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Abstract

The rate at which nonsynonymous single nucleotide polymorphisms (nsSNPs) are being

identified in the human genome is increasing dramatically owing to advances in whole-

genome/whole-exome sequencing technologies.  Automated methods capable of accurately and

reliably distinguishing between pathogenic and functionally neutral nsSNPs are therefore

assuming ever-increasing importance.  Here, we describe the Functional Analysis Through

Hidden Markov Models (FATHMM) software and server: a species-independent method with

optional species-specific weightings for the prediction of the functional effects of protein

missense variants.  Using a model weighted for human mutations, we obtained performance

accuracies that outperformed traditional prediction methods (i.e. SIFT, PolyPhen and

PANTHER) on two separate benchmarks.  Furthermore, in one benchmark, we achieve

performance accuracies that outperform current state-of-the-art prediction methods (i.e.

SNPs&GO and MutPred).  We demonstrate that FATHMM can be efficiently applied to high-

throughput/large-scale human and non-human genome sequencing projects with the added

benefit  of  phenotypic  outcome  associations.   To  illustrate  this,  we  evaluated  nsSNPs  in  wheat

(Triticum spp.) in order to identify some of the important genetic variants responsible for the

phenotypic differences introduced by intense selection during domestication.  A web-based

implementation of FATHMM, including a high-throughput batch facility and a downloadable

standalone package, is available at http://fathmm.biocompute.org.uk.

Key Words: SNP, hidden Markov models, bioinformatics, FATHMM
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Introduction

Nonsynonymous single nucleotide polymorphisms (nsSNPs) lead to amino acid substitutions

(AASs) and have the potential to affect the function of the protein product of a gene via the

structure, biochemistry and/or splicing of the protein.  Advances in high-throughput sequencing

technologies have accelerated the rate at which nsSNPs are now being identified [The 1000

Genomes Project, 2010].  Accurate automated computational methods capable of predicting the

effects of AASs and amenable to high-throughput analyses of large datasets are therefore of

increasing importance for identifying and prioritising functional nsSNPs for further studies

[Thusberg and Vihinen, 2009].

The majority of computational prediction methods utilize evolutionary sequence conservation

and/or structural annotations within homologous (orthologous and/or paralogous) proteins from a

database of known sequences and/or structures [Ng and Henikoff, 2006].  Traditionally, the

BLAST range of pairwise alignment [Altschul et al., 1990] and sequence profile algorithms

[Altschul et al., 1997] have been used to search large sequence databases for homologous

proteins falling within a pre-defined similarity threshold.  However, weaknesses of these

algorithms include the position-invariant scoring matrices in BLAST and the ad hoc estimation

of algorithm parameters, i.e. position-invariant gap penalties, in PSI-BLAST [Bateman and Haft,

2002].  On the other hand, hidden Markov models (HMMs) [Krogh et al., 1994; Eddy, 1996] are

powerful probabilistic models that can be used to capture position-specific information within a

multiple sequence alignment (MSA) of homologous sequences.  Here, a MSA is represented as a

series of match, insert and delete states linked together via state-transitions.  A match state
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models the position-specific amino acid probabilities (with Dirichlet mixtures [Sjölander et al.,

1996]) at each column within the sequence alignment whereas insert/delete states allow for

particular residues/states to be inserted and skipped, respectively, throughout the sequence

alignment (position-specific insertions/deletions).  HMM profiles are similar to PSI-BLAST

profiles except they are applied within a more rigorous statistical framework and have been

shown to perform considerably better when detecting distant relationships between homologous

sequences [Madera and Gough, 2002].

Inspired by previous work [Ng and Henikoff, 2001; Thomas et al., 2003; Calabrese et al., 2009],

we have capitalized upon recent advances in the HMMER3 software suite [Eddy, 2009] to

potentiate the computational prediction of the functional effects of AASs using HMMs.  First, we

present an unweighted/species-independent method in which homologous sequences are

automatically collected and aligned using an iterative search procedure.  The resulting MSA is

then used to build an ab initio HMM where sequence conservation is then interrogated through

the internal match states of the model.  In conjunction, sequence conservation within manually

curated HMMs representing the alignment of conserved protein domain families:

SUPERFAMILY [Gough et al., 2001] and Pfam [Sonnhammer et al., 1997], is interrogated.  This

additional domain-based analysis is capable of capturing important structural and evolutionary

constraints (via priors) that are potentially missed when using an automatically collected

alignment of homologous sequences.  Next, we introduce a weighted/species-specific method

which incorporates “pathogenicity weights”.  These weights are derived from the relative

frequencies of disease-associated and functionally neutral AASs mapping onto conserved protein

domains.  Using a model weighted for human mutations, we obtained performance accuracies
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that outperformed traditional prediction methods: SIFT, PolyPhen and PANTHER; on two

separate benchmarks.  Furthermore, in one benchmark, we achieve performance accuracies that

outperform current state-of-the-art prediction methods: SNPs&GO and MutPred.  We

demonstrate that our method, Functional Analysis Through Hidden Markov Models (FATHMM),

can be efficiently applied to all foreseeable high-throughput large-scale genomic datasets, and

advances the field with the added benefit of providing phenotypic outcome associations.  In

addition to demonstrating the predictive capabilities of FATHMM on multiple benchmarks

representing human mutations, we have applied it in practice to a large dataset of nsSNPs in

wheat (Triticum spp.) in order to identify some of the key genetic variants responsible for the

phenotypic differences introduced by intense selection during domestication and have made this

analysis publicly available to the scientific community.

Materials & Methods

The Mutation Datasets

A collection of five human mutation datasets from online databases and the literature were

downloaded and used in this study (Table 1).  First, inherited disease-causing AASs annotated as

DMs (damaging mutations) in the Human Gene Mutation Database [Stenson et al., 2009]

(HGMD - November 2011; http://www.hgmd.org) and inherited putative functionally neutral

AASs in the UniProt database [Apweiler et al., 2004] (UniProt - November 2011;

http://www.uniprot.org/docs/humsavar) were downloaded and used to calculate the pathogenicity

weights implemented in our weighted/species-specific method.  Next, we obtained two human
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mutation  datasets  to  assess  the  performance  of  FATHMM  against  the  performance  of  other

computational prediction algorithms previously reported in the literature: the VariBench database

(VariBench - November 2011; http://bioinf.uta.fi/VariBench) used in a comprehensive review

[Thusberg et al., 2011] of nine other computational prediction methods [Ng and Henikoff, 2001;

Ramensky et al., 2002; Thomas et al., 2003; Bao et al., 2005; Capriotti et al., 2006; Bromberg

and Rost, 2007; Calabrese et al., 2009; Li et al., 2009; Adzhubei et al., 2010; Mort et al., 2010]

and 267 AASs in four cancer-associated genes (BRCA1, MSH2, MLH1 and TP53) used in a

recent review [Hicks et al., 2011] of four alternative computational prediction algorithms [Ng

and Henikoff, 2001; Tavtigian et al., 2006; Adzhubei et al., 2010; Reva et al., 2011].  Finally, we

downloaded a human mutation dataset consisting of disease-associated and putative functionally

neutral  AASs  from  the  SwissVar  portal  [Mottaz  et  al.,  2010]   (SwissVar  -  February  2011;

http://swissvar.expasy.org) and performed an independent benchmark of FATHMM against eight

other computational prediction algorithms [Ng and Henikoff, 2001; Ramensky et al., 2002;

Thomas et al., 2003; Ferrer-Costa et al., 2004; Capriotti et al., 2006; Calabrese et al., 2009; Li et

al., 2009; Adzhubei et al., 2010; Mort et al., 2010].

Scoring the Magnitude of Effect of Amino Acid Substitutions

The procedure for predicting the functional consequences on the protein function is as follows

(see Supp. Figure S1 for a flow-diagram detailing the procedure): the JackHMMER component

of HMMER3 (one iteration with the optional --hand parameter applied; see Supp. Figure S2) is

used to search for homologous sequences within the UniRef90 [Suzek et al., 2007] database

(November 2011).  As part of this procedure, an ab initio HMM  representing  the  MSA  of
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homologous sequences (with Dirichlet mixtures [Sjölander et al., 1996]) is constructed and used.

In conjunction, protein domain annotations from the SUPERFAMILY [Gough et al., 2001]

(version 1.75) and Pfam [Sonnhammer et al., 1997] (Pfam-A and Pfam-B; version 26.0)

databases are made.  The relevant SUPERFAMILY and Pfam HMMs are then extracted only if

and when the domain assignment is deemed significant (e-value  0.01) and the AAS maps onto

a match state within the model.

