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SUMMARY

Genome-wide expression analysis of embryonic
development provides information that is useful in
a variety of contexts. Here, we report transcriptome
profiles of human early embryos covering develop-
ment during the first third of organogenesis. We
identified two major categories of genes, displaying
gradually reduced or gradually increased expression
patterns across this developmental window. The
decreasing group appeared to include stemness-
specific and differentiation-specific genes important
for the initiation of organogenesis, whereas the
increasing group appeared to be largely differentia-
tion related and indicative of diverse organ forma-
tion. Based on these findings, we devised a putative
molecular network that may provide a framework
for the regulation of early human organogenesis.
Our results represent a significant step in character-
ization of early human embryogenesis and provide
a resource for understanding human development
and for stem cell engineering.

INTRODUCTION

The mammalian embryo develops from a single-cell zygote
to a blastocyst (preimplantation stage), followed by gastrula-
tion and then organogenesis (postimplantation stage). Organo-
genesis begins when ectodermal cells form the neural tube
and mesodermal tissues become segmented into somites.
Subsequently, organ primoridia begin to appear as organogen-
esis continues. Human organogenesis begins at Carnegie
stage 9 (embryonic day 20, E20) and ends at Carnegie stage
23 (E56) (Carlson, 2004). This 36 day organogenesis period
in the human is considerably longer than the 7 day period
seen in the mouse. Nevertheless, the major changes in body
form occur during the first 10 days. At E20, the embryo has
the shape of the sole of a shoe, and the neural groove is

evident dorsally. Soon after that, the neural folds form and
primordial development of heart, optic system, thyroid, liver,
and respiratory system takes place. At the end of Carnegie
stage 14 (E32), the primary structure of many organs is distin-
guishable. Therefore, E20–E32 is a critical time period for
human development, laying the foundation for subsequent
developmental events.
During embryogenesis, early embryonic cells progressively

differentiate into distinct cell types with a concomitant gradual
loss of developmental potential, starting from the totipotent
state, passing through the pluripotent state, and then to lineage
commitment (Waddington, 1957; Yamanaka, 2009). Pluripo-
tency, a characteristic of cells in the inner cell mass of the blas-
tocyst, is defined as the potential of a cell to generate all cell
types in an organism. Recently, it has been proposed that
pluripotency could be more dynamic than previously thought
(Smith et al., 2009). The pluripotency of human embryonic
stem cells (hESCs), derived from the in vitro culture of human
preimplantation embryos (Thomson et al., 1998), is difficult to
evaluate developmentally for ethical reasons. Moreover, the
recent advent in human induced pluripotent stem cells (iPSCs)
renders the evaluation of pluripotency even more challenging
(Takahashi et al., 2007; Yu et al., 2007), as reprogramming of
somatic cells by defined factors is believed to be a continuous
stochastic process, generating a heterogeneous population of
cells at different states (e.g., fully reprogrammed pluripotent
cells, partially reprogrammed cells, and nonreprogrammed
differentiated cells) (Hanna et al., 2009). Transcriptome
approaches have shown promise for gaining insights into the
biology of undifferentiated hESCs (Abeyta et al., 2004) and
human preimplantation embryos (Sudheer and Adjaye, 2007).
For instance, the extent to which hESCs cultured in vitro reflect
human embryos at the blastocyst stage in vivo can be assessed
using such approaches (Sudheer and Adjaye, 2007). Similar
efforts have also been made for looking at differentiated deriva-
tives of hESCs (e.g., embryoid bodies, EBs), which are often
used as in vitro models to study early human development
(Dvash et al., 2004; Liu et al., 2006). However, it is still unknown
whether the EB differentiation model recapitulates human early
embryogenesis in vivo. Accordingly, information obtained from
transcriptome analysis of human early embryos may help to
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define EB stages of hESC differentiation and evaluate cell
populations reprogrammed to different extents.
Understanding of human early embryogenesis is also useful

in regenerative medicine approaches aimed at differentiation
of hESCs or iPSCs into functional cells (Gearhart, 2004). Recent
evidence indicates that the most successful differentiation
protocols for human pluripotent cells are those that most
closely mimic the in vivo embryonic development of the partic-
ular cell lineage (Mayhew and Wells, 2010). A second potential
application is in determining whether knowledge obtained from
model organisms is truly representative of human development.
The inaccessibility of the human embryo, especially at postim-
plantation stages, has long been a major limitation for the study
of human early embryogenesis, and many studies have
focused on mouse embryos instead. A recent study reported
the transcriptome analysis of the mouse postimplantation
embryo from gastrulation through early organogenesis and
showed that morphological changes within the whole embryo
are driven by molecular changes (Mitiku and Baker, 2007).
However, it remains unknown to what extent the changes
seen in mouse reflect developmental events in human
embryos.
Overall, the limited nature of information about human early

