
The transcriptional network that controls growth arrest
and differentiation in a human myeloid leukemia cell line
The FANTOM Consortium and the Riken Omics Science Center1

Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage
in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression
dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities
and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the
regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and
negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is
both necessary and sufficient to drive the differentiation process.

Development, organogenesis and homeostasis in multicellular
systems involve the proliferation of precursor cells, followed by
growth arrest and the acquisition of a differentiated cellular
phenotype. Upon stimulation with phorbol myristate acetate
(PMA), human THP-1 myelomonocytic leukemia cells cease pro-
liferation, become adherent and differentiate into a mature mono-
cyte- and macrophage-like phenotype1,2. This study aimed to
understand the transcriptional network underlying growth arrest
and differentiation in mammalian cells using THP-1 cells as a
model system.

Most existing methods for regulatory network reconstruction
collect genes into coexpressed clusters and associate these clusters
with regulatory motifs or pathways (for example, see refs. 3–5).
Alternatively, one can model the expression patterns of all genes
explicitly in terms of predicted regulatory sites in promoters and the
post-translational activities of their cognate transcription factors
(TFs)6–8. Although this approach is challenging in complex eukaryotic
genomes owing to large noncoding regions, ChIP-chip data9 indicates
that the highest density of regulatory sites is found near transcription
start sites (TSSs) and regulatory regions originally thought to be distal
may often be alternative promoters10,11. Precise identification of TSS
locations is thus likely to be a crucial factor for accurate modeling of
transcription regulatory dynamics in mammals.

In this study, we extend our previous observations of genome-wide
TSS usage by Cap Analysis of Gene Expression (CAGE)12 and using
deep sequencing to identify promoters active during a time course of
differentiation and quantify their expression dynamics. DeepCAGE
data are used in combination with cDNA microarrays, other genome-
scale approaches, novel computational methods and large-scale siRNA
validation to provide a comprehensive analysis of growth arrest and
differentiation in the THP-1 cell model.

RESULTS
Outline of the analysis strategy
In most cell line models, only a subset of cells undergoes growth arrest
and differentiation. To maximize the sensitivity in this study, we
identified a subclone of THP-1 cells in which the large majority of cells
became adherent in response to PMA (Supplementary Fig. 1 online).
Our strategy began with deepCAGE, which identified active TSSs at
single-base-pair resolution, and simultaneously measured their time-
dependent expression (using normalized tag frequency) as cells
differentiated in response to PMA. The same RNA was subjected to
cDNA microarray analysis on an Illumina platform. The differentia-
tion of the cells was evident from the large increase in expression of
macrophage-specific genes such as CD14 and CSF1R detected by
both deepCAGE and microarray in all replicates (Supplementary
Fig. 2 online).
Figure 1 summarizes our Motif Activity Response Analysis (MARA)

strategy. Promoters were defined as local clusters of coexpressed
TSSs and promoter regions as their immediate flanking sequences
(Fig. 1a,b). To reconstruct transcription regulatory dynamics we
refined earlier computational methods6–8 by incorporating compara-
tive genomic information and each TF’s positional preferences relative
to the TSS in the prediction of regulatory sites. Binding sites for a
comprehensive and unbiased collection of mammalian regulatory
motifs were predicted in all proximal promoter regions (Fig. 1c) and
the observed promoter expression profiles (Fig. 1d) were combined
with the predicted site-counts (Fig. 1e) to infer time-dependent
activity profiles of regulatory motifs (Fig. 1f). We inferred individual
regulatory interactions (edges) between motifs and promoters by
comparing the promoter expression and motif activity profiles
(Fig. 1g). Rigorous Bayesian probabilistic methods were developed
for all steps of the computational analysis. Finally, a core network was
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constructed by selecting the motifs that explained the greatest propor-
tion of the expression variance, obtaining all predicted regulatory edges
between TFs corresponding to these motifs and selecting those reg-
ulatory edges that had independent experimental support. Using this
approach, we reconstructed the transcriptional regulatory dynamics
associated with cellular differentiation in human THP-1 cells, and
validated a subset of predicted regulatory interactions.

