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Abstract: Advances in high-throughput technologies to measure genome-scale changes of genes, proteins, and other biomolecular com-
ponents (‘omics’) in complex biological systems have dramatically revolutionized biomedical research. However, the benefits of utilizing 
omics information in drug development have not yet been fully realized. Fortunately, the integration of modern systems biology efforts 
with traditional medicine philosophies, together with integrative bioinformatics, has driven the development of a new drug discovery 
paradigm. Using leukemia as a disease model, therapeutic synergism between drugs and natural products has been investigated by incor-
porating transcriptomics and proteomics data into a network-like understanding. Here, these recent advancements will be discussed in de-
tail, along with perspectives in the field of drug synergism.  
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INTRODUCTION 
 Three scientific breakthroughs have markedly accelerated our 
understanding and treatment of human diseases over the past half-
century. The first is the progressive elucidation of the genetic basis 
of biological information [1], from information storage (DNA) to 
processing (RNA) and to execution (proteins and metabolites). The 
second is the evolution of high-throughput omics technologies [2], 
including genomics, transcriptomics, proteomics, metabolomics, 
etc., which quantify various genome-wide biological information in 
a simultaneous, parallel, and automated manner. The third are vari-
ous conceptual advances in systems biology [3], allowing the inte-
gration of disparate omics data into a network-like understanding of 
the underlying pathogenesis of human diseases. These advances 
hold great promise for the identification and characterization of 
potential drugs, their modes of action, and their molecular targets, 
with the ultimate goal of predictive, preventive, and personalized 
medicine [4].  
 Drug discovery paradigms have experienced a shift from tradi-
tional, folk-medicine practices to target-based chemical screening, 
and now back again to a biology-driven approach [5]. Although 
target-directed drug discovery is effective for screening large librar-
ies of candidate drugs for interactions with well-validated molecu-
lar targets, such a discovery approach has proven disappointing and 
has no guarantee of success. Drug candidates that are screened 
against less well-validated targets do not always survive the re-
quirements of human drug metabolism, known as a “target-rich but 
lead-poor” environment. In contrast, biology-directed drug discov-
ery, which uses principles of systems biology, is driven by insights 
into biological responses. Two factors make a biology-driven drug 
discovery approach practical. First, recent advances in omics tech-
nologies (e.g., pervasive transcriptomics and emerging proteomics) 
have propelled the rapid accumulation of genome-scale databases 
of existing drugs and other bioactive compounds. Integrative bioin-
formatics has facilitated the conversion of this extensive omics data 
into mechanisms of therapeutic action. Second, traditional drug 
discovery paradigms, such as the traditional Chinese medicine 
(TCM) system, provide a long history of successful experiences in 
disease treatment. The TCM system is thought to contain some of 
the most valuable bioactive compounds and combinatory therapeu- 
 
*Address correspondence to these authors at Institute of Health Sciences, 
225 South Chong-Qing Road, Shanghai 200025, China; Tel: 86-21-6385-
2742; Fax: 86-21-6415-2869; Email: jizhang@sibs.ac.cn and Ruijin Hospi-
tal, 197 Ruijin Rd. II, Shanghai 200025, China; Tel: 86-21-64370045; 
Email: kankanwang@shsmu.edu.cn 

tic practices available [6]. According to a recent investigation, natu-
ral products still play the dominant role in modern drug discovery 
[7]. For instance, as many as 75% of the anti-tumor compounds 
discovered over the last 25 years have been natural products or 
natural product–derived mimics, while only rare de novo synthetic 
compounds have been approved as anti-cancer drugs. The TCM 
system contains nearly 100,000 formulae (combinations) of me-
dicinal herbs/minerals (i.e., natural products), thus representing a 
rich source of bioactive compounds. Databases relevant to TCM 
have been developed worldwide; for instance, a database compris-
ing almost 600 Chinese medicinal herbs and minerals was recently 
released in Germany [8].  
 Combinational therapies have proven powerful for combating 
major human diseases. They are necessitated by the complexity of 
disease-perturbed networks, and the occurrence of drug resistance 
and relapse after conventional regimens. For example, increasing 
evidence demonstrates that anti-cancer regimens containing multi-
ple anti-tumor agents with distinct but related mechanisms always 
maximize the therapeutic efficacy while minimizing the adverse 
effects [9]. In this respect, TCM has advocated combinatory thera-
peutic strategies for thousands of years. Based on the symptoms of 
patients and guided by the theories of TCM (e.g., yin-yang, the five 
elements), medicinal herbs and/or minerals are combined to im-
prove clinical efficacy [10]. 
 With the availability of appropriate disease model systems, the 
next task is to explore the pharmacological mechanisms of natural 
products, and more importantly, to evaluate their synergistic thera-
peutic efficiencies with existing U.S. Food and Drug Administra-
tion (FDA)–approved drugs. Significant progress has been made in 
leukemia drug development and evaluation [11, 12]. Leukemia is a 
group of hematological malignancies characterized by uncontrolled 
proliferation, decreased apoptosis, and blocked differentiation. 
Based on the stage at which differentiation is blocked and on the 
hematopoietic lineage, leukemia can be characterized as acute or 
chronic, and lymphoid or myeloid, each of which has a number of 
subtypes. Acute myelogenous leukemia (AML) is a malignant dis-
ease of the bone marrow in which hematopoietic precursors are 
arrested at an early stage of myeloid development. According to the 
French-American-British (FAB) classification [13], AML can be 
divided into M0-M7 subtypes. The main advantage of using AML 
as a disease model for exploring therapeutic synergism is its sub-
type-specific sensitivity to various combinations of drugs and natu-
ral products, with responses that are prominently reflected at the 
gene expression level. Due to worldwide effort on AML treatment, 
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several of its subtypes have being turned from being highly fatal 
into highly curable [14]. 
 Achieving effective and efficient drug development schemes 
requires the cooperation of multiple scientific disciplines, including 
pharmacology, genomics, transcriptomics, proteomics, and bioin-
formatics, and may also require the use of the TCM combinatory 
philosophy (Fig. 1A). Accordingly, we will first address the current 
state of high-throughput transcriptomic and proteomic technologies 
relevant to drug studies. We will then discuss omics data mining 
and the challenges associated with the integration of heterogeneous 
omics data. The significance of high-throughput technologies in 
drug-related fields will be summarized based on recent applications 
of gene expression profiling in drug development. Next, we will 
focus on a detailed case involving transcriptome and proteome 
analyses of drug interactions with natural products, as represented 
by a synergistic therapy paradigm using all-trans retinoic acid 
(ATRA) and arsenic trioxide (ATO) in the treatment of acute pro-
myelocytic leukemia (APL). Additional experiences with other 
hematological malignancies will also be discussed. Finally, we will 
close our discussion with our perspectives for the field of drug syn-
ergism. 