embryos has hampered many aspects of developmental biology
and stem cell engineering. We describe here whole-genome
expression array profiling of human postimplantation embryos
at six successive time periods: Carnegie stages 9–14 (E20–
E32), covering the first third of organogenesis. Using a range of
data mining and information annotation approaches, we were
able to identify a number of transcriptome features that may be
significant for early human embryonic development.

RESULTS

Transcriptome Profiling of Human Embryos
and Selection of Genes Informative
to the Characterization of These Embryos
Human embryos from E20 to E32 were the most readily avail-
able from our clinic, spanning six successive Carnegie stages
(i.e., S9–S14) that cover the first third of organogenesis.
Embryos at these stages were collected, carefully staged
based upon morphological criteria (Figure 1A; see Figures
S1A and S1B available online) and then subjected to Affyme-
trix expression assays with three replicates (see Experimental
Procedures). Three biological replicates were conducted for
embryos at S10–S13; owing to practical limitations and mate-
rial availability, embryos at S9 and S14 were pooled together
and subjected to three technical replicate analyses
(Figure S1A). After data normalization, an extraction of differ-
ential gene expression (EDGE)-based methodology (Storey
et al., 2005) was applied to identify genes with expression
that is consistent between replicates but differentially regu-
lated across the various developmental stages. The resulting
matrix contained expression measurements for 5441 tran-
scripts across 18 samples, denoted as the human organogen-
esis (hORG) expression matrix (Table S1), and was used for
the subsequent analyses. Independently, quantitative RT-
PCR (qRT-PCR) was employed to validate genes with ortho-
logs that are known to be developmental markers in mice,
showing that these genes behaved as expected (Figure S1C).
When hierarchical sample classification was applied to the
hORG expression matrix, the 18 samples were clearly catego-
rized into six sequential groups, corresponding to the six

Figure 1. Global Analyses of the Transcriptome of Human Embryos during Early Organogenesis
(A) Morphological features of human embryos. According to the Carnegie criteria, the collected human embryos are grouped into six successive embryonic

developmental stages (S9–S14). Scale bar in each photograph represents 1 mm.

(B) Transcriptome profiles of human embryos. Hierarchical classification analysis shows the reproducibility of transcriptome profiles of each staged embryos

(sampled in triplicates) and divides the six developmental stages into three major branches: S9, S10–S12, and S13–S14.

(C) Stage-transitive transcriptome changes of human embryos. Human embryo samples are projected onto the three-dimensional space captured by principle

component analysis (PCA). Each of the staged embryo samples are colored as indicated. Any two-successive-stage transition is illustrated using an arrow,

adjacent to which shows the number of the transcripts significantly increasing (in red) or decreasing (in green) during the transition, as identified using Linear

Models for Microarray Data (LIMMA). See also Figure S1 and Table S1.
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successive Carnegie stages (Figure 1B; Figure S1D). More-
over, a dendrogram of the hierarchical sample classification
(Figure 1B) and principal component analysis (PCA) (Figure 1C)

showed that the S9 samples (E20–E21) were more distinct
from those of S10 (E22–E23) as compared with other pairs
of adjacent stages, suggesting that a major transition occurred

Figure 2. In-Depth Analyses of Transcriptome Features Characterizing Early Human Organogenesis
(A) Component plane presentation integrated self-organizing map (CPP-SOM) of human embryos, depicting dynamic transcriptome changes during early human

organogenesis. Each presentation illustrates a sample-specific transcriptome map, in which all the up-regulated (in red), down-regulated (in blue), and moder-

ately regulated (in yellow and green) genes are well delineated. Notably, the same position in all presentations contains the same group of coexpressed genes.

(B) Ideogram illustration of six gene clusters on a SOM grid map. These gene clusters are obtained through SOM-based two-phase gene clustering. The index of

each cluster is marked in the seed neuron as indicated.

