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ABSTRACT

Many classification schemes for proteins and
domains are either hierarchical or semi-hierarchical
yet most databases, especially those offering
genome-wide analysis, only provide assignments
to sequences at one level of their hierarchy. Given
an established hierarchy, the problem of assigning
new sequences to lower levels of that existing
hierarchy is less hard (but no less important) than
the initial top level assignment which requires the
detection of the most distant relationships. A solu-
tion to this problem is described here in the form of
a new procedure which can be thought of as a
hybrid between pairwise and profile methods. The
hybrid method is a general procedure that can be
applied to any pre-defined hierarchy, at any level,
including in principle multiple sub-levels. It has been
tested on the SCOP classification via the SUPER-
FAMILY database and performs significantly better
than either pairwise or profile methods alone.
Perhaps the greatest advantage of the hybrid
method over other possible approaches to the pro-
blem is that within the framework of an existing
profile library, the assignments are fully automatic
and come at almost no additional computational
cost. Hence it has already been applied at the SCOP
family level to all genomes in the SUPERFAMILY
database, providing a wealth of new data to the bio-
logical and bioinformatics communities.

INTRODUCTION

Hundreds of complete genomes have been sequenced gener-
ating a massive quantity of protein amino acid sequences.
Information about these can be computationally inferred
via homology to other sequences which have had experiments
performed on them or which we know something about from
some other means. People working on individual proteins,
families of related proteins or entire genomes frequently

use databases that can annotate their sequences with some
information. This is often performed by using similarity
searches to discover that the sequence in question is a mem-
ber of a certain group, represented by a profile, where this
group might share common features such as function or
three-dimensional (3D) structure.

Most databases and methods for protein sequence annota-
tion are essentially based on a single level. For example most
of the member databases of InterPro (1): SUPERFAMILY
(2,3) (until now) only at the superfamily level based on
evolutionary ancestry, PFAM (4) at the family level based
more on sequence similarity and others based on their corre-
sponding systems. In contrast there are classification systems
that are hierarchical such as SCOP (5) and CATH (6), having
several levels of classification. There is a general problem
of placing protein sequences (e.g. from genomes) in the hier-
archy of these classification systems. The more specific
problem addressed here is, given that a sequence has already
been placed into a higher level of the hierarchy, how to
subsequently place it into a lower level in one of these clas-
sification systems. The desired characteristics chosen for
this investigation are that the method used to solve the prob-
lem: is fully automatic, is computationally tractable on all
completely sequenced genomes and across broad general,
inclusive classifications, performs significantly better than
existing methods, requires little or no work to update with
respect to new sequences and database releases, and provides
E-value scores suitably reliable for selecting low error rates.
Also considered desirable are the ability to suggest a possible
closest homologue and the ability to detect cases where
an incomplete classification means that a sequence, which
although a member of the known higher level group, belongs
to a new previously uncharacterized sub-group at the lower
level. The aim is not to create a classification system based
on statistical principles, but to create a statistical method
for annotating sequences into a biologically based classifica-
tion system which already exists.

The method and results described here are general in nature
and could equally well be used to solve the sub-classification
problem in answer to other biological questions; however,
the SUPERFAMILY database (2,3) using the SCOP (5)
hierarchical classification was chosen for testing, imple-
mentation on a genome-wide scale and application to existing

*Tel: +33 1 45 88 87 37; Fax: +33 1 45 68 87 19; Email: gough@pasteur.fr

� 2006 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nucleic Acids Research, 2006, Vol. 34, No. 13 3625–3633
doi:10.1093/nar/gkl484

 Published online July 28, 2006

http://creativecommons.org/licenses/


questions. The SCOP domain database for proteins of known
structure uses 3D structure, sequence and functional informa-
tion to classify proteins into a multi-level hierarchy. The
SUPERFAMILY database maps the SCOP classification at
the superfamily level onto all completely sequenced gen-
omes. This is the level at which sequences with evidence
for a common evolutionary ancestor are grouped together.
The superfamilies are already sub-classified by SCOP, as part
of its hierarchy into the family level, grouping protein
domains which are often more similar in sequence and usu-
ally share the same or a related function. In release 1.69 of
SCOP there are 1539 superfamilies containing 2845 unevenly
distributed families including 10 894 proteins with sequences
that are <95% identical to each other.

