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ABSTRACT

Pro®le hidden Markov models (HMMs) are amongst
the most successful procedures for detecting
remote homology between proteins. There are two
popular pro®le HMM programs, HMMER and SAM.
Little is known about their performance relative to
each other and to the recently improved version of
PSI-BLAST. Here we compare the two programs to
each other and to non-HMM methods, to determine
their relative performance and the features that are
important for their success. The quality of the
multiple sequence alignments used to build models
was the most important factor affecting the overall
performance of pro®le HMMs. The SAM T99 proced-
ure is needed to produce high quality alignments
automatically, and the lack of an equivalent
component in HMMER makes it less complete as a
package. Using the default options and parameters
as would be expected of an inexpert user, it was
found that from identical alignments SAM consist-
ently produces better models than HMMER and that
the relative performance of the model-scoring
components varies. On average, HMMER was found
to be between one and three times faster than SAM
when searching databases larger than 2000
sequences, SAM being faster on smaller ones. Both
methods were shown to have effective low complex-
ity and repeat sequence masking using their null
models, and the accuracy of their E-values was
comparable. It was found that the SAM T99 iterative
database search procedure performs better than the
most recent version of PSI-BLAST, but that scoring
of PSI-BLAST pro®les is more than 30 times faster
than scoring of SAM models.

INTRODUCTION

Protein sequence homology detection is a central tool in
genomics. The ability to infer a relationship between two
proteins of known amino acid sequence using computers
and without laboratory experimentation gives valuable

information about many of the large and rapidly growing
number of protein sequences.

Many related proteins have similar sequences, making their
relationship easy to detect, but equally as many have diverged
to a point where their structural and functional similarity is
hard to detect from purely sequence-based data. Homology
detection methods vary in their ability to detect some of these
more distant relationships. It has been shown by Park et al. (1)
that pro®le-based methods, which consider pro®les of protein
families, perform much better than pairwise methods, which
consider individual protein sequences, and that of the pro®le-
based methods hidden Markov models (HMMs) (2,3) perform
best. A more recent study by Lindahl and Elofsson (4)
con®rmed the relative performance of pairwise and pro®le
methods and showed, further, that at the family and super-
family levels pro®le methods are also superior to threading
methods as represented by THREADER (5).

Currently there are two popular pro®le HMM software
packages: HMMER (6) and SAM (7,8). Little is known about
their relative performance or the features that are important for
their success. The work described here focuses on these issues.
Because of the large number of parameters affecting the
performance of pro®le HMMs the approach taken was to use
the default settings wherever possible, making the results
representative of what an informed but inexpert user might
achieve. It should be noted, however, that an expert user may
be able to obtain an improved performance with either method
by ®ne tuning the parameters and conditions (9). Great care
was taken to compare the methods without bias.

Our results differ from those of other studies (4,10) that
have used pro®le HMMs. This is discussed in detail in a
separate section towards the end of this paper.

The general organisation of this paper is as follows. First we
introduce the pro®le HMM procedure and the two packages,
HMMER and SAM. Then we describe the tests we chose to
measure their performance and explain the technical aspects
of the comparison. Next we discuss the results and put the
performance of pro®le HMMs into a broader context of other
sequence-based methods, including PSI-BLAST. Finally, we
compare our results to those of the previous studies, as
mentioned above.

THE PROFILE HMM PROCEDURE

The operation of pairwise sequence comparison methods
(e.g. simple BLAST, http://www.ncbi.nlm.nih.gov/BLAST,
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http://blast.wustl.edu) essentially consists of a single step: the
program takes two sequences and calculates a score for their
optimal alignment; this score may then be used to decide
whether the two sequences are related. The use of pro®le
HMMs in homology detection is more complicated because of
the need to ®rst construct the pro®le HMM. The procedure
consists of three steps. (i) A multiple sequence alignment is
made of known members of a given protein family. The
quality of the alignment and the number and diversity of the
sequences it contains are crucial for the eventual success of the
whole procedure. (ii) A pro®le HMM of the family is built
from the multiple sequence alignment. The model-building
program uses information derived from the alignment together
with its prior knowledge of the general nature of proteins.
(iii) Finally, a model-scoring program is used to assign a score
with respect to the model to any sequence of interest; the better
the score, the higher the chance that the query sequence is a
member (homologue) of the protein family represented by the
model. In this way each sequence in a database can be scored
to ®nd the members of the family present in the database.