PERVASIVE TRANSCRIPTOMICS AND EMERGING PRO-
TEOMICS 
 The ability to analyze the genome-wide expression of genes has 
revolutionized biomedical research. Transcriptome profiling using 
microarrays was among the most successful high-throughput omics 
technologies [15, 16], and has been applied as pervasively as have 
RT-PCR and Western blots. Superior to these traditional techniques 
in terms of data amounts and acquisition, microarray technology 
permits the simultaneous and systematic monitoring of genome-
wide gene expression levels. The two major microarray technology 
platforms, spotted arrays and oligonucleotide chips, differ in array 
fabrication and dye selection. In a typical microarray using a spot-
ted array, tens of thousands of probes (cDNA clones) are roboti-
cally spotted onto a glass slide. Two different targets (mRNA sam-
ples) are then reverse transcribed into cDNA and simultaneously 
labeled with different fluorescent dyes (e.g., Cy3 and Cy5) for hy-
bridization. After excitation by the appropriate wavelengths, the 
intensities of Cy3 and Cy5 fluorescence in each spot indicate the 
quantified levels of the targets. The normalized intensity ratio gives 
an estimate of the relative amounts of the targets hybridized to the 
same cDNA probe. As for oligonucleotide chips, long-oligonucleo-
tide microarrays are similar to spotted arrays except for the ge-
nomic-derived probes used, while short-oligonucleotide microar-
rays involve high-density probe pairs (each consisting of a perfect-
match and a mismatch probe) and only one target (mRNA sample) 
for hybridization. As a powerful high-throughput technology, the 
true potential of microarray technology has evolved beyond gene 
expression analysis [17]. 
 Transcriptome profiles alone do not reflect all biological proc-
esses, as many biological functions are affected at the post-
transcriptional (e.g., pre-mRNA splicing and export, microRNA 
regulation), protein synthesis, post-translational (e.g., protein loca-
tion, modification, and protein-protein interactions), and/or metabo-
lite levels. Each level is thought to be physically and functionally 
linked to the whole process, and subject to feedback controls by the 
other levels [18]. Therefore, other omics technologies, such as 
chromatin immunoprecipitation coupled promoter microarrays 
(ChIP-Chip) and ChIPSeq technologies [19, 20], microRNA [21], 
proteomic [22], and metabolomic profiles [23], and high-throughput 
two-hybrid screening [24], are needed to complete our knowledge 
of gene regulation. 
 Since proteins are the major executer of biological information, 
genome-wide analysis at the protein level provides a direct reflec-
tion of gene expression. Proteomics is defined as the genome-scale 
analysis of protein abundance, localization, modification, structure, 

and activity. There are several methods for proteomic profiling, 
including two-dimensional gel electrophoresis (2D) and mass spec-
trometry (MS), and liquid chromatography (LC) coupled with MS 
[25]. In many proteomics studies, 2D serves as the basis for high-
resolution separation of the protein mixture [26]. It resolves protein 
mixtures into distinct spots by mass and charge, and then quantifies 
the protein intensity from the staining of the separated spots. De-
coupled from separation and quantification in 2D, the quantified gel 
spots are subsequently identified by MS. Alternatively, in LC-MS, 
also known as gel-free proteomic profiling, peptide fractionation 
and quantification by high-performance LC is coupled with auto-
mated MS [27]. The LC-MS method improves the detection cover-
age and avoids the bias of 2D-MS towards soluble, high-abundance 
proteins, representing a powerful proteomics technology for detect-
ing protein abundance, sub-cellular location, and post-translational 
states (e.g., phosphoproteomics [28]). However, due to the com-
plexity of the proteome and current technical limitations [29], pro-
teome characterization by these emerging technologies still lags 
behind transcriptome characterization.  