The SUPERFAMILY database was designed to tackle
evolutionary problems involving the most distant homolo-
gies, but has been heavily used for genome annotation and
by biologists working on individual proteins. A family level
database such as PFAM may detect less distant relationships,
but it provides the functional biologist with more specific
information. By adding the family sub-classification to
SUPERFAMILY it would substantially enrich the resource
from the point of view of the hundreds of scientists more inter-
ested in the specific view rather than the broad view. Any
method satisfying the criteria laid out as desirable objectives
above would also be useful to computational biologists look-
ing to map other existing sub-classification schemes to genome
sequences, e.g. G-protein-coupled receptors (7), globins (8,9),
zinc fingers (10), phosphoregulators (11) and so on.

The problem as specifically laid out above has not previ-
ously been solved, but there have been other related
approaches, a few of which will be mentioned. The PFAM
database has introduced ‘clans’, which are a manually curated
collection of links between families that are thought to be
related, forming connected groups; the annotation to a higher
level is trivial since it is inherent in the classification. At
UCSC computationally intensive support vector machines
have been applied to the individual class G-protein-coupled
receptor proteins (12), sub-classifying them based on ligand
specificity. Phylogenetic methods have been used in attempts
to define automatic classifications (13–15) and to a lesser
extent for fitting new sequences into existing classifications.
Subgroup-specific hidden Markov models (HMMs) have
been used at the sub-family level (16) but could be applied
at the sub-superfamily level. Many projects have used simple
pairwise methods such as BLAST (17) for trivially asso-
ciating a nearest neighbour, or in a similarly trivial way
researchers using SUPERFAMILY have been known to use
the family membership of the seed sequence of a model,
despite the fact that the models target the superfamily level.

This paper describes a method which offers a solution to
the problem. Some details of the development have been
included, which are relevant to would-be developers and
users of the method, as well as details of how and where
biologists can make use of the fruits of application, and an
example of an application to evolutionary studies.

MATERIALS AND METHODS

As described in Introduction, the SCOP database is a hierar-
chical classification in which superfamilies are sub-divided

into families. Given a query sequence, the SUPERFAMILY
database is responsible for determining which superfamily
in SCOP the domains in that query sequence belong
to. Given the superfamily, it is desirable to then extend the
information to include more specifically which family the
domain belongs to.

The hybrid method

The hypothesis which we wish to test for a domain in a query
sequence, assuming we know which superfamily it belongs
to, is whether it is a member of sub-family ‘A’. The null hypo-
thesis is that it belongs to a different sub-family ‘B’, ‘C’, etc.
To test this hypothesis we take the best pairwise score
between the query domain and any sequence in family ‘A’,
and subtract from it the best pairwise score between the
query domain and any member of the superfamily which is
a member of a family other than ‘A’. In this way if a query
sequence has comparable strong scores to more than one fam-
ily, the discrimination between families is weak; similarly to
a lesser extent, weak scores to a family will have improved
discrimination if all the other families have excessively
weak scores.

To carry out this test the method requires pairwise scores
from HMMs, which usually give a many-against-one (profile)
score. This can be thought of as a hybrid profile/pairwise
method. An HMM will give both a score and an alignment
between any sequence and the model, so an HMM guided
pairwise alignment can be achieved by aligning both the
query sequence and a superfamily sequence to the model.
The two sequences are aligned to the model and not to
each other, but an alignment between them can be inferred
from the relative positions of the residues with respect to
the model, i.e. if a residue from each sequence aligns to the
same position in the model, they are aligned to each other. A
raw score can then be calculated from the inferred pairwise
alignment using a substitution matrix and affine gap penal-
ties. Optionally, the contributions to the score of each posi-
tion may be weighted relative to the importance of that
position in the model. A description of how the weights are
calculated is shown on each model page in SUPERFAMILY,
which can be reached by clicking on one of the models listed,
e.g. http://supfam.org/SUPERFAMILY/cgi-bin/models_list.
cgi?sf¼49503.