DeepCAGE quantification of dynamic TSS usage
CAGE tags generated from mRNA harvested at each time point were
mapped to the human genome. Promoters were defined as clusters of
nearby TSSs that showed identical expression profiles (within mea-
surement noise) and were substantially expressed in at least one time
point (Fig. 1a,b). Using these criteria we identified 29,857 promoters
expressed in THP-1 cells containing 381,145 unique TSS positions
(which is a subset of the nearly 2 million TSSs detected at least once in
THP-1). These promoters were contained within 14,607 promoter
regions (separated by at least 400 bp; Methods and Supplementary
Fig. 3 online). The deepCAGE data was validated using genome tiling-
array ChIP for markers of active transcription. Of the promoters
identified, 79% and 78% were associated with H3K9Ac and RNA
polymerase II, respectively (both markers of active transcription13,14),
compared to 18% and 27% for inactive promoters (Supplementary
Note online).

Among the identified promoters 84% (24,984) were within 1 kb of
the starts of known transcripts and 81% (24,327) could be associated
with 9,452 Entrez genes. Approximately half of the remaining pro-
moters were more than 1 kb away from the loci of known genes
(Supplementary Fig. 4 online). These newly identified promoters are
conserved across mammals, suggesting that they are true transcription
starts of currently unknown transcripts (Supplementary Fig. 5
online). The association of 24,327 promoters with 9,452 Entrez
genes extends previous evidence of alternative promoter usage11—in
this case even within a single cell type (Supplementary Table 1
online)—and demonstrates that promoter regions frequently contain
multiple promoters with distinguishable expression profiles (Supple-
mentary Table 2 online). In addition, for genes with known multiple
promoters deepCAGE frequently identified only one promoter to be
active in the THP-1 samples (Supplementary Fig. 6 online). Hence,
deepCAGE samples a distinct aspect of transcriptional activity that can
and does vary independently of mRNA abundances as measured by
hybridization to representative microarray probes.

Promoter expression
Using the normalized tags per million (tpm) counts assigned to the
promoters, we tested reproducibility among the three biological
replicates and compared the outcome to the Illumina array
from the same samples (Supplementary Fig. 7 online). DeepCAGE
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expression measurements were comparatively noisy (Supplementary
Fig. 7a). Nevertheless, the median Pearson correlation between the
replicate-averaged expression profiles of CAGE and microarray was
around 0.72 (Supplementary Fig. 7b), which is comparable to that
observed with other deep transcriptome sequencing datasets15. As
predicted, the correlation is lower for genes with multiple promoter
regions (Supplementary Fig. 7b and discussed further in Supple-
mentary Note).

Comprehensive regulatory site prediction
Known binding sites from the JASPAR and TRANSFAC databases16,17

were used to construct a set of 201 regulatory motifs (position-specific
weight matrices, WMs), which represent the DNA binding specificities
of 342 human TFs. We predicted transcription factor binding sites
(TFBSs) for all motifs within the proximal promoter regions (�300 to
+100 bps) of all CAGE-defined promoters. Extending the proximal
promoter regions beyond the �300 to +100 window decreased the
quality of the fitted model described below (data not shown). In
contrast to previous approaches that used simple WM scanning6, we
incorporated information from orthologous sequences in six other
mammals and used a Bayesian regulatory-site prediction algorithm
that uses explicit models for the evolution of regulatory sites18,19

(Fig. 1c and Methods). Notably, different motifs had distinct and
highly specific positional preferences with respect to TSS (Supple-
mentary Fig. 8 online), extending a previous genome-scale analysis20.
Positional preferences were incorporated in the TFBS prediction by
assigning each site a probability that it is under selection and correctly
positioned. This analysis generated approximately 245,000 predicted
TFBSs for the 201 motifs genome-wide. For each promoter–motif
combination, the TFBS prediction was summarized by a count Npm,
which represents the estimated total number of functional TFBSs for
motif m in promoter p. The TFBS predictions were compared with
published high-throughput protein–DNA interaction datasets (ChIP-
chip) and predicted target genes were significantly (P values ranged
from 0.02 for ETS1 to 6.60E–263 for GABPA) enriched among genes
for which binding was observed (Supplementary Table 3 online).