The information gain (as measured by the Kullback-Leibler [Kullback and Leibler, 1951]

divergence from the SwissProt/TrEMBL [Apweiler et al., 2004] amino acid composition) is then

calculated at the corresponding match states within the HMMs extracted above.  Next, we

interrogate the underlying amino acid probabilities modelled by the most informative HMM and

assume that a reduction in the amino acid probabilities (when comparing the wild-type to the

mutant residue) indicates a potentially negative impact upon protein function whereas a gain in

the amino acid probabilities indicates a more favourable substitution.  Furthermore, we assume

that larger reductions in amino acid probabilities have more substantial effects than smaller

reductions in amino acid probabilities.  Here, the predicted magnitude of the effect upon protein

function is calculated as follows:

(1)

where Pw and Pm represent the underlying probabilities for the wild-type and mutant amino acid

residues, respectively.
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Incorporating Species-Specific Pathogenicity Weights

As before, we interrogate the amino acid probabilities within the most informative

SUPERFAMILY [Gough et al., 2001] or Pfam [Sonnhammer et al., 1997] (Pfam-A and Pfam-B)

HMM (as measured by the Kullback-Leibler [Kullback and Leibler, 1951] divergence from the

SwissProt/TrEMBL [Apweiler et al., 2004] amino acid composition).  However, for an improved

performance in human, the predicted magnitude of effect is weighted by the relative frequency of

disease-associated (HGMD) and functionally neutral (UniProt) AASs mapping onto the relevant

SUPERFAMILY/Pfam HMM:

(2)

where Pw and Pm represent the underlying probabilities for the wild-type and mutant amino acid

residues, respectively, and the pathogenicity weights, Wd and Wn, represent the relative

frequencies of disease-associated and functionally neutral AASs mapping onto the relevant

HMM, respectively.  The pathogenicity weights also include a pseudo-count of 1.0 to avoid a

zero divisible term.

Annotating the Molecular and Phenotypic Consequences of Amino Acid Substitutions

The overall biological function of a protein is commonly governed by the various combinations

of protein domains within it [Peterson et al., 2010].  Therefore, we annotate the potential

molecular and phenotypic consequences of pathogenic mutations via domain-centric ontologiesUNCORRECTED A
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[de Lima Morais et al., 2011].  For example, the molecular consequences of AASs are

statistically inferred by mapping SUPERFAMILY [Gough et al., 2001] HMMs onto the Gene

Ontology [Ashburner et al., 2000].  Moreover, the phenotypic consequences of AASs are

annotated by extending these mappings onto several phenotype ontologies including the Human

Phenotype Ontology [Robinson et al., 2008], the Mammalian Phenotype Ontology [Smith and

Eppig, 2009] and the Plant Phenotype Ontology [Pujar et al., 2006; Ilic et al., 2007].

Performance Evaluation

In accordance with previous computational prediction methods, the following six parameters

(formulae 3-8) were used to assess the performance of our models:

(3)

(4)

(5)

(6)
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(7)

(8)

where tp and fp refer to the number of true positives and false positives reported and tn and fn

denote the number of true negatives and false negatives reported.

Results

Calculating a Prediction Threshold

Theoretically, using our prediction formulae, scores approximately equal to zero indicate that

there is no significant change in the underlying amino acid probabilities whereas scores less than

zero indicate that an unfavourable substitution has been observed, i.e. the mutant residue is less

likely to be observed than the wild-type residue, and scores greater than zero indicate that a

favourable substitution has been observed, i.e. the mutant residue is more likely to be observed

than the wild-type residue.  However, in practice, FATHMM is sensitive to small fluctuations in

the amino acid probabilities modelled within the HMMs.  For example, the slightest reduction in

amino acid probabilities would yield a pathogenic prediction in our unweighted/species-

independent algorithm.  Therefore, to eliminate the effects of these fluctuations, we plotted the

distribution of the predicted magnitude of effect for both disease-associated and functionally

neutral  AASs  within  the  SwissVar  dataset  (Figure  1).   From  this,  we  calculated  predictionUNCORRECTED A
CCEPT

ED A
RTIC

LE



thresholds for our unweighted and weighted methods at which the specificity and sensitivity

were both maximised (-3.0 and -1.5, respectively).  Using our unweighted method, we noted that

the majority of disease-associated AASs (>60%) fell below our threshold whereas the majority of

functionally neutral polymorphisms (80%) fell above this threshold.  Furthermore, using our

weighted method, the majority of disease-associated AASs (80%) fell below our threshold

whereas a significant proportion of functionally neutral polymorphisms (>80%) fell above this

threshold.