The E-values are calibrated on the benchmark test using
an ad hoc two-parameter sigmoidal distribution (18). The fit
is shown in Figure 1. Cases that are impossible to classify
correctly in the cross-validation (because the family only
has a single member) are included for the sake of calibration.
The scoring function is as follows:

E-value ¼ K

1 þ eðln ðn2e�lS2 Þ � ln ðn1e�lS1 ÞÞ

where K, l and t are coefficients, and n is the length of the
target sequence, S is the raw score and the subscripts 1 and
2 refer to the top scoring hit and the next highest scoring
hit outside the top scoring family, respectively. Sometimes
no values for n2 are available; in this case n2 is set to 180
(average domain length) and S2 is set to 0 (no alignment).

The design of this method was not made independently
from the intended implementation on an all-genome scale.
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When applied to the genome analysis in the SUPERFAMILY
database, it requires no additional BLAST or HMM scores
and alignments to be calculated that are not already per-
formed as part of the superfamily level assignment process.
Furthermore, it does not require the creation of any additional
objects which would need to be updated with future releases
of the database, e.g. family-specific models, phylogenetic
trees and trained neural networks. Once implemented the
human and computational cost of applying this to all genomes
is almost nothing. Furthermore, it is independent of and com-
plimentary to other potential solutions to the problem which
have been used or suggested before, such as generating
family-specific models; these could simply be used in place
of the superfamily models in the current method further
improving performance.

A sequence submitted to SUPERFAMILY for analysis is
scored against all superfamily models. There is one model
for each seed sequence with 95% sequence identity at the
SCOP superfamily domain level. Alignments to the models
for each domain in the query sequence are necessarily
produced as a byproduct of scoring, and these alignments
are used as the query side of the hybrid method. For each
model, alignments to every family member are pre-calculated
and stored so that they may simply be looked up to provide
the other side necessary for the hybrid score. Potentially,
pairwise alignments between the query sequence and every
family member are available for every model without addi-
tional calculation. The potential problem of confusing multi-
ple domain hits in a single query sequence is neatly
sidestepped via use of information from the superfamily
level assignment procedure (2); the individual domain from
the whole sequence which each hit is associated with
comes out without the need for explicitly chopping the
sequence into domains. This is a crucial feature of the
approach since detecting domain boundaries is a particularly
difficult problem.

The benchmarks

The SCOP database classifies protein domains of known
structure using 3D structure information as well as functional
information from literature and sequence information. As a
‘gold standard’ it can and has been used for benchmarking
many sequence comparison methods (19–21). However in
this work there is a unique difference, inasmuch as a correct
superfamily classification is assumed, and the correct family
within the superfamily must be determined.

The sequences of each domain in SCOP obtained from the
ASTRAL database (22), sharing no more than 95% sequence
identity are used for cross-validation. Each sequence in turn
is removed from the database, along with the HMM which
was built using that sequence as a seed. Then the sequence
is compared to all the sequences/models remaining in the
superfamily, using BLAST, HMM or the hybrid method to
obtain the supposed family level classification and score.
The classification obtained by each method is compared to
the actual family classification in SCOP to determine whether
it is true or false. Cases where a domain is the only member
of its family are excluded in the benchmark, since it is
impossible to correctly determine the family; these cases
are included for E-value score calibration since they should
score poorly.

The benchmark is excellent for comparing the relative
performance of different methods, but it is very difficult to
estimate the performance in absolute terms. The dataset is
filtered to the 95% level, but this is relatively arbitrary and
designed to remove trivially easy cases. Many of the most
difficult examples of sub-classification which are tested in
this independent (from superfamily level) test would not
arise in reality since they are too distantly related to be
detected first at the superfamily level, which is a prerequisite.