This assessment compares the performance of the model-
building (step 2) and model-scoring (step 3) programs in the
two packages. The performance is measured by the ability to
detect members of a protein family in sequence databases
given a multiple sequence alignment for that family. A variety
of alignments were used in this work, some of which might be
expected to be more suitable for one package, some for the
other, and some about which there were no expectations. A
detailed explanation of our tests is provided later in the paper.

THE TWO PROFILE HMM PACKAGES

In this section we brie¯y introduce the two pro®le HMM
packages assessed in this work. The technical issues associ-
ated with their comparison are discussed later.

HMMER

Developed chie¯y by Sean Eddy, the HMMER package (6;
http://hmmer.wustl.edu) is freely available under the GNU
General Public License and includes the necessary model-
building and model-scoring programs relevant to homology
detection. In addition, the package contains a program that
calibrates a model by scoring it against a set of random
sequences and ®tting an extreme value distribution to the
resultant raw scores; the parameters of this distribution are
then used to calculate accurate E-values for sequences of
interest. All HMMER models used in this study were
calibrated in this way.

In this comparison version 2.2g of the package was used,
which was released in August 2001.

SAM

Developed by the bioinformatics group at the University
of California, Santa Cruz, the SAM package (7,8;
http://www.cse.ucsc.edu/research/compbio/sam.html) is not
open source, but it is free for academic use and the authors
retain no rights over the models produced with the software.
The package contains the necessary model-building and
model-scoring programs as well as several scripts for running
them. In particular, the fw0.7 script recommended in the
documentation was used for all SAM model building; for

model scoring the relevant program was used directly. Unlike
HMMER, the package does not include a model-calibration
program. The SAM model-scoring program calculates
E-values directly using a theoretical function that takes as its
argument the difference between raw scores of the query
sequence and its reverse.

Perhaps the most important component of the SAM package
is the target99 script (8) commonly known as T99, which
automatically generates a multiple sequence alignment suit-
able for model building. The script takes as its input a single
seed sequence or an initial alignment and iteratively searches a
sequence database in a manner similar to PSI-BLAST (11).
T99 is not under direct assessment here due to the lack of an
equivalent component in the HMMER package.

Version 3.2 of SAM was used, released in July 2000.

REMOTE HOMOLOGY DETECTION TESTS

We subjected the pro®le HMM methods to two tests, which
were to some extent complementary in their nature. We ®rst
give an overview of the tests, highlighting the key points and
contrasting the differences, and then describe them in
technical detail. The two tests were as follows. (i) A test
against nrdb90 (12), a non-redundant database of all known
protein sequences. The assessment was restricted to just two
protein families (globins and cupredoxins) because of the need
to classify all hits by hand, but in return we were able to
explore a wide variety of multiple sequence alignments from
which to build the HMMs, ranging from fully automated to
expert curated and from purely sequence-based to structural.
Because only two protein families were investigated, the large
size of the database (in particular the fact that it contained
many homologues of the two families) was crucial for
statistical signi®cance of the results. (ii) An all-against-all
match using a database of approximately 3000 proteins of
known structure. For each member of the database an
alignment of homologous proteins was created using fully
automated methods with single sequence inputs, and models
created from these alignments were scored against the original
database. Evolutionary relationships of all proteins in the test
set were provided by the SCOP (13) database, allowing for
automatic classi®cation of the results. Although limited to a
small number of alignment methods, this test was very
comprehensive, as representatives from every protein family
of known structure were included in the database.

We also brie¯y investigated the low complexity masking
capabilities of the two methods and their computing time
requirements. The protocols for these are described together
with our ®ndings in the Results section.

Next we describe the two remote homology detection tests
in detail.