TRANSCRIPTOMIC DATA MINING AND BEYOND 
 The conversion of the massive amounts of omics data into 
meaningful biological knowledge can bottleneck the application 
potentials of the high-throughput technologies. Most such efforts 
primarily use microarray technologies to handle transcriptomic 
data. In a static microarray design, the arrays are used irrespective 
of time to capture a snapshot of the expression profile. In contrast, 
temporal microarrays are collected over a time-series to measure 
the dynamic process of gene expression.  
 Data generated from either microarray design can be tabulated 
in a matrix form, i.e., a gene expression matrix of expression levels 
(rows) under different experimental conditions (columns). How-
ever, a number of problems are inherent in these data, including a 
low signal/noise ratio, large numbers of missing values, and small 
sample size vs. huge gene volume. Various data mining methods 
have evolved, which range from simple fold-change approaches 
[30] to statistical inference based on differentially-expressed gene 
selection (e.g., SAM [31], QVALUE [32], EDGE [33]), from the 
commonly applied hierarchical clustering [34] to artificial intelli-
gence algorithms based on a self-organizing map (SOM) for gene 
clustering and visualization [35, 36], and from functional enrich-
ment analyses [37, 38] to data integration–based network recon-
struction [39, 40]. Since temporal microarray experiments charac-
terizing the genome-wide dynamic regulation of gene expression 
can be more abundant in information relevant to real biological 
processes (e.g., responses of cancer cells to drug treatment), the 
development of computational methodologies specifically designed 
for time-series gene expression data will be of great interest.  
 Accordingly, we have proposed a novel framework for time-
series gene expression data mining and visualization. Briefly, gene 
expression data are first subjected to robust gene selection that inte-
grates SOM for data pre-processing [41] and singular value decom-
position (SVD) for pattern recognition [42, 43]. Using multiple 
testing procedures for false-discovery rate estimation [44], our hy-
brid SOM-SVD bases the entire gene selection process on statistical 
inference, allowing the maximum retention of information inherent 
to the primary microarray data. For gene clustering and visualiza-
tion, the selected gene expression data are analyzed by component 
plane presentation (CPP)-integrated SOM [36]. As demonstrated in 
our previous publications [45-47], each presentation illustrates a 
treatment-specific transcriptome (or proteome) map and permits the 
direct comparison of expression changes within/between different 
treatment series. Our approach results in much more accurate and 
more complete gene clustering than traditional approaches. Fur-
thermore, it facilitates the in-depth mining of biological informa-
tion, such as hypergeometric distribution–based enrichment analy-
ses of biological themes. Annotated biological themes are collected 
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in various databases; for example, Gene Ontology [48] is a database 
of gene annotations where a controlled vocabulary describes genes 
in terms of biological processes, molecular functions, and cellular 
localizations. Gene Ontology is an ideal resource for functional 
enrichment analyses, which can also be applied to databases of 
pathway-relevant genes (e.g., KEGG [49], GenMAPP [50], and 
Biocarta), transcription factor–targeted genes (e.g., TRANSFAC 
[51] and JASPAR [52]), or microRNA target genes (e.g., miRBase 
[53]). The power of systematic enrichment analyses has also been 
demonstrated by the interpretation of large-scale static cancer tran-
scriptome [54-58]. These studies revealed that the gene-expression 
signatures of specific cancer types/subtypes are specifically en-
riched with functional modules and regulatory profiles, and there-
fore decode distinct biological processes and regulatory programs. 
As the accuracy and coverage of biological theme databases im-
proves, integrative enrichment analyses will be able to extract 
greater biological insights from time-series gene expression data 
and collective cancer microarray databases (e.g., NCBI GEO [59], 
ArrayExpress [60], Oncomine [61], and Stanford SMD [62]). Fur-
thermore, the principles of data mining observed with transcrip-
tomic data are also applicable to other large-scale omics data (e.g., 
proteomics).  

CHALLENGES OF TRANSCRIPTOME AND PROTEOME 
INTEGRATION 
 While single omic data mining continuously improves, compar-
ing data from different high-throughput omics platforms remains 
challenging, as indicated by the integration of transcriptomic and 
proteomic analyses. For instance, pair-wise correlations between 
mRNA transcript and protein levels are quite weak, which may 
result from technical limitations and/or biological factors. Informa-
tion coverage by proteomic technologies is rather narrow, so that 
focusing only on overlaps results in a high false-negative rate; the 
correlation is relatively stronger as proteomic coverage increases, 
such as with the use of gel-free proteomic profiling [63]. Differen-
tial lifetime between mRNA and protein further complicates their 
relationships, necessitating the characterization of temporal changes 
in transcript and protein expression levels.  
 However, the primary challenge associated with integrating 
transcriptomic and proteomic analyses is to distinguish true mRNA-
protein concordance/discordance from those falsely discovered. 
While a high concordance between a transcriptome and a proteome 
can increase the confidence, the true discordance is of greater scien-
tific interest for revealing post-transcriptional regulatory mecha-
nisms. The use of the multi-dimensional visualization system of 
CPP-SOM allows the comparison of transcriptomic and proteomic 
data in a straightforward, easy-to-interpret manner [46]. Finally, 
integration at the functional or higher network level is more infor-
mative than at the transcriptome-proteome level, and enables a 
greater understanding of the relationships between the transcrip-
tome and proteome. Substantial agreement in functional enrichment 
has been revealed between the transcriptome and proteome levels 
[64], highlighting the value of expanding mere correlation analyses 
to a systemic level of integration.  