Inferring key TFs and their time-dependent activities
The details of our Motif Activity Response Analysis (MARA) are
described in Methods. Briefly, for each motif m and each time point t,

there is an (unknown) motif activity Amt, which represents the time-
dependent nuclear activity of positive and negative regulatory factors
that bind to the sites of the motif (for example, the E2F activity
will depend on nuclear E2F1-8, and DP1-2 levels, as well as RB1
phosphorylation status). As in previous work6–8,21, motif activities
were inferred by assuming that the expression ept of promoter p
at time t is a linear function of the activities Amt of those motifs that
have predicted sites in p. Additionally, the effect of motif m on the
expression of promoter p is assumed to be proportional to the
predicted number of functional sites Npm. Assuming that the devia-
tions of the predicted expression levels etheo

pt ¼ constant +
P

m NpmAmt

from the observed levels ept are Gaussian distributed, and using a
Gaussian prior on the activities, we determine fitted activities A�

mt that
have maximal posterior probability (Methods).

The inferred motif activities were validated using a number of
internal tests. First, our Bayesian procedure quantifies both the
significance of each motif in explaining the observed expression
variation as well as the reproducibility of its activity across replicates
(Fig. 2 and Supplementary Table 4 online). The activity profiles of
the top motifs are extremely reproducible across replicates and
different measurement technologies (Figs. 2 and 3a and Supplemen-
tary Fig. 9 online). It should be stressed that, although motif activities
are inferred by fitting the expression profiles of all promoters, the
model cannot be expected to predict expression profiles of individual
genes from the predicted TFBS in proximal promoters alone. The
effects of chromatin structure, distal regulatory sites, nonlinear inter-
actions between regulatory sites, and the contribution of the large
numbers of human TFs for which no motif is known, are not
considered. Furthermore, especially for genes that are dynamically
regulated, mature mRNA abundance can be dynamically regulated
independently of transcription initiation and promoter activity
through selective mRNA elongation, processing and degradation.
Our aim is not to predict expression profiles of individual genes but
rather to predict the key regulators and their time-dependent activ-
ities, which can be inferred from integration of global expression
information in a system undergoing dynamic change. We validated
the significance of the inferred activity profiles by comparing the
fraction of the ‘expression signal’ (expression variance minus replicate
noise) that is explained by the model, compared to randomized
versions, and under a tenfold cross-validation test (Supplementary
Fig. 10 online). The explained expression signal is highly significant
and this significance is maintained under tenfold cross-validation
(Methods). In addition, the highly peaked positional profiles of
TFBSs (Supplementary Fig. 8) suggest that knowing the exact TSS
is important for accurate TFBS prediction. Indeed, the predicted
TFBSs from CAGE promoters explain substantially more of the
expression signal in microarrays than predicted TFBSs of the asso-
ciated RefSeq promoters (Supplementary Fig. 10). We observe that
the model better predicts the expression profiles of those promoters
that are more strongly expressed, more reproducible across replicates,
and have higher expression variance (Supplementary Fig. 11 online).
Similarly, samples at the start and end of the differentiation time
course are better predicted than those at intermediate time points
(Supplementary Fig. 12 online), possibly because individual cells
differentiate at different rates and leave the cell populations less
homogeneous at intermediate time points.

Motif activities that were independently inferred from all 11,995
expressed microarray probes were combined with the inferred motif
activities from all CAGE and microarray replicates into a final set
of time-dependent motif activities (Methods). From these, we selected
30 ‘core’ motifs that contribute most to explaining the expression
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inferred motif activity profiles. Each dot corresponds to a motif. The

significance of each motif in explaining the observed expression variation is

quantified by the z value of its activity profile (horizontal axis, see Methods).
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variation (red dots in Fig. 2) and segregated their activity profiles
using a Bayesian procedure into nine clusters (Fig. 3b and Methods),
including three clusters of upregulated motifs, three clusters of down-
regulated motifs and three clusters containing single motifs with
profiles involving different transient dynamics. The genome-wide set
of target promoters for each of the motifs was determined as described
in Methods. The significance of each regulatory ‘edge’ from a motif to
a putative target promoter (containing a predicted TFBS) was quan-
tified by the z value of the correlation between the motif ’s activity
profile and the promoter’s expression profile (Fig. 1e).

