructing a high-confidence gene network in human 
With the purpose of exploring interrelationships among 

biological themes in the context of the human network, we 
sought to construct a network containing gene associations 
of high accuracy while maintaining the high coverage to 
include as many human genes as possible. To such end, we 
not only considered direct associations of genes, as 
highlighted by human physical protein-protein interactions 
(i.e., InteractomeNet, the union of BIND, DIP, IntAct, 
Reactome and HPRD), but also applied a Bayesian 
supervised approach to integrate the indirect associations of 
genes (AssociatomeNet) which were predicted and 
transferred from heterogeneous data sets across organisms 
(Figure 2).  

Integration using a maximum Bayesian model [5;6] 
allows data sets with dissimilar types (i.e., numerical and 
categorical) and redundant information (e.g., those multiple 
resources-curated functional gene associations in model 
organisms) to be combined into a common, most 
conservative estimator of maximum likelihood ratio 
(LRmax). We fist assembled four sources of predictive data 

sets, including shared molecular function annotations of GO 
(GOMF) [2], yeast functional gene network (YeastNet) [8], 
C.elegans functional gene network (WormNet) [9] and 
human functional linkages (STRING) [15]. Each predictive 
data set was then subjected to the estimation of how the 
predictive data set impacts the chance that gene pairs are 
associated. As shown in Figure 2A, these four resources of 

Figure 2. Construction and content of the human gene 
network (HumanNet). (A) Diverse predictive datasets 
contributing to the Bayesian supervised model of human gene 
associations (AssociatomeNet). Top left, �‘The likelihood ratio 
of gene associations decreases with the increasing number of 
smallest shared molecular function. Top right, �‘The likelihood 
ratio of associations transferred from functional network in 
yeast (YeastNet) positively correlates with increasing LLS. 
Bottom left, �‘The humanized functional network of C.elegans 
shows positive correlations between LLS of WormNet and the 
likelihood ratios of human gene associations. Bottom right, 
�‘Human functional linkage data (STRING) with high 
confidence score tends to link genes evaluated by gold-
standard positive and negative gene associations. A blue point 
indicates the calculated likelihood ratio of the specific bin, 
while the red line indicates the fitted values using the log-
linear regression model. Note that the axes are on a log scale. 
(B) Evaluation and determination of AssociatomeNet with 
high-confidence and high-coverage associations. ROC curve 
measures the true-positive prediction rate (sensitivity/recall) 
versus the false-positive prediction rate (1-specificity) as a 
function of the maximum likelihood ratio (Top panel), while 
PR curve the rate of predicted associations that are truly 
positive (precision) versus recall (Bottom panel). (C) The 
content of the constructed network. The pie charts illustrate the 
relative contributions of each dataset to the final network 
HumanNet.  
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data sets all exhibit strong predictive power to infer human 
gene associations. To predict a larger number of gene 
associations while avoiding the overestimation, we 
combined the data set-specific LR in the maximum 
Bayesian model, which only retains the maximum LR for a 
gene pair. Thus far, we yielded a complete network of a 
large number of gene associations with low confidence. To 
obtain the accurate, high-coverage gene network, we 
performed receiver operator characteristic (ROC) and 
precision-recall (PR) analyses (Figure 2B) according to 
overlaps of predicted associations with the true associations 
and the true non-associations under a series of LRMax. 
Applying an ROC- and PR-based cutoff (i.e., LRMax

cutoff of 
more than 200) to the complete network, we finally built a 
higher confidence network, corresponding to minimum 95% 
specificity, 80% sensitivity and 95% precision. This 
predictive network of gene associations (AssociatomeNet), 
comprising 136,237 high-confidence associations among 
12,181 genes, was contributed differentially by the 
predictive data sets (the left pie chart of Figure 2C). About 
71% of gene associations in AssociatomeNet are explained 
by STRING alone, 15% by GOMF alone, less than 1% by 
YeastNet alone, 8% by WormNet alone, and 6% by multiple 
datasets.  

Unionizing the compiled human interactome network 
(i.e., InteractomeNet) and the predicted human associatome 
network (AssociatomeNet), we constructed a single high-
confidence gene network in human (termed as HumanNet), 
covering 162,339 physical/functional associations among 
13,863 human genes (~ 55% of the human protein-coding 

genes). As shown in the right pie chart of Figure 2C, 
AssociatomeNet alone, InteractomeNet alone and both of 
them account for 63%, 16% and 21% of HumanNet, 
respectively. This comprehensive high-confidence gene 
network of human offers an unprecedented basis to explore 
the high-level relationships among biological themes by 
examining gene-level topological associations of their 
members in the constructed human gene network. 