A Performance Comparison Against Published Reviews

The performance of FATHMM was compared against the performance of other computational

prediction algorithms reported in two previously published reviews [Hicks et al., 2011; Thusberg

et al., 2011].  First, the VariBench database was used to benchmark our method against nine

alternative computational prediction algorithms [Ng and Henikoff, 2001; Ramensky et al., 2002;

Thomas et al., 2003; Bao et al., 2005; Capriotti et al., 2006; Bromberg and Rost, 2007; Calabrese

et al., 2009; Li et al., 2009; Adzhubei et al., 2010; Mort et al., 2010] (Table 2).  Typically, the

performance of trained/weighted computational prediction algorithms is superior to that of

theoretical/unweighted algorithms.  Therefore, to allow for a fair comparison to be made, we

opted to compare our unweighted/species-independent method against other

theoretical/unweighted computational algorithms and our weighted/species-specific method

against other trained/weighted computational prediction algorithms.  From Table 2, and in terms

of performance accuracies, PANTHER [Thomas et al., 2003] appears to be the best performing

theoretical/unweighted  prediction  method with  an  accuracy  of  76%.   It  appears  that  both  SIFT
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[Ng and Henikoff, 2001] (another sequence-based method) and our unweighted method perform

less favourably with accuracies of 65% and 69%, respectively, indicating that FATHMM is

somewhat the better option of the two.  The observed performances in our analysis indicate that

our weighted method is the best performing method available with an overall performance

accuracy of 86%, thereby outperforming the current state-of-the-art prediction methods MutPred

[Li et al., 2009; Mort et al., 2010] (81%) and SNPs&GO [Capriotti et al., 2006] (82%).

Next, we used the Hicks dataset to benchmark FATHMM against four other computational

prediction algorithms (using their native alignments) [Ng and Henikoff, 2001; Tavtigian et al.,

2006; Adzhubei et al., 2010; Reva et al., 2011] (Table 3).  Overall, Align-GVGD [Tavtigian et al.,

2006] appears to be the best performing method.  However, Align-GVGD employs gene-specific

alignments and its performance is severely affected when automatically generated alignments are

used [Hicks et al., 2011].  These results appear to indicate that our unweighted method is more

specific than either Align-GVGD or SIFT; however, we also noted higher false positive rates

when compared with the other prediction methods.  In general, and perhaps more surprisingly, it

appears that the performance of all trained/weighted computational prediction methods is inferior

across the four genes when compared to their theoretical/unweighted counterparts.  Again,

although no one trained/weighted prediction method performs best across the four genes, it

would appear that our weighted method is, on average, the most specific/least sensitive.

An Independent Benchmark Against Other Computational Prediction Methods

Although we recognise the importance of comparing prediction methods in relation to previously
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established benchmarks, we also conducted our own benchmark (using the SwissVar mutation

dataset – see Materials & Methods) comparing the performance of FATHMM against eight

published computational prediction methods [Ng and Henikoff, 2001; Ramensky et al., 2002;

Thomas et al., 2003; Ferrer-Costa et al., 2004; Capriotti et al., 2006; Calabrese et al., 2009; Li et

al., 2009; Adzhubei et al., 2010; Mort et al., 2010] (Table 3 – see Supp. Table S1).  In contrast to

the VariBench benchmark, and in terms of performance accuracies, it appears that both SIFT [Ng

and Henikoff, 2001] and our own unweighted method outperform PANTHER [Thomas et al.,

2003] (68%) with performance accuracies of 74% and 71%, respectively, indicating that SIFT is

somewhat the better option.  The best performing method is MutPred [Li et al., 2009; Mort et al.,

2010] with a performance accuracy of 90%.  However, the observed performances show that our

weighted method once again performs favourably when compared to other state-of-the-art

prediction methods: SNPs&GO [Calabrese et al., 2009], despite the domain-based restriction

inherited from our pathogenicity weights.  Next, we compared the performance of our

unweighted method via Receiver Operating Characteristic (ROC) curves against the top ranking

theoretical/unweighted computational prediction methods: SIFT and PANTHER (Figure 2; A &

B – see Supp. Figure S3 for a comprehensive ROC curve against all evaluated methods).

Impressively, given a 10% false positive rate, it seems that the performance of our unweighted

method is comparable to SIFT thereby highlighting the sensitivity of our method to small

fluctuations within the underlying amino acid probabilities.  Furthermore, we compared the

performance of our weighted method via ROC curves against the top-ranking trained/weighted

prediction algorithms: MutPred and SNPs&GO (Figure 2; C & D).  These results confirm that

our weighted method performs favourably when compared to SNPs&GO.
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The pathogenicity weights incorporated in FATHMM were not directly used to train for, or

recognise, pathogenic sequences and/or mutations.  We do nevertheless recognise the potential

for bias in the performances observed.  Therefore, in order to remove this bias, we performed a

'leave-one-out' analysis on all benchmarking datasets.  Here, we adjusted our pathogenicity

weights, Wd and Wn, if and only when the AAS being evaluated was present in either the HGMD

[Stenson et al., 2009] or UniProt [Apweiler et al., 2004] datasets.  We observed no significant

deviations in the performance measures reported above and hence concluded that the

performances observed were not biased towards the pathogenicity weights employed (see Supp.

Table S2).