Core transcriptional regulatory network
The final aim in reconstructing transcriptional regulatory networks is
to infer not only the key regulators and their target gene sets, but also
the way in which the actions of these key regulators are coordinated.
For this purpose, we collected all 199 predicted regulatory edges
(z value Z1.5) between the 30 core motifs. Recognizing that the
prediction of individual regulatory edges is still prone to error, we
constructed a core regulatory network (Fig. 4) of 55 highly trusted
edges by filtering the predicted edges according to experimental
validation, either within our data or in existing literature (Supple-
mentary Table 5 online). In addition, for each core motif we extracted
the set of predicted target genes (z value Z1.5) and checked for
enrichment of gene ontology terms. A selection of significantly
enriched terms is shown as oval nodes in Figure 4 (full set of GO
enrichments are available as Supplementary Table 6 online).

Whereas our method infers the key regulators ab initio, the
majority of factors within this core network are known to be
important in the monocyte-macrophage lineage, thereby validating
the method. In addition the predicted targets of these motifs

are enriched for biological processes known to be involved in
differentiation of the monocytic lineage.

The gene ontology enrichments can broadly be divided into four
groups. Downregulated motifs E2F1-5, NFYA,B,C and MYB are
associated with cell cycle–related terms, consistent with the growth
arrest observed during PMA-induced differentiation and the specific
downregulation of numerous genes required for DNA synthesis and
cell cycle progression within 24 h of PMA addition. Notably, MYB
targets are also enriched specifically for microtubule-cytoskeleton–
associated genes. Conversely, targets of upregulated motifs are asso-
ciated with the terms immune response, cell adhesion, plasma
membrane, vacuole and lysosome, all of which are consistent with
differentiation into an adherent monocyte-like cell. The targeting of
lysosomal genes by cholesterol-regulated SREBFs (sterol regulatory
element-binding transcription factors) is of note, as lipid homeostasis
is important in the macrophage in atherosclerosis and lysosomal
storage diseases22. We also saw enrichment of signal transduction
genes among targets of the early induced motifs EGR1-3 and TBP.
Finally, there is a set of motifs whose targets are enriched in TFs.
These motifs correspond to the transiently induced/repressed motifs,
ATF5_CREB3, FOXO1,3,4 and SRF, and the repressed pair of OCT4
and FOXI1,J2 motifs.

Validation of edge predictions
THP-1 cells, even in an ‘undifferentiated’ state, are clearly a myeloid
cell line. In seeking to validate the transcriptional network, we noted
that there was a large set of TF genes expressed constitutively in the
cells that were rapidly downregulated in response to PMA, of which
MYB is an example, and another set that was expressed but further
upregulated during differentiation. It is technically difficult to apply
siRNA knockdown to genes that are only expressed later in the
differentiation. To validate predicted edges empirically, we therefore
chose to carry out siRNA knockdowns in undifferentiated THP-1 cells
for genes encoding 28 TFs that are expressed in the undifferentiated
state and for which we have associated motifs. To assess whether
siRNA knockdown carried out in the undifferentiated state is appro-
priate to address factors that increase expression during the time
course, we carried out the technically more difficult experiment of
siRNA knockdown combined with PMA treatment for SPI1 (more
commonly known in the literature as PU.1). All knockdowns were
carried out in biological triplicate and qRT-PCR was used to confirm
RNA-level knockdown, which in most cases was greater than 80%
(Supplementary Table 7 online; in addition, protein-level knockdown
was confirmed by protein blot for 14 siRNAs, see Supplementary
Fig. 13 online). Changes in gene expression caused by TF knockdown
were measured by Illumina microarrays. For each knocked-down TF
gene, we obtained the list of predicted regulatory targets for the
associated motif and divided the microarray probes into predicted
targets and nontargets for a range of z-value thresholds. Higher-
confidence targets in general show greater expression changes upon
knockdown (Fig. 5a shows the example TF genes MYB, SNAI3, EGR1
and RUNX1; additional examples are shown in Supplementary
Fig. 14 online). For SPI1, even in the absence of PMA treatment
siRNA knockdown caused significant downregulation of predicted
SPI1 targets, but the effects were much stronger when knockdown was
combined with 1 h or 24 h of PMA treatment (Fig. 5b), confirming
that PMA causes upregulation of SPI1 activity. A good correlation
between target confidence (z-value cut-off) and average log expression
ratio was observed for the large majority of experiments (Fig. 5c). For
an intermediate cut-off of z ¼ 1.5 we quantified the difference in log
expression ratio of predicted targets and nontargets (Fig. 5d) and
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found significant changes (z-value larger than 2) for 23 of 33 cases
with SPI1 knockdown combined with 24 h of PMA treatment and
MYB knockdown being the most significant (Supplementary Fig. 15
online shows the entire distribution of log expression ratios of targets
and nontargets for eight example TFs). Notably, for the TF genes
LMO2, MXI1 and SP1, the knockdown led to a significant upregula-
tion of their targets, suggesting that the three encoded TFs act
primarily as repressors in undifferentiated THP-1 cells (Fig. 5d, also
see Supplementary Fig. 14a). Together these results provide compel-
ling experimental validation of our predicted regulatory edges.