B. Discovering the network-oriented connections among 
biological processes 
Genes involved in the same biological process are 

expected to be topologically linked. Furthermore, two or 
more biological processes may be topologically related to 
achieve the same goals of cellular functions. We therefore 
took advantages of Panther classification [1], which 
contains 126 abbreviated categories of biological processes, 
to examine the human network for Binomial distribution-
based enrichment of associations in which (i) both partners 
were involved in the same biological process (intra-process 
connections), (ii) and one partner involved in a biological 
process while the other one involved in another process 
(inter-process connections). As expected, we observed a 
strong enrichment for intra-process connections, as shown 
in diagonal of Z-score matrix (Figure 3A), indicative of a 
highly modular structure. When examining the inter-process 
connections, we observed that biological processes 
distinguish themselves by their abilities to interconnect 
others. As shown in upper (or lower) diagonal of Z-score 
matrix (Figure 3A), most processes are linked to a few 
other processes, whereas a few processes represent the hubs 

 
Figure 3. Binomial distribution-based enrichment analysis of the high-level relationships among Panther biological processes in 
the context of the network. (A) The Binomial transformed Z-score matrix corresponding to the network-oriented relationships among 
biological processes, together with the hierarchical tree indicating larger classes based on their interconnectedness. Categories of 
biological processes were derived from PANTHER database, which contains 126 abbreviated terms. The coded color of the matrix denotes 
the Z-score calculated as the normalized deviations of observed links in the network between/within biological processes from its expected 
links under Binomial distribution model. The larger the Z-score between/within biological processes, the more likely it is that their 
members topologically interact in the network. (B) Distribution of the observed Z-scores for all the possible relationships among 
biological processes (in blue) versus the distribution of the expected Z-scores generated from random network as control (in red). (C) The 
FDR values versus their respective Z-scores. The estimation of statistical significance of each relationship is inferred by comparing the 
observed distribution of Z-scores with their expected distribution from random network to control the FDR, calculated as the number of 
relationships called significant divided by the median number of relationships falsely called significant.  
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that are connected to a large number of distinct processes. 
To measure how the observed Z-score matrix of biological 
processes deviated from random control, we randomly 
shuffled the biological process-gene associations while 
keeping the adjacency matrix of the network unchanged. 
Compared with the random control, we found that 
distribution of the observed Z-scores was shifted toward 
higher values (P=1.9 × 10-17, Kolmogorov-Smirnov test), 
indicating that the observed universal enrichment of intra-
process connections and preferential enrichment of inter-
process connections are inherent features of biological 
processes (Figure 3B). We further utilized a method of false 
discovery rate (FDR) [17] to estimate the statistical 
significance of enrichment among these connections. Figure 
3C shows a plot of the FDR values versus their Z-scores, 
wherein the indicated point by the dash lines show that 
0.1% of those relationships with Z-scores more than 11.96 
called significant turn out truly false (i.e., FDR=0.001). 
Here and thereafter, we used Z-score of 11.96 as the 
threshold to determine the statistical significance of 
relationships among biological themes.  

Applying the FDR-based assessment of significant 
connections, we obtained the interconnectedness matrix of 
biological processes, which, together with the information 
revealed from the hierarchical clustering of Z-score matrix 
(Figure 3A), allows the reconfiguration of biological 
processes into eight larger classes (I-VIII) (Figure 4A). 
Although the reconfiguration of biological processes was 
generated independently of any priori knowledge about the 
process categories, the resulting classes tend to be 
functionally similar. The most prominent example is a tightly 
interconnected immunity-related cluster within Class VII (or 
called immunity clique). Except for complement-mediated 
immunity in Class I, all other immunity-related processes are 
exclusively grouped in Class VII. Likewise, most 
developmental processes remain together in Class V 
(development clique). As for Class VIII, these processes are 
tightly interconnected to form a clique, and are functionally 
associated to core cellular processes, such as cell cycle, 
apoptosis, signaling cascades, oncogenesis and stress 
response. Of note, the interconnectivity of developmental 
clique (and immunity clique) with the clique of core cellular 
processes is consistent with the essential roles of 
development system and immunity system in maintaining 
proper physiological functions of individual organism. In 
contrast, metabolism-related processes do not form a single 
class. They are distributed among multiple classes (i.e., 
Classes I, IV and VI), which share low interconnectedness. 
We hypothesized that high interconnectedness of core 
cellular events in Class VIII and immunity-related processes 
in Class VII arises from the presence of genes which 
overwhelmingly prefer to link many other biological 
processes, while low interconnectedness of metabolism-
related processes is largely due to the absence of such 
process-linking genes. To quantify such differences, we first 
characterized the role of each gene based on its participation 
coefficient (pC) [18], which measures its tendency of 
connecting genes in all biological processes. According to 

participation coefficient, we classified those genes into three 
different roles as follows: kinless genes with links 
homogeneously distributed among all biological processes 