To understand the potential complementarity/redundancy of FATHMM to other methods, we

assessed the intersection of disease-associated AASs correctly identified (true positives) by our

method and the top-ranking computational prediction algorithms (Figure 3).  From this analysis,

it was clear that no one method completely encapsulates all other methods i.e. each method

succeeded in correctly and uniquely identifying some disease-associated AASs where other

methods did not.  These results reaffirm previous suggestions that combining predictions from

multiple prediction methods has the potential to perform better than any individual method [Liu

et al., 2011; Olatubosun et al., 2012].

Facilitating the High-Throughput Analysis of Large Genomic Datasets

Anticipating a massive increase in the number of available whole-genome and whole-exome

datasets, the need for accurate computational prediction methods capable of processing these
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datasets in a timely fashion is increasingly apparent.  As a result, the majority of computational

prediction algorithms now offer some form of pre-computed facility allowing for near-instant

predictions to be returned (see Supp. Table S3).  However, only SIFT [Ng and Henikoff, 2001]

and PolyPhen-2 [Adzhubei et al., 2010] allow for batch submissions (with restrictions) to be

made.  To facilitate the high-throughput analysis of large-scale genomic datasets, our public web-

server provides up-to-date (pre-computed) domain assignments for several large sequence

collections, including SwissProt/TrEMBL [Apweiler et al., 2004]; thereby enabling (unrestricted)

near-instant predictions to be made for AASs falling within conserved protein domains.

Furthermore, our pre-computed database is available as an optional download enabling near-

instant predictions to be made while running our software locally.

Annotating Phenotypic Outcome Associations

As previously alluded to, FATHMM not only predicts the potentially deleterious nature of AASs

but is also capable of annotating the molecular and phenotypic consequences of these mutations

via domain-centric ontologies.  To illustrate this, we evaluated the predicted phenotypic

consequences of disease-associated AASs within the SwissVar dataset (Supp. Table S4).  As

expected, the phenotypic consequences of well-characterised diseases are correctly identified.

For example, the cardiovascular consequences of the C1971Y mutation in FBN1 (Marfan

syndrome; MIM# 154700) are correctly identified via domain-based ontological associations.

However, potential issues of using domain-centric ontologies arise when a common domain

harbours multiple mutations with distinct and uniquely expressed phenotypes.  In these instances,

domain-centric ontological associations may have become diluted and should therefore be used
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with caution.  For example, the predicted phenotypic consequences for the R239C mutation in

CHRNG (Escobar syndrome; MIM# 265000) are consistent with the associated syndrome, which

is characterised by a decrease in fetal movement and overall muscle weakness.  However,

phenotypes not associated with (or secondary to) Escobar syndrome, for example abnormalities

in temperature regulation, were also predicted.  Nevertheless, we foresee that these annotations

will be most prominent in protein sequences of unknown function and/or ongoing non-human

genome sequencing projects, as demonstrated below.

Case Study: Annotating the Functional and Phenotypic Consequences of nsSNPs in Wheat

As the world's population continues to grow, so does the demand for crops with particular

characteristics such as drought resistance, high yield and resistance to pests and pathogens.  The

cultivation and repeat harvesting of wild “landrace” wheat varieties has led over time to the

emergence of domesticated “elite” wheat varieties with desirable phenotypic characteristics.  In

an attempt to elucidate some of the important genetic variants responsible for these

characteristics, we collected single nucleotide variants (SNVs) from four elite UK bread wheat

varieties (Avalon, Cadenza, Rialto and Savannah) and have predicted the functional effects of

these mutations when compared to four landrace wheat varieties from the Watkins collection

held at the John Innes Centre, Norwich, UK (304, 306, 311 and 328).  For this analysis, SNVs

were mapped onto the draft wheat genome assembly and six-frame translated.  For each reading

frame, SUPERFAMILY [Gough et al., 2001] and Pfam [Sonnhammer et al., 1997] domain

assignments on the full length amino acid sequence were made and the corresponding AASs

were evaluated using our unweighted method.  We found several biologically interesting SNV
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differences between the landrace and elite wheat varieties (see Supp. Table S5).  For example,

wheat contig F0Z7V0F01D2DA5 had a SNP at position 172 in the casein kinase II beta subunit

domain with phenotypic consequences predicted to affect the flower developmental stages and

vegetative growth.  The casein kinase II beta subunit domain has a putative function in flowering

time regulation in the model plant Arabidopsis [Ogiso et al., 2010] and is likely to be

biologically significant as European domestic wheat will have been selected to grow under

shortened  seasons  and  different  day  lengths  to  the  landraces.   Next,  wheat  contig