Benchmarking the closest structural homologue is less easy
to do clearly, since there is no reliable automatic measure
of structural distance. Parsed and cleaned PDB-style files
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Figure 1. The E-value calibration curve of the hybrid method using the sigmoidal distribution on the benchmark test. Anomalies in the SCOP classification at the
family level are at least partially responsible for the digression in the lower part of the graph, i.e. a handful of top-scoring false positives.
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for all the domains were obtained from the ASTRAL data-
base (22) and all family members compared with the CE
structural alignment program (23). The top-scoring structural
domain by HMM, BLAST and the hybrid method were com-
pared to the Z-score produced by CE as shown in Figure 4.
The top 10 scores from the hybrid method which disagreed
with CE were examined, and at least half were due to errors
made by CE; in the other cases, both the top hits from CE and
the hybrid method seem plausible. Examining 10 at random
with lower scores, there were two cases where CE was
wrong and one case where the hybrid method was wrong,
the rest being plausible for both. The cause of these errors
is not due to CE assigning inappropriate Z-scores to pairs
of structures, but appears to be due to CE failing to detect
alignments in some cases. Sometimes the alignment is
detected by CE when one structure is compared to another,
but not vice versa, i.e. it is asymmetric.

RESULTS

The method was developed and tested on SCOP and SUPER-
FAMILY versions 1.67 and subsequently implemented in
version 1.69. The SCOP classification was used for cross-
validation on all domains filtered to 95% sequence identity,
giving a true or false result for each. This is similar in concept
to previous benchmarks (19–21) and described fully in
Materials and Methods.

The family level assignments for all (over 300 but ever
increasing) completely sequenced genomes are publicly
available via the SUPERFAMILY web server at http://
supfam.org/SUPERFAMILY/cgi-bin/gen_list.cgi and users
may submit their own sequences for analysis at http://
supfam.org/SUPERFAMILY/downloads.html. The data are

available for bulk download via FTP; instructions may be
found at http://supfam.org/SUPERFAMILY/downloads.html.
Also available via FTP is the complete SUPERFAMILY
package, which includes family level classification. Those
interested in inspecting or using the actual hybrid method
sub-family classification code may access it there.

Hybrid method

Each model in the SUPERFAMILY database has a corre-
sponding seed sequence, but in model-building the aim is
to produce a model which covers as much of the whole super-
family as possible. There may be several models for each
superfamily. Several researchers in their need for family
level classification have performed this by taking the family
that the seed sequence of the top-scoring SUPERFAMILY
model belongs to. This is not expected to work very well,
since the model is designed to span all families in the super-
family. The performance of this approach is shown in
Figure 2 labelled ‘HMM score’. The curves in this figure
were obtained by plotting the true versus false positives
(see the benchmark in Materials and Methods) in order of
increasing score, i.e. decreasing strength of assignment.

Classification of sequences at the SCOP superfamily
level is the ultimate remote homology detection problem,
but given the superfamily, determining the family level clas-
sification within the SCOP hierarchy is much easier since
the sequences are more closely related. For this reason, a
pairwise method such as BLAST may be sufficiently power-
ful (whereas superior profile methods such as HMMs are
needed at the superfamily level). The performance of family
level assignment via the family membership of the sequence
in SCOP with the best BLAST score is also shown in
Figure 2.
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Figure 2. Out of a possible 8775 family classifications in SCOP 1.67 between domains with <95% sequence identity, these are the numbers of true and
false positives plotted with increasing value for three different scores: the family of the seed sequence of the top-scoring HMM, the family of the top
scoring BLAST hit and the family chosen by the hybrid method. Approximately, the last 400 classifications for each method are not shown due to a requirement
of E-value < 100.
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Since the sub-family classification problem is relatively
easy, if BLAST was used it would provide useful additional
information to associate with the superfamily assignments;
this in itself is a worthwhile end. However this would merely
be an informatics gain, rather than actually achieving
something beyond that which is possible with existing bio-
informatics resources and some effort. Although it is not
entirely needed for a useful family level classification, a gen-
eral hybrid method was developed which surpasses both the
HMM scores and the BLAST scores, and is more widely
applicable to other sub-classification problems. The results
complete the trio shown in Figure 2. BLAST is expected to
perform very well on closely related sequences, and HMMs
are expected to have the capacity to detect the more distant
relationships that are beyond the reach of most pairwise
methods (19,21). It was hoped that a hybrid HMM-based
method that can be made pairwise would perform at best
as well as each individual method at the two extremes, but
these hopes were exceeded as the hybrid method out-
performed both individual methods across the whole range.
A full description of the algorithm can be found in Materials
and Methods.