Test 1: The globin and cupredoxin families

A variety of models representing the globin and cupredoxin
families, as de®ned by the SCOP (13) family `Globins' and the
superfamily `Cupredoxins', were searched against the nrdb90
database (12). All hits were then classi®ed as either true, false
or uncertain based on the following criteria. (i) Database
annotation. Globins and cupredoxins were chosen for this test
because they are well known families with reliable annota-
tions in the databases. (ii) Pairwise comparisons with well
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annotated homologues. For poorly annotated sequences with
highly signi®cant pairwise matches to well annotated homo-
logues the annotations from the well annotated homologues
were used as above. (iii) Structural understanding of the two
families. Members of our group have carried out detailed
structural and key residue analyses of the two families (14;
J.Gough, unpublished results) and this knowledge was used in
a number of cases. (iv) All hits about which clear-cut decisions
could not be reached were classi®ed as uncertain. The
classi®cation is available on our website (http://stash.
mrc-lmb.cam.ac.uk/HMMER-SAM/).

The models used in this test were built from a large number
of alignments listed below. Each alignment was used with
both packages and the results were compared; the T99
alignments were either re-formatted or re-aligned beforehand
(see the subsection on input alignments later in the paper).

The manual alignments used in test 1 were: (i) a revised
version of the alignment (15) of selected members of the
globin family based on a detailed structural analysis (denoted
G-STR); (ii) the full PFAM globin alignment (16) (denoted
G-PFAM); (iii) an alignment of the cupredoxin family
(J.Gough, unpublished results) similar to Bashford et al. (15)
(denoted C-STR). Here G stands for globins and C for
cupredoxins, STR for structural and PFAM for a PFAM
alignment. Each of these alignments was also used as input for
the SAM T99 producedure; the resultant T99 alignments are
called G-STR-T99, G-PFAM-T99 and C-STR-T99.

In addition, a single representative member of each family
(1rse for globins and 1plc for cupredoxins) was used as a seed
for T99; the resulting T99 alignments are denoted G-1S-T99
or C-1S-T99, where 1S stands for single sequence input.
Finally, the same two sequences were used in a procedure
comprised of a WU-BLAST (http://blast.wustl.edu, version
2.0a19) search of nrdb90, followed by a ClustalW alignment
of hits with a P-value score better than 1 3 10±5; these are
denoted G-1S-BL&CLW and C-1S-BL&CLW.

Test 2: the SCOP all-against-all

The SCOP database (13; http://scop.mrc-lmb.cam.ac.uk/scop/
index.html) provides an accurate and reliable classi®cation of
all proteins of known structure based on structural, functional
and sequence evidence. As many of the relationships between
proteins that are clear at the structural and functional levels are
dif®cult to detect at the sequence level it represents a hard test
set for assessment of sequence comparison methods. Because
it covers all proteins of known structure it is also very
comprehensive. Starting with Brenner et al. (17) it has indeed
been used in a number of previous studies of this type (1,4).
The sequence set ®ltered to 40% sequence identity (which
ensures that only remote homologues are present and hence
that the test is suitably dif®cult) is provided by the ASTRAL
compedium (18). Version 1.50 of the database was used and
the test set consisted of 2873 sequences.

Taking each sequence in the set as a seed, two automatic
methods were used to create multiple sequence alignments:
T99 (1S-T99) and a WU-BLAST search of nrdb90 followed
by a ClustalW alignment (1S-BL&CLW). These were iden-
tical to the corresponding methods used in test 1, in particular
T99 was iterated on nrdb90. Models generated from these
alignments were then scored against all seed sequences. Hits
from all models were pooled, sorted by E-value and classi®ed

as either true, false or uncertain according to their SCOP
classi®cation. Hits to the same superfamily as the model were
classi®ed as true, hits to the same fold as uncertain and hits to a
different fold as false. Two signi®cant exceptions to this
general scheme were that: cross-hits between the Rossmann
and Rossmann-like folds (3.2, 3.3 and 3.4 in the 1.50
classi®cation) were considered uncertain, and hits to the
seed sequence from which the particular model was built were
ignored altogether as too easy. Using these criteria there was a
total of 36 612 possible true and 8 173 744 false pairwise
relationships.

TECHNICAL ASPECTS OF THE COMPARISON

There are two technical aspects of the comparison between the
two packages that are important for understanding the results:
our model conversion procedure and a difference in the nature
of multiple sequence alignments used for model building. A
further aspect, the search mode, is needed for reproducibility
of our results. This section is devoted to an explanation of
these issues.