GIZP4PP04H5FGF  had  a  SNP  at  position  219  which  lies  within  the  Pfam  starch  synthase

catalytic  domain.   Once  again,  this  is  likely  to  be  biologically  significant  as  the  quantity  and

properties of starch are important to the baking properties of cultivated wheat and will thus have

been under strong selection.  Finally, wheat contig 09781 had a SNP at position 368 in the

cysteine proteinase domain with predicted phenotypic consequences affecting plant structure

development.   In  cereals,  cysteine  proteases  are  known  to  be  important  in  the  laying  down  of

storage proteins [Fahmy et al., 2004].  As with starch, the properties of wheat storage proteins

will have come under intense selection during domestication as they are the most important

determinant of baking qualities and economic yield.  These results, made publicly available to

the wheat genomics community at http://www.cerealsdb.uk.net/functional_snps/index.htm,

illustrate the potential additional utility of FATHMM in predicting the functional consequences

of variants identified in ongoing non-human genome sequencing projects (even in species very

distantly related to human).

Discussion
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Here, we have introduced and discussed the Functional Analysis Through Hidden Markov

Models (FATHMM) software and server: a species-independent method with optional species-

specific weightings for the prediction of the functional effects of protein missense variants.

Inspired by previous sequence-based computational prediction algorithms [Ng and Henikoff,

2001; Thomas et al., 2003], our unweighted/species-independent method interrogates sequence

conservation through the underlying amino acid probabilities modelled by the internal match

states of several HMMs representing the alignment of homologous sequences and conserved

protein domains.  Following a similar weighting scheme implemented in SNPs&GO [Calabrese

et al., 2009], our weighted/species-specific method amalgamates sequence conservation within

the HMMs with “pathogenicity weights” representing the relative frequencies of disease-

associated and functionally neutral AASs mapping onto conserved protein domains.  The

pathogenicity weights incorporated here are not directly used to train for, or recognise,

pathogenic sequences and/or mutations.  Instead, these weights are capable of recognising

protein domains (species-independent/evolutionary units) sensitive to or intolerant of missense

mutations.  Therefore, the pathogenicity weights implemented in FATHMM are also likely to

represent an improvement for non-human organisms (especially those not too distantly related to

human) [Ferrer-Costa et al., 2005].

The performance of FATHMM was compared to the performances of alternative computational

prediction methods previously reported in two published reviews [Hicks et al., 2011; Thusberg et

al., 2011].  Furthermore, we performed our own independent benchmark comparing the

performance of FATHMM against the performance of other computational prediction methods.

In two benchmarks (VariBench/SwissVar), the performance of our unweighted method is
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comparable to another sequence-based method: SIFT [Ng and Henikoff, 2001], and to a

sequence/structure based method: PolyPhen-1 [Ramensky et al., 2002].  This performance

reaffirms the ability of FATHMM to recognise important structural and/or evolutionary

constraints (via priors) modelled within manually curated HMMs representing the alignment of

conserved protein domains: SUPERFAMILY [Gough et al., 2001] and Pfam [Sonnhammer et al.,

1997].  A detailed analysis of four cancer-associated genes (Hicks; BRCA1, MSH2, MLH1 and

TP53) shows Align-GVGD [Tavtigian et al., 2006] to be the best performing prediction method.

However, this can be attributed to the manually curated (gene-specific) sequence alignments

employed in the prediction method.  On average, the performance of our unweighted method in

this benchmark is comparable to SIFT.

An important issue to consider when comparing the performance of trained/weighted

computational prediction methods is the cross-validation dataset, i.e. these prediction methods

should ideally be tested using “blind” datasets to minimise the bias in the performances

observed.  Unfortunately, this level of testing is not possible as it would require

retraining/validating all prediction methods with common datasets.  However, the majority of

disease-associated AASs in the VariBench database were collected from Locus-Specific

Databases (LSDB) and are not found in commonly used training datasets, e.g.

SwissProt/TrEMBL [Apweiler et al., 2004].  Therefore, the curators claim this bias is minimised

in this dataset [Thusberg et al., 2011].  Here, the performance of our weighted method appears to

outperform the current state-of-the-art prediction methods: MutPred [Li et al., 2009; Mort et al.,

2010] and SNPs&GO [Calabrese et al., 2009].  By contrast, the mutation dataset used in our

independent benchmark was collected from the SwissVar [Mottaz et al., 2010] portal.  As a
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result, the estimated performances of other computational prediction methods which have been

trained on SwissProt/TrEMBL mutations may be over-inflated.  Here, MutPred is the best

performing method; however, the performance of our weighted method is comparable to

SNPs&GO.  In order to alleviate the potential bias in our method, we performed a leave-one-out

analysis and found no significant deviations in the observed performances; we therefore

concluded that the performances observed in FATHMM were not an artefact of the weighting

scheme employed.  The performances of all trained/weighted computational prediction

algorithms were, somewhat surprisingly, inferior when compared to their theoretical/unweighted

counterparts across four cancer-associated genes.  The performances observed within Align-

GVGD (gene-specific alignments) suggest that there may be some benefit in incorporating

disease-specific weightings into our algorithm, e.g. cancer-specific weightings similar to those

employed by [Capriotti and Altman, 2011].