Rarely in biological sequence analysis can anything be
inferred from a negative result. The power of the hybrid
method is such that there is a potential to predict the presence
of new families from a negative result. The benchmark test
was repeated going from the worst scores to the best, and
now including single-member families. The single member
families represent true positives in the cross-validation
since they are unique, and all other sequences from the first
benchmark represent false positives regardless of whether
the correct family is assigned or not. As shown in Figure 3
one in three sequences with an E-value >0.05 would
belong to a new family for which there is no structural
representative.

Development

The development process of the method represents a large
part of this work. The process itself may not be interesting
but it is worth noting a few of the results and lessons learnt
from it.

(i) The hybrid method, like BLAST, uses a substitution
matrix. Various substitution matrices were tested but the
default BLOSUM62 matrix was found to be the best.

(ii) Similarly to pairwise methods affine gap penalties are
used. Parameterization led to the selection of a ‘gap
open’ penalty of 3 and a ‘gap extend’ penalty of 0.8. The
gap penalties, in particular ‘gap open’, are lower than
the BLAST default values. This is due to the fact that
the alignment is handed down from the superfamily-
based HMM and, being aware of other sequences in
the superfamily, is less locally refined on the pair; the
choice of gap penalty does not affect the alignment.

(iii) Key (conserved) sites in an HMM contribute much more
to the HMM score than other (more variable) sites. The
relative importance of each position in the HMM can be
calculated and used as a weight. The value from the
substitution matrix for each position in the pair alignment
was multiplied by the weight for that position in the
model to include this information. The more weighting is
used, the more the method performs similar to the original
HMM score (as you would expect), and the optimal
performance was ultimately achieved without weighting.

(iv) The E-value scores from the method were calibrated on
the cross-validation data, and using a sigmoidal distri-
bution a reasonable fit was produced, except at low error
rates, which can potentially be explained by a small
number of misclassifications in SCOP. The calibration
on SCOP 1.67 was checked against version 1.69 and the
difference was not great enough to merit changing it.
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Figure 3. The ability of the hybrid method to predict when a query sequence is the member of a new family within the superfamily as tested on SCOP 1.67. The
red curve starts at the origin with the highest score and then decreases in value from left to right.
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(v) As alluded to above, inspection of the top-scoring
false positives has suggested inconsistently classified
domains. Some of these will be re-classified in the next
version of SCOP, e.g. sigma factors 1rp3 (N-terminus of
chain A) and 1l0o (chain C). For others there is already a
note in SCOP, e.g. restriction endonucleases BstyI have
local sequence similarity to BglII.

(vi) Four different selection methods for the simple score
and null score were tested. The most comprehensive
compares the query sequence against each of the super-
family member sequences in turn, and repeats this once
for the alignment produced by each HMM; the top two
scores to different families from all comparisons are
used. The time taken scales with the square of the
superfamily size. The selection process which was
chosen, however, only does the comparisons for align-
ments from the two top-scoring HMMs from different
families. The time taken scales with double the super-
family size and has almost no loss in performance, but
has a significant advantage over using a single alignment
(which would only halve the time taken).

Application to SUPERFAMILY

The hybrid method has been integrated into the SUPERFAM-
ILY database as a solution to classifying protein domains at
the SCOP family level given an existing superfamily-level
assignment; this generates a wealth of data with numerous
applications. Query sequences submitted on-line now have
the family information as well as the superfamily information
that was provided before. Family level assignment has also
been added to the scripts and files which are available for
external users to install locally. Furthermore, family classi-
fication has been calculated for over 300 completely
sequenced genomes, and some other sequence sets such as
Uniprot (24). These genome assignments are available for
browsing via the SUPERFAMILY server web interface as
well as on the FTP site for bulk downloads; researchers
have already accessed these data before publication and are
working with it for genome annotation (25).