SIGNIFICANCE OF GENE EXPRESSION PROFILING IN 
DRUG DEVELOPMENT 
 Gene expression profiles have successfully classified disease 
states [65] and predicted disease survival [66], metastatic progres-
sion [67], and treatment response [68-70]. Another promising ap-
plication for such profiles is in drug discovery [71]. General strate-
gies based on biological response profiling represent a more practi-
cal approach for drug discovery than purely target-based ap-
proaches [5]. High-throughput gene expression profiling holds great 
promise for facilitating this process.  
 The gene expression–based strategy was first demonstrated in 
screening candidate compounds capable of inducing leukemia dif-

ferentiation [72]. Using a gene expression–based high-throughput 
screening (GE-HTS) approach, Stegmaier et al. established the 
drug-specific gene expression signature of a therapeutic state in 
AML cells (i.e., differentiation). They then screened a library of 
1,739 compounds for their ability to induce the target phenotype, 
and validated their findings with additional assays. Eight com-
pounds were identified that reproducibly triggered the differentia-
tion signature, including an epidermal growth factor receptor 
(EGFR) kinase inhibitor. To evaluate EGFR inhibitors as a poten-
tial differentiation therapy for leukemia patients, they tested the 
preclinical efficacy of the FDA-approved EGFR inhibitor gefitinib. 
Gefitinib induced myeloid differentiation in AML cell lines and in 
primary patient-derived AML blasts at pharmacological concentra-
tions [73]. Designed for the systematic discovery of compounds 
capable of modulating biological processes, the GE-HTS strategy is 
solely based on the gene expression signatures of the compounds 
and does not require any prior knowledge of key targets in the bio-
logical process of interest.  
 The Connectivity Map (CMap) approach applies the gene ex-
pression–based strategy to the systematic discovery of functional 
connections between human diseases and potential drugs [74]. 
Lamb et al. created a reference database of gene expression signa-
tures for cultured human cancer cell lines treated with more than 
160 drugs or other bioactive compounds. They then used pattern-
matching software to classify and compare the various signatures, 
and more importantly, to query the referenced database with users’ 
own gene-expression profiles of interest. CMap showed promise in 
identifying: (1) additional compounds of similar action but different 
chemical structure (when querying with a drug of a known mecha-
nism of action), (2) potential mechanisms of action (when querying 
with an uncharacterized compound), and (3) potential disease 
therapeutics (when querying with a disease state–derived profile, 
e.g., drug resistant vs. sensitive). The third possibility assumes that 
compounds/drugs that reverse the gene expression profile of the 
disease state could serve as new therapeutic agents for that disease. 
 To date, several applications of gene expression–based strate-
gies (e.g., GE-HTS and CMap) have been successfully reported for 
screening modulators of various biological processes. Based on the 
gene expression signature of glucocorticoid (GC) sensitiv-
ity/resistance in acute lymphoblastic leukemia, Wei et al. identified 
the mTOR inhibitor rapamycin as a modulator of GC resistance, 
indicating the rapamycin/GC combination in treating lymphoid 
malignancies [75]. Based on the defined gene expression signature 
of androgen receptor (AR) signaling in prostate cancer, Hieronymus 
et al. screened celestrol and gedunin as novel inhibitors for AR 
signaling through modulation of the HSP90 pathway [76]. To iden-
tify candidate drugs of previously intractable tumor-associated on-
coproteins (e.g., EWS/FLI in Ewing sarcoma) with traditional 
screening approaches, Stegmaier et al. utilized the gene expression 
signature of EWS/FLI inactivation to screen a small molecule li-
brary enriched in FDA-approved drugs [77]. They identified cyto-
sine arabinoside (Ara-C) as the top-scoring EWS/FLI modulator, 
thereby demonstrating that the GE-HTS of existing drugs represents 
a powerful discovery platform for screening oncoprotein-
modulating candidate drugs in a more clinical setting. Similarly, to 