Single TF knockdowns affect multiple motif activities
Besides validating predicted targets, the siRNA knockdowns can also
be used to assess the effects of the knockdown of one TF gene on the
motif activities of other TFs. In addition to the 28 TFs perturbed
above, we included a further 24 TFs that lacked motifs but were
naturally repressed during PMA differentiation, or had been reported
to have a role in myeloid differentiation or leukemia (Supplementary
Table 8 online).

The motif activity inference method was used to determine the
changes in activities of all motifs upon knockdown of each TF gene.
To assess the role of each TF in differentiation, we defined the
differentiative overlap between a TF gene knockdown and the PMA
time course as the fraction of all motifs that significantly changed their
activity in the same direction upon TF gene knockdown as in the
PMA differentiation (Methods). By far the largest differentiative
overlap (69%) was observed for the MYB knockdown, which not
only affected MYB motif activity, but also the activity of most motifs
in the core network, with the most significant activity changes all in
the same direction as in the PMA time course (Fig. 6a). Knockdown
of 13 other TF genes generated an overlap greater than the negative
control (Supplementary Table 9 online), and Figure 6 shows three
further examples (E2F1, HOXA9 and CEBPG).

As for MYB, E2F1 knockdown reproduced some of the down-
regulation of MYB and E2F activity observed upon PMA stimulation,
but it failed to reproduce the upregulation of SREBF1,2, PU.1,
NFATC1-3 and FOS,B,L1_JUNB,D activity (Fig. 6b). Similarly, the
activity changes that HOXA9 knockdown induced were mostly in the
same direction as in the PMA differentiation; however, the SNAI1-3

and IRF1,2 motif activities failed to be
induced and the GATA4 and TBX4,5 motif
activities failed to be downregulated (Fig. 6c).
Notably, knockdown of CEBPG, encoding

one of the PMA-downregulated factors, for which we do not have a
motif, also generated activity changes that significantly overlapped
those observed in response to PMA (Fig. 6d). Finally, instead of
comparing the motif activity changes that different knockdowns
induced, we can also directly compare the expression changes of all
genes with the expression changes observed in the PMA time course.
We found that MYB, HOXA9, CEBPG, GFI1, CEBPA, FLI1 and MLLT3
knockdowns all generated changes in gene expression that reiterated
some of those observed with PMA treatment (Supplementary
Table 8). MYB knockdown was exceptional, as it induced 35%
(340/967) and repressed 19% (172/916) of the genes upregulated and
downregulated with PMA, respectively. In addition the cells became
adherent (Supplementary Fig. 16 online) and began to express the
monocytic markers CD11B (ITGAM), CD54 (ICAM1), CD14, APOE
and CSF1R (Supplementary Fig. 2), three of which we confirmed by
flow cytometry (Supplementary Table 10 online). This development
of adherence could be linked to the GO enrichment for cytoskeleton-
associated genes among MYB targets noted above. Given these
observations one might wonder whether MYB is a master regulator
of the differentiation process and whether stronger and longer knock-
down would have reproduced the complete differentiation observed
under PMA treatment. Several observations argue strongly against
this. First, the gene sets perturbed by MYB and by the other pro-
differentiative TFs overlap only partially (Supplementary Table 11
online). Second, of the six other pro-differentiative TF genes only two
(CEBPG and GFI1) are affected by MYB knockdown. Both these facts
indicate that the other pro-differentiative TF genes are not simply
downstream of MYB. Third, MYB downregulation does not occur
until after the second hour of the PMA time course (Fig. 3b), which is
at odds with the idea of MYB sitting at the top of the regulatory
hierarchy. It is also worth noting that THP-1 cells harbor a leukemo-
genic fusion23 between MLL (mixed-lineage leukemia) and MLLT3
(MLL translocation partner 3) and that the MLLT3 siRNA targets this
leukemogenic fusion (note that full-length MLLT3 does not seem to be
expressed in THP-1 as there is no CAGE 5¢ signal for this gene). Our
data indicate that this fusion interferes with differentiation and that
neither PMA treatment nor MYB knockdown affects MLL-MLLT3
levels, suggesting these stimuli can bypass the differentiative block.
Conversely, MLLT3 knockdown had no effect on MYB levels. These
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results agree with previous RNAi studies that conclude that down-
regulation of MLL leukemogenic fusion proteins can promote growth
arrest but is not required for terminal differentiation24,25. Thus,
individual TF gene knockdowns affect the activities of multiple
motifs and elicit different, but overlapping, subsets of the regulatory
changes observed in the PMA time course. Taken together, the data
indicate that the independent perturbation of expression of multiple
TFs in response to PMA is both necessary and sufficient to initiate
partial differentiation.