Input alignments: an important difference

The SAM model-building program distinguishes between two
types of alignment columns: the aligned residues, marked by
upper case letters or - characters for deletions, and unaligned
insertions, with lower case letters or . characters (see Table 1
for illustration). The program strictly follows this convention
and the number of aligned upper case columns in the multiple
sequence alignment is therefore always equal to the number of
segments in the ®nal model. In contrast, in a HMMER-style
alignment all columns are supposed to be aligned, though the
HMMER model-building program treats the most divergent
regions as insertions. With the important exception of
alignments produced by the SAM T99 procedure, none of
the alignments used in this assessment differentiated between
aligned and unaligned regions.

When dealing with T99 alignments, which follow the SAM
convention, our principal objective was to deny SAM any
information not available to HMMER. This was achieved in
one of two ways: by simply converting all letters to upper case
and . characters to - (these alignments are called T99-UC) or
by completely realigning the sequences with ClustalW (19), a
popular multiple sequence aligment program (T99-CLW). (To
counteract poisoning due to inserted domains we removed all
insertions longer than 30 residues prior to realignment with
ClustalW.) The situation was therefore entirely analogous to
that for other alignments.

We also used the intact T99 alignments with SAM so that
the effects, if any, of the above conversions could be seen (the
alignments are called simply T99). Finally, it is possible to
pass the SAM aligned±unaligned distinction to the HMMER
model-building program in a non-default way, via the `--hand'
option in combination with the SELEX format. We wrote a
program (a2m2selex.pl) to facilitate the conversion, available
on our website (http://stash.mrc-lmb.cam.ac.uk/HMMER-
SAM/). This method was only used in test 2, and T99
alignments used in this way are called T99HAND.
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Conversion between HMMER and SAM models

In order to be able to compare the model-building and model-
scoring components of the two packages separately, we wrote
a program (convert.pl) to convert between HMMER and
SAM model ®les, available from our website (http://stash.mrc-
lmb.cam.ac.uk/HMMER-SAM/). Each alignment used in this
assessment therefore gave rise to four sets of results: two using
the default procedures for each package (denoted HH for
HMMER and SS for SAM) and two where models built by one
package were converted using our program and scored by the
other package (denoted HS for HMMER-built models con-
verted to the SAM format and scored by SAM, and vice versa
for SH). In this way models produced by each program were
scored independently by both model-scoring programs and,
conversely, both model-scoring programs were assessed on
essentially the same models.

Due to a difference in model topologies there was a small
loss of information when converting from SAM models to
HMMER ones, but no information was lost the other way; in
particular, using the script to convert from the HMMER
format to the SAM format and back again resulted in a ®le
identical to the initial one. See our website for further
information.

The local/local search mode was used

There are two popular ways of using pro®le HMMs: by forcing
a global alignment to the model and a local one to the query
sequence (the domain or global/local mode) or by using the
local mode for both. (By global alignment we mean the mode
whereby a match is forced to each segment of the model or
every residue of the query sequence, as opposed to the local
mode where only the best scoring region is considered.)

Which approach is better in a real application is debatable
and dependent on the problem at hand. In our experience the
local/local mode is the one better suited for genome annota-
tions because it is more robust with respect to inserted
domains and gene prediction errors. In test 2 each sequence in
the test set is hand curated to represent a single complete
domain in the corresponding protein structure. As a result, the
global/local mode performs signi®cantly better on this test, but
this is not representative of real sequence databases.

In order to compare both methods under realistic condi-
tions, we used the local/local mode for both methods in all of
our tests.

PROFILE HMM RESULTS

Model building

In all the cases we investigated SAM models performed better
than HMMER models when both were scored with the same
program, i.e. SAM models converted to the HMMER format
(SH) were better than native HMMER models built from the
same alignment (HH), and HMMER models converted to the
SAM format (HS) were worse than native SAM models (SS)
(see Table 2a and Fig. 1 for illustration).

Furthermore, in all cases bar one this was true across all
error rates. The single exception was the case of WU-BLAST
followed by ClustalW (1S-BL&CLW in test 2; Fig. 1A) where
HMMER-built models performed better at very low error rates
(<0.5%). This behaviour was caused by a small number of
`poisoned' alignments, in which some of the sequences
contained parts of domains from other superfamilies. When
these alignments (<1% of the total) were removed from the
test set SAM performed better across all error rates. HMMER
model building was less susceptible to this type of error
because the columns that contained poisoning sequences also
tended to be poorly aligned and thus were averaged as
insertions (see the earlier subsection on alignments).