identify drugs acting through the transcriptional co-activator PGC-
1alpha, Arany et al. performed gene expression–based screening 
and identified microtubule and protein synthesis inhibitors as PGC-
1alpha inducers [78]. A recent study demonstrated that GE-HTS 
may serve as a general approach to discover modulators of any 
signaling pathway of interest [79]. Another recent study extended 
the CMap principle to allow the use of any publicly-available gene 
expression database (e.g., GEO), and discovered two previously 
unknown compounds for eradicating leukemia stem cells (LSCs) 
[80].  
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TRANSCRIPTOMICS AND PROTEOMICS OF ATRA/ATO 
COMBINATION THERAPY IN APL AS A PARADIGM FOR 
SYNERGISTIC THERAPY 
The Advent of the ATRA/ATO Combination in APL Treatment  
 Formerly considered to be the most fatal but now the most cur-
able malignancy, APL is the M3 subtype of AML according to the 
FAB classification. Morphologically, APL is characterized by the 
accumulation of immature promyelocytes in the bone marrow. APL 
exhibits a balanced reciprocal chromosome translocation t(15,17) 
[81], which results in fusion between the promyelocytic leukemia 
(PML) and the retinoic acid receptor alpha (RARA) genes. Since the 
discovery of the ATRA/ATO combined therapy, the APL model 
has provided a striking paradigm of synergistic therapy [82, 83].  
 The vitamin A (retinol) derivative ATRA represents the typical 
class of differentiation-inducing anti-leukemia drugs. Rather than 
inhibiting or killing proliferating malignant cells by chemotherapy 
or radiotherapy, malignancy reversion by inducing cellular differen-
tiation is an alternative treatment approach for cancer cells [84]. 
Zhen-Yi Wang and his team from the Shanghai Institute of Hema-
tology (SIH) introduced ATRA as a remission-inducing treatment 
for APL, which marked the dawn of differentiation-induced cancer 
therapies [85] and soon became a routine treatment against APL 
[86-89]. Although ATRA-based differentiation therapy was un-
precedented in its ability to improve the complete remission rate 
and five-year disease-free survival rate, APL patients refractory to 
ATRA remained common. Alternative bioactive compounds were 
therefore urgently needed to overcome the limitations of ATRA in 
relapsed or refractory APL patients. The TCM system, with its 
combinatory therapeutic strategies and large number of recorded 
natural products (i.e., medicinal herbs and minerals), was ap-
proached to meet this need. Arsenic, a naturally occurring toxic 
metalloid in organic and inorganic forms, is frequently used in 
TCM to cure various diseases, with the ancient philosophy of tam-
ing an evil with a toxic agent [90]. At the end of the past century, 
Chinese scientists first reported the effective use of arsenic com-
pounds in treating APL, where it induces apoptosis at high concen-
trations and partial differentiation at low concentrations. Controlled 
clinical trials using white arsenic (ATO, As2O3) showed that ATO 
is an effective and relatively safe drug for APL patients refractory 
to ATRA and conventional chemotherapy [91-93]. In September 
2000, ATO (Trisenox™) was approved for the treatment of re-
lapsed or refractory APL by FDA. In addition, other inorganic 
forms of arsenic, including red arsenic (realgar, As4S4) and yellow 
arsenic (orpiment, As2S3), were also reportedly effective in APL 
treatment [94].  
 Alone, ATRA or ATO makes a remarkable contribution to APL 
treatment. It is therefore logical to speculate that synergistic therapy 
could be attained if a combination of the two drugs were used. Us-
ing an in vitro cell-line model and an in vivo mouse model, several 
studies showed that this combination accelerated disease regression 
and prolonged survival [95-97]. Furthermore, a clinical trial with 
the ATRA/ATO combination demonstrated superiority in treating 
APL over mono-therapy, in terms of the quality of disease-free 
survival [82, 83]. However, to be useful, clinically effective dual 
therapy requires an understanding of the underlying molecular 
mechanisms accounting for the synergism between the differentia-
tion-inducing drug and the TCM-derived natural product.  