Figure 4. The network-driven interconnectedness among 
Panther biological processes and its contributing factors. 
(A) The interconnectedness matrix resulting from the Z-score 
matrix under the threshold of FDR<0.001 (corresponding to Z-
score>11.96, see Figure 3) and the indicated larger classes (I-
VIII) based on the interconnectedness. Also shown in the most 
right display is the gray-coded proportions of genes, for each 
biological process, which are classified as kinless (i.e., those 
genes with links homogeneously distributed among all 
biological processes), connector (i.e., those genes with many 
links to other biological processes) and peripheral (i.e., those 
genes with most links within their own biological process). (B) 
The contributing factors for the observed interconnectedness. 
Each point (in red) corresponds to a biological process, plotted 
on the 3-dimensitional space spanned by the connectivity of 
biological processes (interconnectedness), within-process Z-
score and the average connectivity of its individual members. 
Grayed points represent the orthogonal projection onto the 
corresponding 2-dimensitional plane.  
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(pC˚0.857); connectors with many links to other biological 
processes (0.695˘pC 0.857); peripheral genes with most 
links within their own biological process (pC 0.695). For 
each biological process, we then calculated the proportion of 
genes classified into these three roles. As shown in the most 
right display of Figure 4A, those biological processes with 
high interconnectedness (e.g., Classes VII and VIII) are 
enriched with genes classified as kinless and are absent of 
connectors and peripheral genes. On the contrast, in those 
biological processes with low interconnectedness (e.g., 
Classes I and IV), the percentage of genes classified as 
connector or peripheral approximately equals that of genes 
classified as kinless. As a further examination of the 
contributing factors for the observed interconnectedness, we 
considered three process-centered quantities: the 
connectivity of biological processes (interconnectedness), 
within-process Z-score and the average connectivity of its 
members in the network. As shown in Figure 4B, the 
absence of correlation between interconnectedness and the 
within-process Z-scores (Left vertical plane), and the 
appearance of correlation between interconnectedness and 
the connectivity of their members (Right vertical plane) 
indicate that the observed interconnectedness of a biological 
process is contributed by the connectivity of their individual 
members to other processes rather than the modular 
constraints of their individual members. 

C. Connections among regulatory profiles 
Transcription factors (TFs) and microRNAs (miRNAs) 

are trans-acting regulotors of gene expression, both exerting 
their activities by binding to cis-regulatory elements (e.g., 
promoters regions and 3�’ untranslated regions) of their target 
genes in a combinatorial manner [19;20]. To search potential 
regulatory interplays within/between TFs and miRNAs, we 
performed enrichment analyses of network-context 
associations among predicted targets of TFs and miRNAs. 
We began by defining the TF regulatory profiles from the 
TRANSFAC database [3] and the miRNA regulatory 
profiles from miRBase database [4]. Then, we evaluated the 
enrichment of the links among targets of TFs and miRNAs 
mapped to the human networks under the binomial 
distribution-based model. After applying the hierarchical 
clustering of Z-score matrix and the FDR-based assessment 
of significant interplays, we obtained the interconnectedness 
matrix, displaying the significant connections among 
regulatory profiles. Compared to the prevalence of intra-
processes connections (Figure 4A), the connections of 
within-regulatory profiles are rare, as shown in diagonal of 
interconnectedness matrix (Figure 5A). It is consistent with 
the fact that the topological structure of human gene network 
most reflects the functionality rather than the regulation. 
Moreover, the connections of between-regulatory profiles are 
biased in terms of TF and miRNA regulatory levels. 
Connections between TF-TF pairs or TF-miRNA pairs are 
more abundant compared to those between miRNA-miRNA 
pairs (Figure 5A). It suggests that TFs have the tendency to 
function in a combinatorial fashion with other TFs or 
miRNAs, whereas miRNAs are lack of such cooperation 
with other miRNAs. Since genes in human gene network 