Overall, this means that SAM consistently produces better
models than HMMER, even though it is less robust with
respect to poisoned alignments that do not follow its
distinction between aligned and unaligned columns.

Model scoring

SAM scoring (HS and SS) performed better on high quality,
diverse alignments; it did so overwhelmingly on both manual
globins alignments (structural and PFAM, or G-STR and
G-PFAM; data not shown for G-STR) and up to a certain error
rate also on the T99 alignments in test 2 (1S-T99 and
1ST99HAND), but on our structural cupredoxin alignment
(C-STR) HMMER scoring performed better. Similarly, while
HMMER scoring was better for the hand curated PFAM
alignments run through T99 and realigned with ClustalW
(G-PFAM-T99-CLW), SAM scoring was better when the
same procedure was applied to our hand curated structural
alignment (G-STR-T99-CLW; data not shown) (see Table 2a
and Fig. 1 for illustration).

As the above dif®culties illustrate, we have not managed to
extract any de®nitive rules governing the relative performance
of the model-scoring programs, even though it was almost

Table 1. A comparison of alignment conventions

HMMER alignment convention
1aac ---EAALKGPMMKKEQAY--SLTFTE----AG-TYDYHCTP--H--PFMR
1bqk ---DGAEA.FKSKINENY--KVTFTA----PG.VYGVKCTP--HYGMGMV
2cbp ---STCNTPAGAK---VY--TSGRDQIKLPKGQSY-FICNFPGHCQSGMK
1nwp VIAHTKVIGAGEK--DSV--TFDVSKLA--AGEKYGFFCSFPGHI-SMMK
1rcy -GTGFSPVPKDGK--FGYTDFTWHPT----AG-TYYYVCQIPGHAATGMF
SAM alignment convention
1aac .--EAALKGPMMKKEQAY..SLTFTE....AG.TYDYHCTP..H..PFMR
1bqk .--DGAEA-FKSKINENY..KVTFTA....PG.VYGVKCTP..HygMGMV
2cbp .--STCNTPAGAK---VY..TSGRDQiklpKGqSY-FICNFpgHcqSGMK
1nwp vIAHTKVIGAGEK--DSV..TFDVSKla..AGeKYGFFCSFpgHi.SMMK
1rcy .GTGFSPVPKDGK--FGYtdFTWHPT....AG.TYYYVCQIpgHaaTGMF

Note that SAM distinguishes between two types of columns: aligned (upper case residue or - for deletions)
and unaligned (lower case residues and .). A SAM-style alignment therefore contains more information than a
HMMER-style one.
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always the case that one of them performed better than the
other on both sets of models.

Multiple sequence alignments

The previous two subsections show that SAM builds better
models than HMMER and that the relative performance of the
model-scoring components varies. However, often the most
important factor affecting the overall performance was not the
particular pro®le HMM program, but rather the input align-
ment used.

As can be seen in Table 2b, the best-performing alignment
for globins was the PFAM alignment (G-PFAM), but the fully
automated SAM-T99 procedure seeded from a single member
of the family (G-1S-T99) with 433 sequences in the ®nal
alignment came second and performed better than the manual
structural alignment consisting of only 12 sequences (G-STR).
Running the PFAM alignment through the T99 procedure (G-
PFAM-T99) worsened performance, though for the structural
alignment this did lead to a marginal improvement at larger
error rates (G-STR-T99). Realigning the T99 alignment with
ClustalW resulted in a loss of performance in both cases (G-
PFAM-T99-CLW and G-STR-T99-CLW) and this loss was
greater than that from merely removing the aligned±unaligned
distinction (G-PFAM-T99-UC and G-STR-T99-UC). We
nevertheless chose ClustalW for test 2 as the difference
between the HMMER and SAM models was smaller using it.
The results for cupredoxins were similar. In test 2, using
ClustalW to realign T99 alignments (1S-T99-CLW) again
resulted in a ~10% drop in performance.