Synergistic Mechanism of ATRA/ATO Determined by Tran-
scriptomics and Proteomics  
 Using a reductionist approach, i.e., individually studying the 
function of each gene/protein, researchers obtained essential infor-
mation on the actions of ATRA and ATO in APL therapy. PML-
RARA was identified as the primary APL leukemogenesis, and 
ATRA and ATO were found to directly target the RARA and PML 
moieties, respectively [98]. However, many fundamental questions 
remain to be elucidated concerning the actions of these anti-cancer 

agents, particularly with respect to the dynamic changes they evoke, 
their target properties, and their underlying synergism. Since cellu-
lar drug response systems are thought to be complex networks of 
interconnected genes/proteins, the behavior of the drug response 
network should therefore be studied as a whole.  
 Unlike a single omics approach [99, 100], we performed a 
comprehensive analysis of ATRA, ATO, and ATRA/ATO treat-
ments of the APL cell line NB4 using a systems biology approach 
that integrated transcriptomics, proteomics, and computational bi-
ology with robust data mining tools [46]. By comparing transcrip-
tomic and proteomic data by CPP-SOM (Fig. 1B), we identified 
three novel features that indicated coordinated networks with a 
temporal-spatial relationships and reflected the synergistic effects 
of ATRA and ATO (left panel of Fig. 1C).  
 First, the vertical (cross-platform) view of the transcriptome-
proteome comparison revealed distinct target properties for ATRA 
and ATO, which exerted their effects mainly at the transcriptome 
and proteome levels, respectively. This is consistent with the obser-
vation that the transcriptomic and proteomic data of ATRA/ATO 
combination therapy are generally complementary rather than du-
plicative. ATRA-induced differentiation mainly involved nuclear 
receptor–mediated transcriptional remodeling, with modulation of a 
large number of genes involved in the initiation and promotion of 
granulocytic differentiation, such as the granulopoiesis-associated 
transcription factors C/EBPs and bHLHs, and cytokines/cytokine 
receptors and their corresponding downstream effectors. In contrast, 
ATO enhanced post-transcriptional and translational modifications, 
modulating proteins involved in metabolism, nuclear and cytoplas-
mic structures, and translational machinery. These results provide 
the molecular foundation at a global scale for elucidating the syner-
gism between ATRA and ATO. 
 Second, the horizontal (within-platform) comparison of the 
transcriptome/proteome level revealed the synergistic target proper-
ties of ATRA and ATO. At the transcriptome level, these properties 
were highlighted by an enhanced ubiquitin-proteasome system 
(UPS) and by the repression of events related to various chromo-
somal translocations in human malignancies. ATRA specifically 
up-regulated genes encoding components of the typical immuno-
proteasome, whereas ATO significantly induced those encoding 
subunits of the conventional UPS. Enhanced UPS can account for 
degradation of PML-RARA oncoprotein, indicating that this degra-
dation by ATRA or ATO is through the same pathways with dis-
tinct mechanisms. ATRA targets the RARA moiety and recruits the 
19S proteasome regulatory complex, while ATO targets the PML 
moiety and recruits the 11S proteasome activator, both of which 
lead to PML-RARA degradation [101]. Enhanced UPS is also con-
sistent with data suggesting that the extent of PML-RARA degrada-
tion is positively associated with better recovery from APL [82]. 
Translocation-related genes were synergistically down-regulated, 
suggesting that ATRA/ATO co-treatment is more effective in 
eliminating oncogenic properties and reducing cell survival poten-
tials than treatment by ATRA or ATO alone. At the proteome level, 
synergistically-targeted properties were characterized by inhibited 
translational factors. Since translational regulation helps coordinate 
tumor proliferation, the inhibition of translational factors suggests 
that tumor growth arrest is favored in co-treated APL cells.  
 Third, the temporal view of the information gathered at both the 
transcriptome and proteome levels revealed that the target proper-
ties of ATRA and ATO were integrated into a functional network, 
thereby contributing to the underlying ATRA/ATO synergistic 
effect on APL. At the early stage of co-treatment (0-6 h), 
ATRA/ATO modulated nuclear receptor signaling molecules and 
transcription factors/cofactors associated with myeloid-specific 
gene expression. At the intermediate stage (12-24 h), ATRA/ATO 
regulation of genes/proteins seemed to be amplifying retinoic acid 
signaling, as indicated by its effects on the interferon, calcium, 
cAMP/PKA, and MAPK/JNK/p38 pathways. Another prominent 
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event occurring at this stage was the enhanced activation of UPS, 
which might facilitate the PML-RARA degradation. At the late 
stage (48-72 h) of co-treatment, the expression of the differentiation 
markers and functional molecules reached a maximum, while 
genes/proteins promoting cell cycle or enhancing cell proliferation 
were significantly repressed. As the cells approached terminal dif-
ferentiation, the apoptotic potential was gradually restored, as indi-
cated by the recovery of the nuclear body and the up-regulation of 
the caspase cascades.  

Lessons Learned from Using an Integrative Omics Approach to 
Understand Synergism 
 The successful application of transcriptome and proteome 
analyses to understanding the synergistic action of ATRA and ATO 
in APL justifies the power of integrative omics approaches in char-
acterizing synergism. Genome-wide assessment represents an effi-
cient strategy for studying the whole effects of multi-agent combi-
nation therapy. Furthermore, the integration of two or more ge-
nome-wide platforms can overcome the intrinsic technological and 
biological limitations of each individual approach. While routine 
transcriptomic profiling allows the monitoring of transcriptional 
regulation in response to drug treatment, emerging proteomic pro-
filing also provides insights into gene translation and post-transla-
tional modifications. Promisingly, recent evidence suggests that 
microRNA expression profiling contributes to post-transcriptional 
regulation for the clinical response of APL to ATRA [102]. Captur-
ing the temporal changes in gene/protein expression makes the 
integration of such multi-layer information feasible and reliable. 
Finally, a functional or higher level integration may reveal addi-
tional mode-of-action information, as exemplified by the function-
ally-related yet distinct ATRA- and ATO-induced UPS genes. Such 
integration is particularly useful when gene-protein matching is 
difficult. For example, performing individual functional enrichment 
analyses at the transcriptome or proteome level may reveal biologi-
cal functions shared by genes and proteins. These lessons may 
benefit other APL combination therapies, such as retinoic acid plus 
cAMP, arsenic plus cAMP, or retinoic acid plus the HDAC inhibi-
tor [98].  
 Several lessons were also learned with respect to the synergistic 
action of the drugs and the natural products. First, the interactions 
of combination treatment regimens can be more complex than pre-
viously recognized. Second, these agents interact in a functional 
manner to amplify the therapeutic efficacies of each agent. This can 
be achieved through physically binding to the same molecular de-
fects (e.g., PML-RARA), targeting the same pathways with distinct 
mechanisms (e.g., ATRA and ATO both targeted UPS, but via re-
cruitment of different proteasomes), or targeting multiple pathways 
at various levels (e.g., transcriptome and proteome) to achieve the 
common goal of therapeutic synergism. Consistent with the obser-
vation that multiple agents can hit multiple targets to exert synergis-
tic therapeutic efficacies, TCM has long advocated combination 
therapies where one agent represents the principal element and the 
other agents assist the effects or facilitate the delivery of the princi-
pal element. Recent studies have shown that ATRA assists ATO 
uptake through modulating the transmembrane arsenic channel 
aquaglyceroporin 9 [103], adding another aspect to the synergistic 
therapeutic efficacy. Finally, these studies showed us that efforts to 
identify of all the possible components of the interactions between 
drugs and/or natural products should be taken as a priority to direct 
combinations of therapeutics. 