Many TFs are involved in the differentiation process
The network predictions and the siRNA results above suggest that
upregulation and downregulation of the activities of multiple co-
operating TFs is required for differentiation. Of a curated list26 of
1,322 human TFs, 610 were detected by both CAGE and microarray in
at least one time point (Supplementary Table 12 online); however,
only 155 of these are covered by weight matrices, suggesting that other

factors may well be important in these cells. Of the 610 expressed TFs
64 were most highly expressed in the undifferentiated and 34 in the
differentiated state. In addition, 101 TFs were transiently induced or
repressed during differentiation. To elucidate the connection of these
TFs to the inferred network, we compared the predicted regulatory
inputs of co-regulated subsets of TFs with the predicted regulatory
inputs of the set of all 610 expressed TFs.

Whereas no motifs are overrepresented among inputs of statically
expressed TFs, inputs of dynamically expressed TFs showed enrichment
for a subset of motifs. TFs downregulated from 0 to 96 h PMA were
most enriched for three downregulated motifs of the core network:
OCT4 (3.4�), GATA4 (3.3�) and NFYA,B,C (2.2�) (Supplementary
Table 13a online). Similarly, TFs upregulated from 0 to 96 h were
most enriched for core network motifs that increase activity during
differentiation: SNAI1-3 (4.6�) and TBP (5.2�) (Supplementary
Table 13b). Finally, transiently regulated TFs were enriched for the
SRF (3.5�) and NHLH1,2 (3�) motifs (Supplementary Table 13c).
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Figure 5 Validation of predicted target promoter sets using siRNA knockdowns. (a) Difference in the average log expression ratio upon knockdown between

predicted target promoters and predicted nontargets (vertical axis) as a function of the z-value cut-off on target prediction (horizontal axis, more stringent

cut-offs are on the right) for knockdown of the TF genes MYB (red), SNAI3 (orange), RUNX1 (green) and EGR1 (light blue). (b) As in a but now for

knockdown of SPI1 followed by 1 h without treatment (light blue), 24 h without treatment (dark blue), 1 h of PMA treatment (orange) and 24 h of PMA

treatment (red). All straight lines are linear regression fits. (c) Pearson correlation coefficients between the average log expression ratio difference of targets

and nontargets and the cut-off on target predictions (horizontal axis). Red bars indicate correlation coefficients larger than 0.75 in absolute value; green

bars, absolute values between 0.5 and 0.75; and blue bars, less than 0.5. (d) Significance (z value) of the difference in log expression ratio between

predicted targets and nontargets (cut-off z ¼ 1.5) for all 28 TFs associated with a motif, measured as a z value (number of standard errors). Red bars

correspond to significant changes, that is, greater than two standard errors; green bars, changes between 1 and 2 standard errors; and blue bars, changes