To sum up, it is clear that a good alignment for use with
pro®le HMM remote homology detection procedures needs
to include a large number of diverse sequences, correctly
aligned and with unalignable portions either excised or
appropriately marked. The only way of producing such
alignments is via an iterated database search, so the lack of

Table 2a. The numbers of true homologues found in tests 1 and 2, at 1% error rate, for a selected number
of methods, concentrating on comparisons of model building and model scoring

Alignment Model building and scoring method
HH HS SH SS

(i)
C-STR 117 113 129 116
G-PFAM 557 590 560 593
G-PFAM-T99-CLW 554 549 560 554
(ii)
1S-BL&CLW 5536 5247 5929 5965
1S-T99-CLW 6620 7205 7559 8128
1S-T99, 1S-T99HAND 7414 7813 8283 8784

(iii) Number of nrdb90 iterations
0 3 30

PSI-BLAST 4330 7897 7462

(i) Results for test 1; (ii) for test 2; (iii) results of test 2 applied to PSI-BLAST (the case with zero nrdb90
iterations being pairwise NCBI BLAST). G stands for globins, C for cupredoxins, 1S for a single-sequence
seed; PFAM indicates a PFAM alignment, STR a structural alignment, G-1S is the sequence of 1rse; T99 is
the SAM T99 procedure, either default (T99), with all columns in the resultant alignment converted to upper
case (T99-UC), or realigned with ClustalW (T99-CLW). Finally, HH and SS are the default procedures for
HMMER and SAM, respectively, HS indicates a HMMER model converted to the SAM format and scored by
SAM, and vice versa for SH. See text for further explanations.

Figure 1. Sensitivity plots for the SCOP all-against-all (test 2). The input
alignments were: (A) the results of a WU-BLAST search of nrdb90 aligned
with ClustalW; (B) T99 alignments realigned with ClustalW. In both
®gures, HH and SS are the default procedures for HMMER and SAM,
respectively, HS indicates a HMMER model converted to the SAM format
and scored by SAM, and vice versa for SH.
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a T99 equivalent in the HMMER package makes it less useful
for an inexpert user.

E-value accuracy

The E-value is de®ned as the expected number of errors per
query. In the context of test 2 this means that one would expect
on average E false positives per model with an E-value score
better than E to occur by chance. For the 2873 models used in
test 2 one would therefore expect about 29 false positives with
an E-value score better than 0.01 when results for all models
are pooled together.

For pairwise methods with accurate E-value scoring
schemes, e.g. NCBI BLAST, this is indeed what one gets
(results not shown). Unfortunately matters are more compli-
cated for pro®le methods, because of model poisoning already
alluded to in the subsection on model building (also discussed
in 9). Poisoned models systematically assign highly signi®cant
scores to sequences from poisoning superfamilies and thus
greatly in¯ate false positive counts at low E-values. As a
result, the customary plots of false positive counts against
E-value (1,17) are dominated by poisoning and therefore say
little about E-value accuracy for unpoisoned models.

To circumvent this problem we plotted the distribution of
E-values of the ®rst false hit for each model (Fig. 2). It can be
seen that the distributions for both pro®le HMM methods are
in reasonably good agreement with the theoretical curve,
although HMMER scoring is somewhat conservative and
SAM scoring somewhat optimistic. HMMER E-values are
more accurate in the crucial region around E = 0.01,
presumably because the extreme value distribution function
is being ®tted there, whereas SAM E-values (based on a
theoretical calculation) only become accurate in the high-E
limit.

The numbers of models with ®rst false positive below the
1 3 10±5 E-value level, indicative of the overall level of model
poisoning for the particular alignment procedure, were 15±35
for WU-BLAST followed by ClustalW (1S-BL&CLW) and
100±120 for T99 (1S-T99-Sx, 1S-T99HAND-Hx and 1S-T99-
CLW). All four combinations of model building and model
scoring for the particular alignment procedure ®tted within
each range.

Low complexity masking

One aspect insuf®ciently covered by the comprehensive test 2
is the ability of the methods to deal with low complexity
sequences, because of their absence from the PDB (14). As
low complexity sequences are known to cause problems for
sequence comparison methods, and because the HMMER
`null2' and the SAM `reverse null' null models are very
different, we chose 100 models from different SCOP folds at
random and scored them against three databases of low
complexity sequences with roughly 2000 sequences each. The
databases were constructed as follows: (i) the program seg
(20) was used to extract long sections of sequences from
nrdb90; (ii) PDB sequences ®ltered to 30% identity were all
reversed; (iii) PDB sequences ®ltered to 30% identity were all
randomly shuf¯ed.