(C) Illustration of gene expression patterns and corresponding biological theme enrichments for each of the six gene clusters. Various biological annotations

are mined to determine the enrichments of biological relevance, as highlighted by Gene Ontology (GO) and pathway for functional enrichments (*FDR <0.05),

positional weighted matrix (PWM) of UCSC conserved transcription factor binding sites for regulatory enrichments (**FDR <0.01), Mouse Genome Informatics

(MGI) phenotype ontology for mammalian phenotypic enrichments (***FDR <0.005), and Online Mendelian Inheritance in Man (OMIM) disorder-gene association

information for disorder enrichments (***FDR <0.005). See also Figure S2 and Table S2.
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between S9 and S10 at the transcriptome level. Consistent
with this observation, only neural tissue and a few somites
are morphologically evident at S9, whereas the emergence
of diverse organ primordia occurs from S10–S12 (E26–E27)
(Figure S1A).

Identification of Genes with Characteristic Expression
Patterns in Early Organogenesis of Human Embryos
In an attempt to identify the transcriptome features inherent in
the hORG expression matrix, we first applied an approach of
combining the self-organizing map with singular value

Figure 3. Illustration of Conserved Expression Patterns and Biological Characteristics of Human-Mouse Homologs during Early
Organogenesis
(A) Comparison of temporal expression patterns during early organogenesis of human and mouse. The significance of overlaps was evaluated using Fisher’s

exact test. xUnique NCBI EntrezGenes in human. #Unique MGI IDs in mouse. The corresponding human homologs, transferred by INPARANOID homology

data.

(B) Significant overlaps (termed as HM_HD-MD) between gastrulation clusters (I, VI, and VII) in mouse and decreasing clusters 1–3 in human. Mouse embryos

spanning gastrulation and early organogenesis (E6.25–E9.0, in duplicates) are displayed in the left panel, followed by the stages of early human organogenesis.

Enrichments of mammalian phenotypes are integrated on the right of the display (**FDR <0.01). Homologs harboring the specific enriched annotation are also

marked in red in the bar.

(C) Significant overlaps (termed as HM_HI-MI) between organogenesis clusters (II, III, and IV) in mouse and increasing clusters 5 and 6 in human. Also,

human-mouse homologs of HM_HI-MI annotated in myogeneisis, osteogeneisis, heart development, and neurogeneisis are listed (*FDR <0.05), serving as

specific developmental markers to assess early mammalian organogenesis. See also Table S3.
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decomposition (SOM-SVD) (Fang et al., 2008; Wang et al., 2009)
for feature selection and artifact elimination (Figure S2). The re-
sulting matrix containing expression measurements of 2148
transcripts across the 18 samples was then subjected to
a gene clustering procedure (Vesanto and Sulkava, 2002), which
revealed six clusters based on topological relationships (termed
clusters 1–6) (see Table S2). To facilitate direct comparisons
within/between developmental stages, component plane
presentations (CPPs) (Xiao et al., 2003) were used to display
sample-specific transcriptome changes (Figure 2A). The topo-
logical relationships of the six clusters are shown in Figure 2B.
Genes within each of the six clusters displayed highly similar
expression patterns (left panel of Figure 2C), suggesting that
they may share common features. In addition, the expression
patterns of genes in clusters 1, 2, and 3 showed overall similarity
in terms of the gene expression level tending to be gradually
repressed as development progressed, whereas the expression
level of genes in clusters 5 and 6 gradually increased. Interest-
ingly, the expression patterns of genes in these twomajor groups
appeared to correlate well with the development potential of
early embryonic cells, i.e., a gradual decrease in ‘‘stemness’’
and a concomitant increase in the diversity of cell types present.

Next, we performed enrichment analysis of the genes in these
clusters to examine whether they shared functional or regulatory
features using Gene Ontology (GO) (Mi et al., 2007) and the
UCSC conserved transcription factor binding sites (TFBSs)
(Miller et al., 2007). As shown in the middle panel of Figure 2C,
significant GO terms in clusters 1–3 included those associated
with cellular metabolism and homeostasis, but only a few signif-
icant TFBSs (or position weight matrixes [PWMs]) were
observed, including survival-related transcription factors such
as NMYC (Laurenti et al., 2008) and E4BP4 (Junghans et al.,

2004). In contrast, the most significant GO terms in clusters
5 and 6 were more diverse, representing a wide spectrum of
functions involved in the establishment of organmorphogenesis.
In keeping with this functional spectrum, the most significant
TFBSs included those of multiple organogenesis-related regula-
tors such as the nervous system-specific OCT1 (Jin et al., 2009)
and BRN2 (Castro et al., 2006), the muscle-specificMEF2 (Olson
et al., 1995), the heart-specific NKX2-5 (Pashmforoush et al.,
2004), and the skeletal-specific SOX5 (Smits et al., 2001).
Next, we used mammalian phenotype ontology from the