less than 1 standard error. siRNA knockdowns were carried out in biological triplicate and knockdown was assessed by qRT-PCR (Supplementary Table 7).
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Notably, TFs that are predicted targets of SRF are mostly induced in
the first hour of PMA-induced differentiation. During this first hour
55 of the 57 genes whose expression was perturbed are induced and
30% encode TFs (Supplementary Fig. 17a online). The regulatory
inputs of these early-induced TFs are enriched for the motifs SRF, TBP
and FOSL2 (Supplementary Table 13d), which all correspond to
known PMA-responsive TFs27–30. Among the early-induced TFs, five
correspond to upregulated core network motifs themselves (FOSB,
EGR1-3 and SNAI1) and two (MAFB and EGR1) are known to induce
pro-differentiative changes31,32. It is also worth noting that significant
downregulation did not occur until the second hour, and this may
require both early induction of transcriptional repressors and the RNA
degradation proteins BTG2 and ZFP36 (tristetraprolin)33,34 (Supple-
mentary Fig. 17b). Together, these results suggest that induction of
SRF target genes in the first hour is critical to establishing the
differentiative program and is required before factors maintaining
the undifferentiated state are downregulated (Supplementary
Fig. 17b,c).

Web interface to data and analysis results
To facilitate the use of the data and analysis of results amassed here, we
provide an online tool, EdgeExpressDB, as part of the FANTOM4 web
resource, which allows users to explore our annotations of the
structure, expression and regulation of promoters genome-wide.
It also integrates published TF–promoter interactions, the siRNA
perturbations and genome-wide chromatin immunoprecipitation
experiments. Our complete set of regulatory-interaction predictions
provides a large collection of hypotheses that can be targeted for
validation, for example, through chromatin immunoprecipitation, gel
shift assays or reporter assays. The value of this resource is illustrated

by detailed examination of individual loci. For example, the osteo-
pontin gene (SPP1) is massively induced from 12 h of differentiation
(Supplementary Note). Our predictions confirm RUNX and PU.1 as
regulators and support a previous analysis in mouse implicating the
TGIF1 factor. In addition our analysis identifies NFAT, STAT, NKX6.2
and LIM domain and homeobox proteins as candidates for
further testing.

Finally, our set of human promoters, TF motifs, genome-wide
annotation of TF-binding sites and their predicted effects on the
expression of the target promoters are available through the Swiss-
Regulon website. A web interface, allowing researchers to automati-
cally perform Motif Activity Response Analysis (MARA) of their own
expression data in terms of our genome-wide predictions of TFBSs, is
also available at SwissRegulon.

DISCUSSION
We have devised a new integrated approach that combines genome-
wide identification of TSSs and their time-dependent expression with
computational modeling to reconstruct the transcriptional regulatory
dynamics of a differentiating human cell line. The CAGE tag sequen-
cing used here is tenfold deeper than in previous studies11, and this is
the first study to our knowledge to quantitatively monitor dynamic
expression changes of individual TSSs genome-wide. Using this data
we developed a new computational method in which promoter
expression profiles were modeled directly in terms of the TFBSs
occurring in their proximal promoter regions. This method allowed
us to infer which regulatory motifs are most predictive of expression
changes and the time-dependent activities of the corresponding TFs
ab initio. We identified more than two dozen different regulatory
motifs that significantly change their activity during PMA-induced
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Figure 6 Most significant motif activity changes (as measured by z value, red bars) for four TF gene knockdowns that induce motif activity changes that have

a differentiative overlap with the PMA time course of more than 50%. The corresponding motif activity changes observed in the PMA time course are shown
as gray bars.
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differentiation and a complex network of regulatory interactions
between them that have independent experimental support. Nota-
bly, although the modeling considers only TFBSs in proximal
promoter sequences, the core network in Figure 4 contains
most of the known regulators of macrophage differentiation.
Furthermore, siRNA perturbation of these TFs confirmed many
of their predicted targets, and by analyzing changes in motif
activity we found that each knockdown led to a distinct transcrip-
tional state that was associated with changes in the activities of
multiple motifs.

The changes in motif activity that we observed during THP-1
macrophage differentiation do not necessarily imply that the factor(s)
that act upon a motif are themselves transcriptionally regulated. For
example, PU.1 (SPI1) activity increases significantly in response to
PMA and we have confirmed that, besides a moderate increase in
mRNA expression, the SPI1 protein is also activated by phosphoryla-
tion35 and nuclear translocation36 (data not shown). For other motifs
such as E2F, multiple redundant factors can bind to the same sites37.
Motif activity analysis is conducted without any assumptions about
the TFs that act through these regulatory elements. That is, because
motif activity is inferred directly from expression changes of predicted
targets, the most active motifs can be identified before ascertaining the
responsible TF(s) and their mode of regulation. Thus, motif activity
analysis is a powerful approach compared to analysis of TF mRNA
expression alone.