WU-BLAST was also included in this test, to provide a
comparison with pairwise methods. The results are summar-
ized in Table 3; it is clear that unlike WU-BLAST, both pro®le
HMM methods make very few hits to either database and
therefore possess in their null models effective low complexity
masking systems.

Computer time

To measure the speed of pro®le HMM programs, we recorded
the times taken to build and calibrate 100 models and to score
them against our test 2 dataset of 2873 sequences. It should be
noted that each sequence in this dataset is a single protein
domain and that the sequences are therefore signi®cantly
shorter than those in other databases. The test was performed
on a computer with a single 1.3 GHz AMD Athlon processor
and 768 MB of RAM running the Linux operating system
(kernel version 2.4.2-2).

As shown in Table 4, model building is quick using both
methods, except for HMMER model calibration, which is
slow. Model scoring was on average 3.4 times faster using
HMMER, but the additional need to calibrate all models

Table 2b. The numbers of true homologues found in tests 1 and 2, at 1%
error rate, for a selected number of methods, comparing suitability for
model building of globin alignments in test 1

Method Number of hits

G-PFAM-SS 593
G-1S-T99-SS 582
G-PFAM-T99-SS 573
G-STR-SS 567
G-STR-T99-SS 567
G-PFAM-T99-UC-SS 565
G-STR-T99-UC-SS 561
G-PFAM-T99-CLW-SS 554
G-STR-T99-CLW-SS 548

G stands for globins, C for cupredoxins, 1S for a single-sequence seed;
PFAM indicates a PFAM alignment, STR a structural alignment, G-1S is
the sequence of 1rse; T99 is the SAM T99 procedure, either default (T99),
with all columns in the resultant alignment converted to upper case
(T99-UC) or re-aligned with ClustalW (T99-CLW). See text for further
explanations.

Figure 2. Distribution of E-values E of ®rst false positives in test 2. The
probability density is with respect to the log10(E) x-axis. The experimental
curves are smoothed (each model was added as a Gaussian of standard
deviation 0.1 and area 2873±1), the theoretical curve is ln(10) E exp(±E).
1S-BL&CLW is the result of a WU-BLAST search of nrdb90 aligned with
ClustalW, 1S-T99 the alignment produced by the T99 procedure; HH and
SS are the default procedures for HMMER and SAM, respectively.
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means that HMMER is only faster for databases of more than
approximately 2000 sequences; for smaller databases SAM is
faster. This difference, although signi®cant, will not affect the
feasibility of large-scale experiments.

COMPARISON TO OTHER METHODS

In order to see the performance of HMMER and SAM in the
context of other sequence comparison methods, we re-ran
test 2 on PSI-BLAST (11), the most popular iterative pro®le
method, and WU-BLAST (http://sapiens.wustl.edu/blast), one
of the best pairwise methods in Brenner et al. (17). Version
2.2.1 of PSI-BLAST was used, last updated in August 2001.
This version included the improvements described in Schaefer
et al. (21).

PSI-BLAST was ®rst iterated on nrdb90 using each
sequence in the test set as a seed, with a maximum of either
three or 30 iterations. The resulting models were saved and run
against our test set in a single iteration. In addition, we used
one iteration of the PSI-BLAST binary (blastpgp) directly on
our test set. This run is referred to as NCBI BLAST, since the
underlying algorithm is a simple pairwise gapped BLAST.

As shown in Figure 3, pro®le methods perform considerably
better than pairwise methods (as represented by WU-BLAST
and NCBI BLAST) and SAM-T99 is better than PSI-BLAST.
The relative performance has remained approximately the
same since the work of Park et al. (1), which was carried out
on a smaller dataset, but the overall coverage has dropped: in
our study, SAM T99 found 24% of the total number of
possible true hits at the 1% error rate; in Park et al. (1) the
corresponding ®gure for SAM-T98 was 34%.