Mouse Genome Informatics (MGI) (Bult et al., 2008) and the
disorder-gene association information from Online Mendelian
Inheritance in Man (OMIM) (Goh et al., 2007) to conduct enrich-
ment analysis of the genes in the clusters. As illustrated in the
right panel of Figure 2C, significant phenotypes related to genes
clusters 1–3 were mostly associated with embryonic lethality
and abnormal embryogenesis, whereas the genes in clusters
5 and 6 were primarily linked to postnatal lethality and diverse
organ/system defects. Likewise, hardly any genetic disorders
were linked to genes in clusters 1–3, but, in sharp contrast,
many such disorders were linked to genes in clusters 5 and 6,
including neurological, hematological, and cardiovascular
disorders.
Taken together, above observations suggest that the genes

in cluster 1–3may play crucial roles in the initiation of organogen-
esis, whereas those in clusters 5 and 6 may primarily take part in
the establishment of organogenesis. As genes in cluster 4 topo-
logically share boundaries with both clusters 1–3 and clusters
5 and 6 (Figure 2B), with more diverse expression patterns
(Figure 2C) and only representing a small percentage (11.8%),
these genes were excluded from further consideration in this
study.

Figure 4. Coexistence of Stemness and
Differentiation Potentials during Early
Human Organogenesis
Yin-Yang Diagram includes the white part (repre-

senting the decreasing clusters 1–3) and the black

part (representing increasing clusters 5 and 6).

Those genes consistently overexpressed in

hESCs (termed as ‘‘consensus hESC gene list’’)

are circled in pink, while those underexpressed

(termed as ‘‘consensus differentiation gene list’’)

in cyan. Venn diagram in themiddle illustrates their

overlaps and the corresponding significance

(Fisher’s exact test). Overlaps of Consensus

hESC genes with decreasing clusters 1–3 and

increasing clusters 5 and 6 are labeled as hESC_D

and hESC_I, respectively. The expression patterns

of hESC_D and hESC_I are displayed in the left

panel. The corresponding bars indicate genome-

wide binding information of pluripotency-associ-

ated transcription factors POU5F1, SOX2, and

NANOG and genome-wide histone modification

sites of H3K4me3/H3K27me3 bivalent domains

and H3K4me3 only domain. Likewise, the expres-

sion patterns for overlaps of consensus DIFF

genes with decreasing clusters 1–3 (labeled as

DIFF_D) and increasing clusters 5 and 6 (labeled

as DIFF_I) are displayed in the right panel, with

the regulatory and epigenetic information marked

in red. See also Table S4.
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Human-Mouse Comparative Analysis of Genes
Important during Early Organogenesis
To further validate the above findings, we conducted a compara-
tive analysis relative to previously published transcriptome data
from mouse embryos covering gastrulation to early organogen-
esis (E6.25–E9) (Mitiku and Baker, 2007). In this study, gene
clusters specific for gastrulation (i.e., clusters I, VI, and VII) and
organogenesis (i.e., clusters II, III, and IV)weredefined, in addition
to a defined cell-cycle specific cluster (i.e., cluster V). Using
human-mouse homologs in INPARANOID homology data
(Berglund et al., 2008), we found that genes in clusters 1–3 were
significantly (p = 5.283 10!5, Fisher’s exact test) represented in
the mouse gastrulation-specific clusters, whereas genes in clus-
ters 5 and 6 were significantly (p = 4.07 3 10!12) enriched in the
mouseorganogenesis-specificclusters (Figure3A). For thegenes
in the mouse cell cycle cluster V, we found no significant overlap
with either clusters 1–3 (p = 0.61) or clusters 5 and 6 (p = 0.30).
When human-mouse homologs from clusters 1–3 were

selected (labeled as HM_HD-MD) (see Table S3) and subjected
to enrichment analysis using MGI mammalian phenotypes,
embryonic lethality appeared to be the most prominent feature,

consistent with the result shown in Figure 2C and associated
with pluripotency-associated or germ-layer master genes within
this group (e.g., POU5F1, DPPA4, T, DSG2, and HAND1)
(Figure 3B). Another phenotype associated with these homologs
was abnormal circulation of lipids, which could be attributed to
the apolipoproteins-encoded genes (e.g., APOA1, APOC1,
APOC3, APOE, APOA4, and MTTP), when disrupted in mice.
In contrast, the human-mouse homologs from clusters 5 and 6
(labeled as HM_HI-MI) (see Table S3) were largely involved
in myogenesis, osteogenesis, heart development, and neuro-
genesis (Figure 3C). These results further suggest that the genes
in clusters 1–3 are primarily important for the initiation of organ-
ogenesis, whereas those in clusters 5 and 6 are important for the
progression of organogenesis, and are probably involved in
various types of cell differentiation or organ formation.