Family level classification within SCOP gives far more
function-specific information than the broader superfamily
level, so it is used in projects such as this one on transcription
factor predictions (26), since some superfamilies contain
both families which are and are not transcription factors.
Future studies of specific gene families and superfamilies
(e.g. (10,27) and many more) will benefit not only from hav-
ing their members identified in the genomes, but also already
broken down into their constituent sub-families. Specifically,
the grouping of immunoglobulin genome sequences into their
sets (V-set, I-set, etc.) is being used by Chothia et al. (private
communication).

Application of Gene Ontology (GO) (28,29) to SCOP and
SUPERFAMILY has been ongoing at the European Bioinfor-
matics Institute (EBI) for some time, but has been hampered
by the fact that the superfamily level does not map well to
functional ontologies. It is expected that the more function-
ally specific family level classification will allow a serious
improvement in the GO and ultimately lead to the generation
of new terms.

Structural genomics projects (30,31) focus on amongst
other things, solving the structures of new folds. For seq-
uences of unknown structure which have an assignment to
a known superfamily, the hybrid family level classification
is able to suggest those which could be members of a new
sub-family of the superfamily, for which there is currently
no 3D representative. These sequences with the poorest
scores at the family level to existing families make excellent
targets for structural genomics projects that are interested in
solving new members of known folds. In addition to family
level classification, the pairwise nature of the HMM-guided
hybrid method suggests a closest structural homologue for
each domain. This information is useful for selecting
templates for 3D protein structure prediction in homology
modelling (32). Figure 4 shows the improvement achieved
by the hybrid using the CE structural comparison (23) as a
benchmark. Unfortunately all automatic structural alignment
algorithms are imperfect, so this benchmark can only give
some qualitative comparison.

Direct comparisons of these results in SUPERFAMILY
to independent work are not possible since this exact problem
has not been addressed before. However, a brief comparison
of results to one of the related pieces of work listed in
Introduction (15) (Bayesian evolutionary tree estimation
or Bete classifier) was performed. This method differs greatly
in conception from the work of this paper since it attempts to
define the sub-grouping de novo, rather than place sequences
into an existing classification. The Bete classifier was applied
to SH2-domain containing proteins with the result that they
suggest ‘a new subfamily assignment for Src2_drome and a
suggested evolutionary relationship between Nck_human
and Drk_drome, Sem5_caeel, Grb2_human and Grb2_chick’.
As a result of the work presented here the SUPERFAMILY
database has sub-family classifications for most known
sequences across all families of known structure; thus, it is
trivial to look up these sequences. The hybrid method assigns
these sequences to families which group the above sequences
in the same way as the Bete classifier, so it is most likely that
the original grouping referred to in the Bete paper was a
mistaken annotation in SwissProt. In fact, this mistake has
subsequently been rectified and and they are now annotated
in agreement with both the hybrid method and the Bete
method.

Paralogy versus orthology

In the long run the aim of this work is to help further our
understanding of the evolution of proteins. As an example
of such an application, divergence within a superfamily was
examined. We define a superfamily as grouping protein
domains with evidence for a common evolutionary ancestor,
so there are no evolutionary relationships between superfami-
lies. Domains within a superfamily however, may diverge
from each other over evolution to create new families within
the superfamily. Figure 5 shows the relative distribution
of paralogous versus orthologous evolutionary events which
have lead to the divergence of families within 374 super-
families in 259 genomes in the SUPERFAMILY database.
Comparing paralogy and orthology (33) between families
in this way gives an informative and novel overview, since
comparisons between individual protein sequences will be
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dominated by how you choose to define the proteome,
particularly with respect to numbers of splice variants.