What do our results teach us about the general structure of
regulatory networks in cellular differentiation? An often evoked
picture is that differentiation pathways consist of well-defined cascades
of regulatory events which are initiated by master regulators that sit at
the top of fixed regulatory hierarchies. A prime candidate for such a
master regulator in our system would be MYB, as its siRNA-mediated
knockdown reconstituted a significant fraction of the expression and
phenotypic changes observed under PMA-induced differentiation.
Indeed, this observation is consistent with earlier reports that MYB
antisense treatment of myeloid leukemia lines causes differentiative
growth arrest38 and that MYB is a repressor of expression of mature
macrophage-expressed genes such as CSF1R39. Our data indicate that
MYB probably acts on such genes indirectly, by a transcriptional
program that represses upregulation of SPI1 activity and downregula-
tion of proliferation.

However, several observations argue against MYB as a master
regulator: MYB downregulation is not among the first events in the
PMA time course, MYB knockdown far from completely mimics the
PMA-induced differentiation and there are several other TFs, which
are not downstream of MYB, whose knockdown reconstituted differ-
ent subsets of the PMA-induced expression changes (Supplemen-
tary Tables 8, 9 and 11). Moreover, it is known that additional factors
can also drive differentiation, for example, enforced expression of
SPI1 and CEBPA in mouse fibroblasts is sufficient to drive acqui-
sition of a macrophage-like phenotype40, and overexpression of
EGR1 and MAFB also drives differentiation, as we noted above.
Yet, evidence from mouse knockouts indicates that the whole EGR
family is dispensable for macrophage proliferation, differentiation
and function41.

Rather than a fixed hierarchy with one or very few master regulators
at the top, the picture that emerges is that of a recurrent network in
which multiple TFs mutually coordinate their activity changes to
implement the differentiation. In addition, whereas different partial
differentiation pathways can be initiated by multiple independent
perturbations, it appears that complete differentiation requires the
coordinated downregulation of multiple factors that maintain the

undifferentiated state. This observation draws some similarities to the
TF network that both maintains proliferation and prevents differen-
tiation in embryonic stem cells42. Enforced expression of four stem cell
transcription factors (MYC, OCT4, KLF4, SOX2) is sufficient to
dedifferentiate committed adult cells into a stem cell–like state43.
Maintenance of an undifferentiated proliferative state is important
in cancer, and it is worth noting that 10 of the 64 downregulated TFs
(16%) have Entrez gene annotations containing the term ‘myeloid
leukemia’ (compared to 50 of the remaining 1,258 TFs (4%); Supple-
mentary Table 14 online). In addition we have demonstrated that
knockdown of the MLL-MLLT3 leukemogenic fusion found in THP-1
also partially promotes differentiation.

From our time-course analysis, we see distinct phases of early,
middle and late, induction and repression. Our modeling predicts,
and the literature supports, SRF as the major effector of transcrip-
tional activation of immediate early genes (IEG)44. However, SRF
activation and IEG responses are not restricted to the PMA stimulus,
the monocytic lineage or differentiation28,45–47, suggesting that this
response has a more general function. We speculate that a generalized
immediate early response may be used to put the cell into a transient
receptive state, which permits downregulation of the multiple TFs that
maintain the undifferentiated state. This fits with the concept of stable
cellular states as attractors of the regulatory network dynamics. The
associated attractor basins48,49 of cellular states are analogous to local
minima in energy landscapes surrounded by slopes, and homeostatic
interactions between the TFs can be considered as providing a kind of
inertia to maintain this state. We suggest that the immediate early
response may help overcome this inertia, that is, by moving the system
out of its attractor basin.

METHODS
URLs. FANTOM4 web resource, http://fantom.gsc.riken.jp/4/; SwissRegulon,

http://www.swissregulon.unibas.ch. All methods are described in Supplemen-

tary Methods.

Accession codes. Accession numbers of the data sets, deposited in public

databases, are shown in Supplementary Table 15 online.

Note: Supplementary information is available on the Nature Genetics website.
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