Integration of Multiple Layers of Information in hESCs
to Identify Stemness- and Differentiation-Relevant
Genes during Early Human Organogenesis
We next performed an enrichment analysis using a published
data set from hESCs, from which a consensus hESC gene list

Figure 5. A Putative Molecular Interaction Network during Early Human Organogenesis
A connected network (hORGNet) shows significant changes in expression during early human organogenesis. The area of the gene node (circle) is proportional

to node degree (i.e., the number of edges directly linked to the node). Highlighted in gray are the edges derived from the human interactome, while the edges in

sky-blue are functional protein associations from the STRING database. Layouts of the hORGNet are based on subcellular localization information annotated in

NCBI GO. The hORGNet is inherited with a stemness-relevant module (hStemModule), which dominates a hESC-context network (hESCNet). See also Figure S3

and Table S5.
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and a consensus differentiation (DIFF) gene list were previously
defined (Assou et al., 2007). Fisher’s exact test was applied to
compare these two gene lists with clusters 1–3 and clusters
5 and 6. As shown in the bottom-left of the middle panel in
Figure 4, the defined consensus hESC genes were significantly
overrepresented in clusters 1–3 (p = 1.89 3 10!11; the overlap-
ping genes were denoted as hESC_D) (see Table S4), whereas
no overrepresentation was observed in clusters 5 and 6
(p = 0.99). For the defined consensus DIFF genes, however,
highly significant overrepresentation was observed in both
clusters 1–3 (p = 0.00; overlaps were denoted as DIFF_D) and
clusters 5 and 6 (p = 0.00; overlaps were denoted as DIFF_I)
(the upper right of the middle panel of Figure 4).

The pluripotency-associated transcription factors POU5F1
(OCT4), NANOG, and SOX2 constitute a core transcriptional
regulatory circuitry controlling stem cell identity (Boyer et al.,
2005). Also, the histone modification H3K4me3 is associated
with active promoters of genes that maintain the fundamental
properties of hESCs, whereas H3K4me3/H3K27me3 bivalent
modifications are linked to silenced promoters of genes that
are poised for expression upon differentiation (Pan et al.,
2007). We integrated above layers of information with our data
set to provide an additional perspective on the overrepresented
consensus hESC genes in clusters 1–3 (i.e., hESC_D), and
the overrepresented consensus DIFF genes in clusters 1–3
(i.e., DIFF_D) and in clusters 5 and 6 (i.e., DIFF_I). As shown in
Table S5, the potential binding sites of POU5F1, NANOG, and

SOX2 were significantly enriched in hESC_D relative to DIFF_D
or DIFF_I. Similarly, H3K4me3 modification was significantly
enriched in the hESC_D group, whereas H3K4me3/H3K27me3
bivalent modifications were significantly enriched in both
DIFF_D and DIFF_I (Table S5). The left panel of Figure 4 also
illustrates a high frequency of H3K4me3 modification and tri-
ple occupancy by the pluripotency factors in genes of the
hESC_D, which suggests that these genes may be important in
controlling stem cell identity. In contrast, genes in the DIFF_D
or DIFF_I groups showed features characteristic of cellular
differentiation at both genetic and epigenetic levels (the right
panel of Figure 4).
Considering these results together, it is tempting to assume

that clusters 1–3 may contain at least two groups of genes
essential for the initiation of organogenesis, one of which main-
tains the fundamental properties of hESCs (i.e., stemness) and
the other of which is crucial for cellular differentiation. On the
other hand, it appears that the genes in clusters 5 and 6 are
involved in various types of cellular differentiation. These findings
also provide further support for the idea that these clusters of
genes are important for the initiation and progression of human
organogenesis.