IMATINIB/ATO COMBINATION THERAPY FOR CHRO-
NIC MYELOGENOUS LEUKEMIA (CML) 
 The transcriptome and proteome analyses of ATRA/ATO syn-
ergism in APL led us to use functional genomics to understand 
combination therapy synergism in other hematologic malignancies. 
Specifically, we analyzed imatinib/ATO combination therapy in the 

treatment of CML. Imatinib is a specifically-designed molecule 
(tailored drug) for CML (Gleevec™, approved by FDA in May 
2001), and was one of the first therapeutic strategies to target mole-
cules critical to the pathogenesis of a human malignancy. In con-
trast, ATO has long been used as an ancient remedy for CML, with 
known efficacy [104, 105]. Imatinib/ATO combination therapy has 
shown promising synergistic potential in inducing the apoptosis of 
CML cells [106, 107].  
 To understand the mechanisms underlying this synergism, we 
obtained a time-series of the transcriptome changes of the CML cell 
line K562 in response to treatment with imatinib, ATO, or 
imatinib/ATO. Numerous response features displayed temporal-
spatial relationships, indicating apoptotic synergy at the transcrip-
tome level [47] (right panel of Fig. 1C). Compared with mono-
therapy, combination therapy led to more profound or earlier sup-
pression of genes involved in cell cycle, BCR-ABL oncogenic sig-
nal transduction, anti-apoptotic/survival PI3K/AKT pathways, RNA 
processing, and/or protein synthesis. This synergistic suppression 
may augment pro-apoptotic/apoptotic activities compared to mono-
treatment. Indeed, data further suggest that imatinib may induce the 
intrinsic pathway of cell apoptosis, ATO may possibly induce the 
ER stress mediated pathway of cell apoptosis and the combination 
of these two agents may activate the intrinsic, extrinsic and ER 
stress mediated pathway of cell apoptosis, resulting in a more effec-
tive and efficient apoptosis in CML. 
 Although the expression levels of a wider variety of proteins 
can be determined through proteomic profiling, it is fairly straight-
forward to focus on protein levels of those involved in triple apop-
totic pathways to validate synergistic mechanisms revealed by tran-
scriptome analysis. We therefore used a series of protein biochem-
istry assays to identify the levels of caspases and markers involved 
in the extrinsic, intrinsic, and ER stress-mediated apoptotic path-
ways. Activity assays and Western blot analysis indicated that the 
expression and activity of CASP8, a key factor in the extrinsic 
apoptotic pathway, was markedly enhanced in imatinib/ATO co-
treated samples. Similarly, Western blotting analyses of mitochon-
dria-associated intrinsic apoptotic caspase cascades revealed the 
expression of strongly activated forms of CASP9, CASP3, and 
PARP in co-treated samples. The protein levels of the ER stress 
markers GRP78/HSPA5 and DDIT3 were more prominently ex-
pressed in co-treated samples and correlated well with mRNA lev-
els. Taken together, these protein biochemical data provide addi-
tional evidence for the involvement of the three apoptotic pathways 
in imatinib/ATO co-treated K562 cells. We also found that the fresh 
bone marrow cells from the CML patients further supported the 
notion that imatinib/ATO combination therapy can effectively and 
efficiently induce more programmed cell death through the coordi-
nated engagement of these apoptotic pathways.  
 The synergism revealed by transcriptomics can be immediately 
validated by small-scale techniques routinely used in protein bio-
chemistry studies, and can be further confirmed in vivo. Ongoing 
research, from data-driven discovery to hypothesis-driven valida-
tion, allows us to gain detailed information on the mechanisms 
underlying synergism in an efficient, effective, and reasoned 
framework. Furthermore, the knowledge obtained in such research 
can assist us in eventually developing more sophisticated protocols 
for the treatment of leukemia and other human malignancies. In 
particular, the use of combination therapies that mechanistically 
target distinct apoptotic pathways can result in the synergistic in-
duction of apoptosis in malignant cells.  

CONCLUSIONS AND PERSPECTIVES 
 Understanding the complexity and dynamics of combination 
therapy requires data- and hypothesis-driven, quantitative, high-
throughput measurements of genes and proteins at both spatial and 
temporal levels. Using transcriptomics, proteomics, computational 
biology, protein biochemistry, and routine validation techniques,
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Fig. (1). Transcriptome and proteome analyses of the synergism between drugs and/or natural products. (A) Framework of high-throughput omics technologies 
in achieving effective and efficient drug development. Cultured human cancer cells (e.g., leukemia cells) are exposed to a single or a combination of agents, 
including existing FDA-approved drugs and TCM-derived natural products. The treated samples are subjected to diverse omics analyses in a simultaneous, 
parallel, automated manner, such as spotted arrays or oligonucleotide chips for transcriptome profiling, and 2D-MS or LC-MS for proteomic profiling. Gene-
expression profiles are submitted to collective omics databases. These data warehouses serve as the hub for data mining, ranging from a typical pipeline of 
single omic data mining (e.g., transcriptomic data analysis procedures, such as gene selection, gene clustering, and visualization, and enrichment analysis of 
biological themes), to multiple omics data integration (e.g., integrated transcriptomic-proteomic analyses), and to GE-HTS and CMap for drug discovery. 
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(B) CPP-SOM illustrates the dynamic changes in the transcriptome and proteome of NB4 leukemia cells treated with ATRA, ATO, or ATRA/ATO. Each map 
presentation illustrates treatment-specific transcriptome (or proteome) changes, in which up- (red), down- (blue), and moderately-regulated (yellow and green) 
genes are well delineated. The color bar represents the expression level (log ratio with base 2). (C) Ideogram illustrating the temporal-spatial relationships 
among major molecular events occurring during ATRA/ATO-induced differentiation/apoptosis in APL (left panel) or during imatinib/ATO-induced apoptosis 
in CML (right panel). Molecular events enriched with up-regulated genes/proteins are marked in red, whereas those enriched with down-regulated 
genes/proteins are marked in blue. Synergistically-regulated events are highlighted with yellow background. Events occurring at the early, intermediate, and 
late stages are outlined by cyan, pink, and green dotted lines, respectively. Also indicated as necessary are the intracellular compartments, including the nu-
cleus, ER, and mitochondria (MT). (D) Synergistic therapeutic actions of drug/natural product combinations. Drug synergism can be achieved by targeting the 
same pathway (e.g., ATRA/ATO combination in APL) or distinct pathways (e.g., imatinib/ATO combination in CML). Synergism can also be achieved by 
targeting different subpopulations of cancer cells in a hierarchical fashion, i.e., one agent targets cancer cells, while the other targets cancer stem cells that have 
limitless self-renewal capacities and the potential to differentiate into multiple lineages of cancer cells.  
 