A potential disadvantage of our weighted method is the inherited restriction (via the weighting

scheme employed) to AASs falling within conserved protein domains.  However, protein domain

annotations from the SUPERFAMILY and Pfam databases encompass around 80% of the

SwissProt/TrEMBL  database  [Punta  et  al.,  2012].   In  our  analysis,  we  were  able  to  analyse  a

large proportion (>70%) of the VariBench and SwissVar benchmarking datasets.  On the other

hand, unlike other sequence-based prediction methods (including our own unweighted method),

which are too slow for practical use in large-scale sequencing projects, our weighted method uses

computationally inexpensive domain assignments.  Therefore, FATHMM can be efficiently

applied to all foreseeable high-throughput large-scale genomic datasets with minimal reduction

in coverage.  In addition, our method advances the field with its unique ability to annotate the

UNCORRECTED A
CCEPT

ED A
RTIC

LE



molecular and phenotypic consequences of AASs using several domain-centric ontologies [de

Lima Morais et al., 2011] including the Human Phenotype Ontology [Robinson et al., 2008] and

the Mammalian Phenotype Ontology [Smith and Eppig, 2009].  Thus, by coupling the functional

predictions generated by FATHMM with domain-based ontological associations, as opposed to

protein level annotations, we have developed a tool which is capable of providing useful insights

into the underlying mechanisms disrupted by AASs without any prior/background information

on the protein itself.  A web-based implementation of FATHMM, which facilitates the high-

throughput analysis of large-scale genomic datasets, and includes a downloadable open-source

software package, is available at http://fathmm.biocompute.org.uk.
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Figure Legends

Figure 1.  The  distribution  of  the  predicted  magnitude  of  effect  for  disease-associated  (shaded

region) and functionally neutral (unshaded region) AASs in the SwissVar dataset using our

unweighted and weighted methods (A & B, respectively).  From this, we calculated prediction

thresholds at which both specificity and sensitivity were maximised (-3.0 & -1.5, respectively).

Figure 2. Receiver Operating Characteristic (ROC) curves for the top-ranking computational

prediction algorithms evaluated using the SwissVar dataset.  Here, we compare our unweighted

method against  SIFT and PANTHER (A – full  curve; B - 10% false positive rate) whereas our

weighted method is compared to SNPs&GO and MutPred (C – full curve; D - 10% false positive

rate).  Full ROC curves for all computational prediction algorithms evaluated are made available

in Supp. Figure S3.
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Figure 3. The intersection of disease-associated amino acid substitutions correctly identified by

the top-ranking computational prediction algorithms evaluated using the SwissVar dataset.  Here,

we compare our unweighted method against SIFT and PANTHER (A) whereas our weighted

method is compared to SNPs&GO and MutPred (B).
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Table 1. Summary of Mutation Datasets

Dataset Proteins Amino Acid
Substitutions

Description

HGMD 2,298 49,532 Inherited disease-causing mutations from HGMD used to calculate our pathogenicity weights

UniProt 11,548 36,928 Inherited putative functionally neutral mutations from UniProt used to calculate our
pathogenicity weights

VariBench 9,684 40,470 Benchmarking dataset used in a review of nine alternative computational prediction algorithms
[Thusberg et al., 2011]

Hicks et. al. 4 267
Benchmarking dataset consisting of both disease-causing and functionally neutral mutations in
four well-characterised genes (BRCA1, MSH2, MLH1, TP53) used in a recent review of four
alternative prediction algorithms [Hicks et al., 2011]

SwissVar 11,986 59,976 Benchmarking dataset used as an independent benchmark of eight alternative prediction
algorithms
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Table 2. Performance of Computational Prediction Methods using the VariBench
Benchmarking Dataset