Integrative Mining Defines a Putative Molecular
Network Depicting Early Human Organogenesis
Genes do not function in isolation and instead are intercon-
nected intomolecular networks that control biological processes

Figure 6. TheCharacteristics during Early Organogenesis of Human andMouseCaptured By the hORGNet and Its TwoModules (hStemMod-
ule and hDiffModule)
Enrichment analyses of the hORGNet, the hStemModule, and the hDiffModule (A) in the context of stemness-relevant genes (hESC_D) and differentiation-rele-

vant genes (DIFF_D and DIFF_I), as identified in Figure 4 (B) in the context of the MGI mammalian phenotype ontology. The first column shows the observed

number of genes overlapped between the hORGNet and specific gene lists (in black) verses the expected number of genes under null distribution (in gray). Simi-

larly, the second and third columns are displayed for the hStemModule and the hDiffModule, respectively. The significance of the corresponding enrichments in

the hORGNet, the hStemModule and the hDiffModule is illustrated in the right-most column.
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such as embryogenesis. It is appealing to hypothesize that the
stemness- and differentiation-relevant genes identified in this
setting are probably connected in an overall functional network.
To investigate this idea, we employed the Cytoscape plug-in
jActiveModules (Ideker et al., 2002) which integrates expression
and interaction information to identify the expression-related
subnetworks. Based on the intrinsic features of the hORG
expression matrix in the context of the compiled human interac-
tion/association network (for details see Supplementary Experi-
mental Procedures), we detected a subnetwork (hORGNet)
(see Table S5). Figure 5 shows the layout of the hORGNet
configured by subcellular location using Cerebral (Barsky et al.,
2007). In parallel, we employed the same approach to investigate
stemness-relevant networks by limiting the input of the interac-
tion information to those only involving stemness-relevant genes
(i.e., hESC_D and hESC_I in the left panel of Figure 4). As a result,
we obtained a subnetwork specific for stemness (hESCNet)
(see Table S5). By comparing the obtained hESCNet with the
hORGNet, we found that as many as 76% (105/129) of the genes
in the hESCNet were also part of the hORGNet, implying that the
hORGNet contains a stemness-relevant module (termed as
hStemModule), represented in the leftmost region of Figure 5.
Then, we tested the modularity of the hStemModule by exam-
ining the distribution of the pairwise shortest distance between
genes in the hStemModule as well as in the hORGNet.
Compared with the hORGNet, genes in the hStemModule
showed closer topological distances (p < 10!40, Kolmogorov-
Smirnov test) (Figure S3A), suggesting that the hStemModule
may function as a relatively distinct module in the hORGNet.
As most of genes in the hORGNet were differentiation-associ-
ated (Figures S3B and S3C), the remainder of the hORGNet
was defined as a differentiation-associated module (hDiffMod-
ule). As most genes in the hStemModule were gradually sup-
pressed during early human organogenesis, whereas genes in
the hDiffModule experienced more dynamic regulation
(Figure S3D), we concluded that the stemness-associated
hStemModule and the differentiation-associated hDiffModule,
might coordinately regulate early organogenesis in human
embryos within an overall molecular network.
In a converse manner, we then statistically tested for enrich-

ment of the genes illustrated in Figure 4 (i.e., hESC_D, DIFF_D,
and DIFF_I) in the hStemModule and in the hDiffModule. As
shown in the second column of Figure 6A, genes of the hESC_D
group but not the DIFF_D or DIFF_I groups were overrepre-
sented in the hStemModule. Likewise, genes of the DIFF_D
and DIFF_I groups but not the hESC_D group were overrepre-
sented in the hDiffModule (third column in Figure 6A). These
results provide further support for the idea that there exist
stemness and differentiation modules within the overall frame-
work ofmolecular networks, whichmay coordinately orchestrate
early organogenesis in human embryos. Moreover, enrichment
analyses of the hStemModule and the hDiffModule using MGI
phenotype ontology suggested that the hStemModule is related
to early embryonic morphological abnormalities (the second
column of Figure 6B), whereas the hDiffModule is related to
diverse organ/system defects (the third column of Figure 6B).
More importantly, genes in the hStemModule were largely linked
to embryonic lethality (the second column of Figure 6B), whereas
genes in the hDiffModule weremostly linked to postnatal lethality

(the third column of Figure 6B). Based on such comparative
analysis of human-mouse homologs, it is deducible that genes
in these two modules are probably crucial for ensuring the
survival and normality of early embryos.