we performed a systems analysis of ATRA/ATO-induced differen-
tiation/apoptosis in APL and imatinib/ATO -induced apoptosis in 
CML. These studies provide enormous insights into the molecular 
networks underlying differentiation-induced and apoptosis-induced 
therapies, and into combination therapy synergism. Our results 
justify the power of an integrative approach in drug discovery, and 
dramatically expand our understanding of the components of syner-
gism between drugs and/or natural products.  
 The continued application of high-throughput technologies and 
the broad evaluation of known drugs, and uncharacterized natural 
products from TCM will be abundantly useful in cancer stem cell 
(CSC) research. In the past decade, accumulating knowledge in 
CSC biology has tremendously impacted our understanding of the 
genesis of human malignancy and the development of CSC-targeted 
therapies [108-113]. In leukemia, drug resistance and relapse after 
conventional chemotherapy are largely thought to be attributed to 
the persistence of surviving LSCs, which are unresponsive to che-
motherapeutics such as cytosine arabinoside that mainly kill more 
mature dividing leukemic blasts [114-116]. There is an urgent need 
for therapeutic strategies that specifically ablate LSCs while sparing 
normal hematopoietic stem cells (HSCs), not only for overcoming 
resistance and relapse, but also for preventing and ensuring com-
plete disease remission. Thus, CSC-specific targeted therapies are a 
promising approach for designing, or identifying therapeutic strate-
gies and agents, as evidenced in emerging LSC-specific and LSC-
related combination therapies.  
 Experimental and clinical data have shown that the LSC popu-
lations display unique molecular characteristics that are distinct 
from their normal counterparts [114], enabling the design of drugs 
specifically targeting LSCs. For example, NF- B is constitutively 
active in most AML LSCs but not in normal HSCs [117]; therefore, 
drugs that inhibit NF- B-mediated survival signals, such as the 
proteasome inhibitor MG-132 and the natural bioactive product 
parthenolide (PTL), may induce selective apoptosis in AML stem 
cells [118]. Similar efforts are being made to identify attractive 
therapeutic targets of LSCs and to develop targeted drugs, including 
rapamycin for the PI3K/Akt/mTOR pathway in AML [119, 120], a 
BCR-ABL tyrosine kinase inhibitor (e.g., imatinib, dasatinib, or 
nilotinib) combined with myeloid cytokines in CML [121], and 
antibodies against LSC cell-surface molecules combined with con-
ventional chemotherapy in AML [122-126].  
 The LSC-specific and LSC-related combination therapies will 
greatly benefit from known FDA-approved drugs and uncharacter-
ized natural products in TCM. The synergism of combined thera-
peutic agents can be achieved by targeting either the same and/or 
distinct pathways on the same and/or different cancer cell subpopu-
lations, or by combination of these mechanisms (Fig. 1D). Ad-
vances in transcriptomics, proteomics, and other functional genom-
ics, along with integrative bioinformatics, hold significant promise 
in the identification and understanding of the underlying synergistic 
components in combination therapeutics.  
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ABBREVIATIONS 
2D-MS = Two-dimensional gel electrophoresis and mass 

spectrometry 
AML = Acute myelogenous leukemia 
APL = Acute promyelocytic leukemia 
Ara-C = Cytosine arabinoside 
ATO = Arsenic trioxide 
ATRA = All-trans retinoic acid 
ChIP-Chip = Chromatin immunoprecipitation coupled mi-

croarrays 
CMap = Connectivity Map 
CML = Chronic myelogenous leukemia 
CPP-SOM = Component plane presentation integrated self-

organizing map 
CSCs = Cancer stem cells 
ER = Endoplasmic reticulum 
FDA = U.S. Food and Drug Administration 
GE-HTS = Gene expression-based high-throughput screen-

ing 
HSCs = hematopoietic stem cells 
LC-MS = Liquid chromatography coupled with mass spec-

trometry 
LSCs = Leukemia stem cells 
PML-RARA = The fusion between the promyelocytic leukemia 

gene and retinoic acid receptor alpha 
RT-PCR = Real-time reverse transcription-polymerase chain 

reaction 
SVD = Singular value decomposition 
TCM = Traditional Chinese medicine 
UPS = Ubiquitin-proteasome system.  
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