Although SAM T99 detects ~10% more true homologues
than PSI-BLAST, pro®le HMM methods in general and SAM
in particular are considerably slower (see Table 4): HMMER
model scoring is 11 times, and SAM model scoring is 37 times
slower than PSI-BLAST pro®le scoring. [For large databases
PSI-BLAST appears to be even faster, by up to an order of
magnitude, presumably due to indexing, which the pro®le
HMM methods do not use. On the other hand, the SAM T99
procedure iterated on a large database does not actually search

the entire database, but only a restricted set of WU-BLAST
hits to the seed sequence (see 8 for details).]

E-values produced by PSI-BLAST appear to be more
accurate than those of pro®le HMM methods (see Fig. 2).

DISCUSSION OF PREVIOUS ASSESSMENTS

There are two previous studies (4,10) that include some
comparison of the two pro®le HMM packages. Lindahl and
Elofsson (4) is a systematic benchmark, while Rehmsmeier
and Vingron (10) use the two packages to demonstrate an
improvement due to a novel approach.

Lindahl and Elofsson (4) found SAM to be better than
HMMER at the superfamily level and vice versa at the family
level. While these ®ndings are in agreement with our results at
the superfamily level, the authors used the global/global mode
for HMMER and a local/local one for SAM (A.Elofsson,
personal communication; see also our discussion earlier in the
paper). It should be noted that the SCOP test strongly and
arti®cially favours methods using the global alignment mode,
because each sequence in the test set is hand curated to
represent a single complete domain. Lindahl and Elofsson (4)
also experienced dif®culties running SAM and were often
unable to produce error rates of <5%. These factors lead us to
believe that the true performance of the SAM package at both
family and superfamily levels is the same or better than that
suggested (4), while the true HMMER performance is almost
certainly worse.

Rehmsmeier and Vingron (10) found that HMMER per-
forms better than SAM. They tested the two methods under
substantially different conditions, which are less realistic for
database searching: they considered the numbers of false
positives for each model before the ®rst true hit, regardless of
E-value, and examined cases with up to 100 false positives.
Under these circumstances we do not think a comparison
between the two sets of results should be attempted.

In summary, we have reasons to believe that neither of the
previous comparisons provides an accurate picture of the
relative performance of HMMER and SAM.

Table 3. Hits to low complexity databases

Database Number of hits by each method
HMMER SAM WU-BLAST

1. seg 0 0 33
2. reversed 1 1 11
3. shuf¯ed 1 2 0

Table 4. Computer times per model against our test 2 dataset

Task Average time (s)

HMMER model building 0.4
HMMER model calibration 52.6
SAM model building 1.1
HMMER model scoring 17.1
SAM model scoring 58.9
PSI-BLAST pro®le scoring 1.6

Figure 3. Sensitivity plots for the SCOP all-against-all. SCOP version 1.50
was used, ®ltered down to 2873 sequences of less than 40% sequence
identity, with a total of 36 612 possible true pairwise relationships. See the
text for further details.
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CONCLUSIONS

We have examined the performance of two pro®le HMM
packages for detection of remote protein homologues,
HMMER and SAM. It is clear from our results that the most
signi®cant distinction between the two packages is the SAM
T99 script. Not only do both packages require a multiple
sequence alignment from which to build a model, but their
performance is directly related to the quality of that alignment.
The T99 script automatically produces high quality multiple
alignments well suited for building HMMs, but so far there is
no equivalent in the HMMER package.

In order to compare the model-building and model-scoring
components of the two packages independently, we wrote a
program to convert between the model formats used by the
two packages. We found that SAM consistently produces
better models than HMMER, i.e. the SAM model built from a
given alignment and converted to the HMMER format using
our script performs better than the native HMMER model built
from the same alignment. The relative performance of the
model-scoring components varies.

The E-value scores produced by both methods have similar
reliability. If HMMER model calibration is included, then
HMMER scoring is faster for searches of more than 2000
sequences, SAM being faster for smaller ones. This difference
does not affect the feasibility of large-scale studies.

Comparing the performance of HMMs to other methods, the
relative results on a SCOP all-against-all test (our test 2) are
similar to those obtained by Park et al. (1), namely SAM T99
is somewhat better than PSI-BLAST and the pairwise methods
perform poorly in comparison. We found PSI-BLAST scoring
to be more than 10 times faster than HMMER scoring
(excluding model calibration).
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