DISCUSSION

Transcriptome profiling of human embryos provides a useful tool
for advancing our understanding of human development and for
stem cell engineering. Using whole-genome expression arrays,
we have profiled human embryos from Carnegie stages 9 to
14, covering the first third of organogenesis (Figure 1 ; Figure S1).
Through in-depth data mining, we identified two major groups of
genes whose expression patterns are consistent with the
dynamic nature of early embryonic cells, i.e., gradually reduced
stemness potential and concomitantly increased diversity of cell
types as development progresses (Figure 2). Integration of multi-
layered information from mouse embryos and hESCs (Figures 3
and 4) allowed us to further divide the group of genes whose
express levels were gradually reduced (clusters 1–3) into a stem-
ness specific subgroup and a differentiation associated sub-
group. Likewise, we were able to identify the group of genes
whose expression levels were gradually increased (clusters 5
and 6) as differentiation-associated genes. Using advanced
molecular network techniques, we were able to propose a puta-
tive molecular network within which a stemness-specific module
and a differentiation-associated module could be defined
(Figures 5 and 6). Although this putative molecular network
remains to be validated through functional analyses, we can
conclude that stemness-specific and differentiation-associated
genes, as identified in this setting, are fundamentally important
in orchestrating early organogenesis of human embryos.
Large-scale transcriptome analysis of this critical develop-

mental window provides a wealth of information for studying
mammalian developmental biology. For instance, mouse is one
of the most widely used model organisms, and its application
has facilitated many aspects of investigation in developmental
biology. However, the extent to which mouse embryos are
similar to human is still unclear. As shown in Figure 3, using
comparative analysis we have found that genes of clusters 1–3
were significantly represented in the defined mouse gastrula-
tion-specific clusters, whereas genes of clusters 5 and 6 were
significantly enriched in the defined mouse organogenesis-
specific clusters. These shared expression patterns and core
functional roles of human-mouse homologs enhance our
understanding of early mammalian organogenesis from an
evolutionary perspective. Using functional annotation database,
we also performed a computational survey looking into the
functions of genes that are in human embryos but not previously
implicated in mouse embryos (Table S3). This preliminary anal-
ysis reveals that most of these genes are likely to be of functional
relevance to organogenesis. Still, it would be very interesting to
undertake the follow-up experimental investigation of genes
unique to human embryos so as to clarify their exact functional
roles in early human organogenesis.
Another important area inwhich our datamay be useful is stem

cell biology. As demonstrated in Figure 4, by comparative
analysis using published consensus pluripotency and differenti-
ation genes from hESCs, followed by the integration of
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information of relevant TFBSs and histone modifications, we
were able to define stemness-specific and differentiation-asso-
ciated genes in our clusters. As hESCs are propagated in vitro,
inevitably with some artifacts, our comparative analysis may
provide cross-validation and thus permit the recognition of
bona fide stemness-specific/differentiation-specific genes
in vivo. As many aspects of stem cell studies to date are based
on in vitro culture, using our data and results as a reference for
these aspects may be particularly valuable. Although we have
analyzed our data intensively and identified a number of impor-
tant features, there is still a lot of information within the data
set that remains to be elucidated, which may provide additional
insights for development biology and stem cell engineering. In
the future, lineage- or organ-specific information about human
embryos at comparable developmental stages could further
refine the results we have obtained fromwhole-embryo analysis.

EXPERIMENTAL PROCEDURES

Human Embryo Collection
The protocol for collecting human embryos was reviewed and approved by

the Ethical Review Board of the Xinhua Hospital, Shanghai, China. The exper-

imental procedures involving human embryos conformed to the National

Ethical Guideline on Human Embryo Research issued by the Committee on

Bioethics, Chinese National Human Genome Center (Southern Headquarter).

Human embryos were obtained from the Department of Obstetrics and

Gynecology at the Xinhua Hospital during clinical drug abortion. All donors

signed informed consent forms (see Supplemental Experimental Procedures).

The age of the embryo was carefully determined according to the standard

protocol (Carlson, 2004) (Figures S1A and S1B).

Gene Expression Profiling and Data Preprocessing
For embryos staged based on the Carnegie criteria (Figures S1A and S1B), the

gene expression profiling was performed using the Affymetrix HG-U133A

Genechip microarrays (Affymetrix, Santa Clara, CA) according to the standard

protocol. Raw expression data were normalized using robust multiarray

averaging (RMA) with quantile normalization. The pairwise Pearson’s correla-

tion coefficient was calculated to show a high degree of reproducibility of the

embryo collection and transcriptome profiles (Figure S1D). The expression

data were imported into the EDGE software (Storey et al., 2005) for detection

of probesets/transcripts exhibiting consistent changes within the triplicates as

well as differential expression across six developmental stages. Under Q-value

thresholds of 0.001, the resulting 5441 transcripts across 18 samples (hORG

expression matrix) were remained as the representative information for the

characterization of human embryos. LIMMA bioconductor library (Gentleman

et al., 2004) was used to identify stage-transitive transcriptome changes.