The data shown in the graph are conservative, inasmuch
as only events which we can be certain about are shown. If
a superfamily contains two families which are both present
in the genomes containing that superfamily, then we can
presume that a paralogous event has taken place. If a super-
family contains two families which occur in separate groups

of genomes, i.e. never both in the same genome, then we can
presume that an orthologous event has taken place. If,
however a superfamily has four families (A, B, C, D), and
two families (A, B) occur in one group of genomes with
the other two (C, D) occurring in a separate group of gen-
omes, but neither ‘A’ nor ‘B’ is ever seen with ‘C’ or ‘D’
then we can presume one orthologous event, one paralogous
event, plus a third event which could be either orthologous
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or paralogous; in this case only one of each event is counted
although a third unknown event exists.

The observations shown in Figure 5 support the model of
domain duplication followed by subsequent divergence as
the dominant evolutionary process creating new function
within a protein domain via single-point mutations. This is
distinct from previous work (34,35) which addresses gene
duplication followed by subsequent recombination in multi-
domain proteins via splicing. We also observe that some
superfamilies have several or many divergence events,
whereas others have none; some structures will inherently be
more stable to variations than others. Divergence of domains
via paralogy events being more common than via orthology
events tells us that an organism is more able to adapt evolu-
tionarily via expansion than by consolidation, although (data
not shown) this is more striking in eukaryotes than bacteria.

DISCUSSION

Assignment of sequences to an existing family level classi-
fication is exceedingly useful to the biological and bioinfor-
matics communities, and until now there existed no method
to achieve this on an all-genome, all-family scale. The prob-
lem of classifying sequences into pre-defined subfamilies is
relatively easy to solve compared with, for example, initial
superfamily level assignment. Therefore even a moderately
successful method can be very useful, the critical points are
simply that it has been performed, and that it can be easily
implemented on an all-genome, all-family scale. Although
the most common approach until now has been to use super-
family level HMM scores, these are not good enough; this is
actually a testament to the fact that the models are operating
(as designed) at the superfamily level. BLAST scores would
be a mediocre solution to the problem, but fail on more dis-
tant homologues, require an additional scoring step and may
need the sequence to be first broken into domains somehow.
The hybrid method requires no additional scoring or aligning
steps, and the fact that it out-performs (across the whole
range of homology distances) classic profile and pairwise
methods, is an added bonus; it gives ‘money for nothing’.

The hybrid procedure itself was designed to be general,
and could equally well be applied at further levels of hierar-
chy to give sub-sub-family classification. This sort of thing
will be essential for the next major release of SCOP which
will contain a more fluid and less structured hierarchy
(SCOP authors, personal communication). As such the proce-
dure itself does not explicitly attempt to decide by computa-
tional and statistical means how families should be divided
and grouped but applies a known biologically based classi-
fication that more accurately reflects what is seen in nature.
However, the hybrid method can be used to test the self-
consistency of the classification and has been used to suggest
improvements which will be used in subsequent releases of
SCOP. Another aspect of the hybrid method which is general,
is that it is independent of the models used. PFAM and some
other databases use family level models, and it has been
suggested in the past that SCOP family level models could
be built in addition to the superfamily level models. The
hybrid method does not preclude the use of family level
models (or other augmentations) which could further improve

performance. These would come at the cost of the additional
work required to develop and maintain the extra models; the
hybrid method could even be used to group sequences for
such model building.

A few of the immediately obvious applications (most of
which are already underway) include functional annotation
of genomes, furthering development of GO for SCOP, studies
of individual sequence families, prediction of new families
for structural genomics, suggesting the most closely related
structure for homology modelling, working with functional
sets of domains such as transcription factors, improving the
existing hierarchy in SCOP and application to other databases
such as Gene3D (36) and PFAM. The hybrid method can be
applied to the sub-level of any existing classification for
which there is some (preferably profile-based) homology
search at a higher level, and should out-perform classical
pairwise and profile methods regardless of the clustering
properties and qualities of the classification. This work will
be an invaluable tool for research into the evolution of pro-
teins, and we can already see in the results here a new and
informative overview of the balance of paralogous versus
orthologous divergence, and the implications that has for
expansive versus consolidatory molecular evolution.
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