tp fp tn fn Accuracy† Precision† Specificity† Sensitivity† NVP† MCC†

Theoretical/Unweighted Computational Prediction Methods

SIFT 10464 4856 12188 7433 0.65 0.64 0.62 0.68 0.66 0.30

PolyPhen 1a 10093 9185 17669 3199 0.69 0.77 0.85 0.52 0.64 0.39

PolyPhen 1b 14285 4993 13671 7197 0.70 0.68 0.66 0.74 0.72 0.40

PANTHER 9689 2859 8676 2797 0.76 0.76 0.76 0.77 0.77 0.53

FATHMM (unweighted) 11561 4839 16257 7707 0.69 0.72 0.77 0.60 0.66 0.38

Trained/Weighted Computational Prediction Methods

PolyPhen 2a 13807 5102 13863 6010 0.71 0.71 0.70 0.73 0.72 0.43

PolyPhen 2b 16206 2703 10199 9674 0.69 0.64 0.51 0.86 0.78 0.39

PhD-SNP 11900 6896 16788 4377 0.71 0.75 0.79 0.63 0.68 0.43

SNPs&GO 13736 5487 17028 1382 0.82 0.90 0.92 0.71 0.76 0.65

nsSNPAnalyzer 4360 2778 1319 943 0.60 0.59 0.58 0.61 0.60 0.19

SNAP 16000 2146 8190 6387 0.72 0.67 0.56 0.88 0.83 0.47

MutPred 13829 2507 15891 4557 0.81 0.79 0.78 0.85 0.84 0.63

FATHMM (weighted) 14231 1633 10146 2336 0.86 0.86 0.86 0.86 0.86 0.72

tp, fp, tn, fn refer to the number of true positives, false positives, true negatives and false negatives, respectively.
† Accuracy, Precision, Specificity, Sensitivity, NVP and MCC are calculated from normalised numbers
a “Probably Pathogenic” predictions classed as disease-causing
b “Probably Pathogenic” predictions classed as functionally neutral

The performances of alternative computational prediction algorithms have been reproduced with permission from [Thusberg et
al., 2011] - copyright (2012) Wiley.
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Table 3. Specificity and Sensitivity of Computational Prediction Methods in Four Well-
Characterised Genes (BRCA1, MSH2, MLH1 and TP53)

Algorithm BRCA1 MSH2 MLH1 TP53

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Theoretical/Unweighted Computational Prediction Methods

SIFT 0.31 0.94 0.46 0.90 0.52 0.72 0.75 0.84

Align-GVGD 0.94 0.71 0.55 0.90 0.52 0.97 1.00 0.82

FATHMM (unweighted) 0.56 0.65 0.73 0.84 0.71 0.77 1.00 0.71

Trained/Weighted Computational Prediction Methods

PolyPhen-2 0.38 0.77 0.36 0.90 0.67 0.90 1.00 0.84

X-Var 0.56 0.82 0.27 1.00 0.33 1.00 0.50 0.96

FATHMM (weighted) 0.70 0.47 0.50 0.79 0.24 0.97 NA† 1.00

† The specificity for our weighted method in this instance is uninformative as there was only one neutral mutation falling within
conserved protein domains.

The performances of alternative computational prediction algorithms have been reproduced with permission from [Hicks et al.,
2011] - copyright (2012) Wiley.
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Table 4. Performance of Computational Prediction Methods using the SwissVar
Benchmarking Dataset

tp fp tn fn Accuracy† Precision† Specificity† Sensitivity† NVP† MCC†

Unweighted Computational Prediction Methods

SIFT 15634 6318 28236 7716 0.74 0.79 0.82 0.67 0.71 0.49

PolyPhen 1 12803 8759 18603 4497 0.71 0.70 0.68 0.74 0.72 0.42

PANTHER 8283 5842 17447 5162 0.68 0.71 0.75 0.62 0.66 0.37

FATHMM (unweighted) 14311 6717 29454 9429 0.71 0.76 0.81 0.60 0.67 0.43

Weighted/Trained Computational Prediction Methods

PolyPhen 2 (HumDiv) 19782 13592 20874 3204 0.73 0.69 0.61 0.86 0.81 0.48

PolyPhen 2 (HumVar) 19928 13239 21227 3058 0.74 0.69 0.62 0.87 0.82 0.50

PhD-SNP Sequence 15695 9380 26838 8062 0.70 0.72 0.74 0.66 0.69 0.40

PhD-SNP Profile 17548 7233 27731 5161 0.78 0.79 0.79 0.77 0.78 0.57

PMut 13498 12156 23636 10159 0.62 0.63 0.66 0.57 0.61 0.23

SNPs&GO 17768 3768 29101 5655 0.82 0.87 0.89 0.76 0.79 0.65

MutPred 21365 3500 32719 2392 0.90 0.90 0.90 0.90 0.90 0.80

FATHMM (weighted) 15916 3017 19713 4496 0.82 0.85 0.87 0.78 0.80 0.65

tp, fp, tn, fn refer to the number of true positives, false positives, true negatives and false negatives, respectively
† Accuracy, Precision, Specificity, Sensitivity, NVP and MCC are calculated from normalised numbers
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