have a power-law degree distribution with the degree 
exponent of 1.731, we wondered whether the same kind 
distribution holds as for the high-level regulatory profiles. As 
shown in Figure 5B, the degree distribution of regulatory 
profiles approximates a power law with the degree exponent 
of 0.728. It is well known that the smaller the value of degree 
exponent, the more important the role of the highly 
connected nodes (i.e., hubs) is in the network [21]. 
Therefore, the high-level network of regulatory profiles is 
more skewed to scale-free than the gene-level network. 
Neighborhood connectivity distribution is also a relevant 
property of a scale-free network. The neighborhood 
connectivity of a node measures the average of the 
neighborhood connectivity of the node. The Neighborhood 
connectivity distribution of regulatory profiles, following the 
power-law distribution with the exponent of -0.368, exhibits 
a decreasing function of the degree (Figure 5C).  It indicates 
the prevalence of edges between low connected and highly 
connected nodes in the network of regulatory profiles. The 
network visualization of connections among regulatory 
profiles manifests these topological parameters (Figure 5D). 
Notably, the tightly interconnected TFs are cell cycle-
relevant regulators. The clique of cell cycle-relevant 
regulators includes E2F1, E2F4, DP1, DP2, SP1, NRF1, 
NRF2, NFY and ATF. Although co-regulations of cell cycle 
have been long shown [22], our findings that targets of cell 
cycle-regulators are also topologically linked substantially 
expand the generality of functional synergism between these 
cell cycle-relevant regulators. Among the most connected 
miRNAs are hsa-miR-561, hsa-miR-495, hsa-miR-552, and 
hsa-miR-208b. Interestingly, these miRNAs are present both 
in TF-miRNA pairs and miRNA-miRNA pairs. Although 
their underlying regulatory programs remain unclear, 
preferential cooperation especially with the clique of cell 
cycle-relevant TFs further points to the importance of the 
intricate regulatory design in the cell cycle biosystem.  

CONCLUSIONS 
We have carried out a systems analysis to uncover the 

high-level relationships in various biological themes, 
ranging from biological processes to regulatory programs. 
The success depends on two factors. First, we have 
constructed a single human gene network, covering ~ 55% 
of the human protein-coding genes with the high-confident 
physical/functional associations. This network represents 
the most comprehensive resource with regard to interactions 
between human genes. The topological structure of the 
network inherently encodes the biology-operating 
information. Second, we have developed a model for 
decoding the underlying information. Principally, 
converting topological relationships of their members in the 
gene-level network into interconnectedness matrix allows 
the identifications of general properties of biological theme-
level network. As demonstrated in this pilot study, our 
analytical framework combining with systematic 
information about biological themes provides a platform for 
testing known knowledge and, more importantly, generating 
new sound hypotheses. Connections among biological 

555000333555000333444!333444!333444!333444!333444777555444777555444777555444777555444666!

Authorized licensed use limited to: IEEE Publications Operations Staff. Downloaded on October 14, 2009 at 08:54 from IEEE Xplore.  Restrictions apply. 



processes show that the capability of a process 
interconnecting others differs greatly. For example, 
developmental processes (and immunity-related processes) 
highly interconnect together to form a clique, which then 
preferentially interconnects a clique of core cellular 
processes. Such hierarchical organizations are also observed 
in regulatory profiles, in which most interconnected 
miRNAs tend to interconnect a clique of cell cycle-relevant 
TFs.  
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Figure 5. Connections among transcription factor (TF) and microRNA (miRNA) regulatory profiles. (A) The interconnectedness 
matrix, where each entry (in blue) represents the significant relationship (Z-score>11.96, corresponding to FDR<0.001) between/within 
regulatory profiles. TF regulatory profiles were identified by a position weight matrix (PWM)-based MATCH program applied to the 
putative promoter regions of human genes. Regulatory profiles of miRNAs were compiled from miRBase. (B) The degree distribution of 
regulatory profiles. The degree of a node (i.e., regulatory profiles) is the number of edges linked to the node. (C) Neighborhood 
connectivity distribution of regulatory profiles. The neighborhood connectivity of a node measures the average of the neighborhood 
connectivity of the node. (D) Network representations of TF-TF, miRNA-miRNA and TF-miRNA interconnections. The nodes sharing the 
same attributes (red-filled triangle for TFs, and cyan-filled diamond for miRNAs) are laid out in a separate circle, where the position of 
nodes in each circle is ordered according to the degree. Only nodes associated with the degree of more than 20 are shown with the 
identifiers of TFs/miRNAs.  
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