The criteria for identifying the top significant probesets/transcripts were based

on Benjamini and Hochberg-derived FDR (<0.01).

The Topology-Preserving Identification of Temporal Expression
Patterns
The hORG expression matrix was subjected to the topology-preserving

feature selection through SOM-SVD (Fang et al., 2008; Wang et al., 2009).

The resulting data were then subjected to SOM-based two-phase gene

clustering (Vesanto and Sulkava, 2002; Xiao et al., 2003). Subsequently, six

clusters were identified based on topological relationships. See details in the

Supplemental Experimental Procedures.

Comparisons of Gene Expression Patterns during Early
Organogenesis between Human and Mouse
The transcriptome data of the mouse embryos covering from gastrulation

to organogenesis (E6.25–E9.0, in duplicates) (Mitiku and Baker, 2007) were

obtained from NCBI GEO (GSE9046). Gastrulation clusters (I, VI, and VII),

organogenesis clusters (II, III, and IV) and cell cycle cluster V were then used

for the comparison with clusters 1–3 and clusters 5 and 6 during early human

organogenesis. Mouse genes were transferred by orthology to human

homologs using INPARANOID homology data (Berglund et al., 2008). The

significance of overlaps for each comparison was evaluated using the Fisher’s

exact test.

Multiple-Layer Genomic Data Sources Relevant to hESCs
Genes consistently overexpressed in hESCs (termed as ‘‘consensus hESC

gene list’’) and genes underexpressed (‘‘consensus differentiation gene list’’)

were obtained according to a recent meta-analysis of transcriptomes in

hESCs (Assou et al., 2007). Genome-wide binding information concerning

pluripotency-associated transcription factors POU5F1 (OCT4), NANOG, and

SOX2 was derived from the published study (Boyer et al., 2005), and

genome-wide histone modification sites of H3K4me3 and H3K27me3 from

the published report (Pan et al., 2007). Their comparisons with transcriptome

data of human embryos were carried out using the Fisher’s exact test.

Detection of the Expression-Active Subnetworks
The Cytoscape plug-in jActiveModules (Ideker et al., 2002) was modified

to identify connected subnetworks from a human interaction network. This

overall network includes a compiled human physical interactome (Bader

et al., 2003; Salwinski et al., 2004; Kerrien et al., 2007; Mishra et al., 2006;

Vastrik et al., 2007) and human protein-protein associatome from STRING

(highest confidence; R0.9) (von Mering et al., 2007). The identified subnet-

works contain groups of highly linked genes, most of which show dominant

expression patterns during early human organogenesis (see Supplemental

Experimental Procedures for details). Cerebral (Barsky et al., 2007) was

used to visualize the subnetwork, which is configured based on subcellular

location information of genes. These location data were obtained from

the NCBI GO Cellular Component categories including the ‘‘nucleus’’

(GO:0005634), ‘‘cytoplasm’’ (GO:0005737), ‘‘plasma membrane’’

(GO:0005886), and ‘‘extracellular region’’ (GO:0005576).

Enrichment Analyses Using Various Biological Annotations
Hypergeometric distribution-based enrichment analyses (Wang et al., 2009)

were performed to interpret gene groups of interest, using diverse external

annotated databases including Gene Ontology (Mi et al., 2007), the UCSC

conserved transcription factor binding sites (Miller et al., 2007), the MGI

mammalian phenotype ontology (Bult et al., 2008), and OMIM disorder-gene

association information (Goh et al., 2007). Besides these annotations, gene

groups of interest identified in this study (i.e., hESC_D, DIFF_D, DIFF_I) were

also used for enrichment analyses to examine their relevance to the hORGNet,

the hStemModule, and the hDiffModule. Benjamini and Hochberg-derived

FDR were applied to assess the significance of the enrichments. See details

in the Supplemental Experimental Procedures.

For the enrichment analysis of gene groups (e.g., clusters 1–3 and clusters

5 and 6 in Figure 2C) using MGI mammalian phenotype ontology, we first

retrievedmouse knockout phenotypes together with human-mouse homologs

from the Mouse Genome Informatics (MGI) database (Bult et al., 2008), and

then assessed their associations to mouse knockout phenotypes based on

the hypergeometric distribution followed by multiple hypothesis tests (Wang

et al., 2009). Only those phenotypes statistically enriched within the gene

group were selected. In other words, these genes, once genetically disrupted,

were likely to cause these phenotypes.

ACCESSION NUMBERS

The transcriptome profilings of human embryos during early organogenesis

are deposited in NCBI GEO under accession number GSE18887.
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