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Of the sequence comparison methods, pro®le-based methods perform
with greater selectively than those that use pairwise comparisons. Of the
pro®le methods, hidden Markov models (HMMs) are apparently the
best. The ®rst part of this paper describes calculations that (i) improve
the performance of HMMs and (ii) determine a good procedure for creat-
ing HMMs for sequences of proteins of known structure. For a family of
related proteins, more homologues are detected using multiple models
built from diverse single seed sequences than from one model built from
a good alignment of those sequences. A new procedure is described for
detecting and correcting those errors that arise at the model-building
stage of the procedure. These two improvements greatly increase selectiv-
ity and coverage.

The second part of the paper describes the construction of a library of
HMMs, called SUPERFAMILY, that represent essentially all proteins of
known structure. The sequences of the domains in proteins of known
structure, that have identities less than 95 %, are used as seeds to build
the models. Using the current data, this gives a library with 4894 models.

The third part of the paper describes the use of the SUPERFAMILY
model library to annotate the sequences of over 50 genomes. The models
match twice as many target sequences as are matched by pairwise
sequence comparison methods. For each genome, close to half of the
sequences are matched in all or in part and, overall, the matches cover
35 % of eukaryotic genomes and 45 % of bacterial genomes. On average
roughly 15% of genome sequences are labelled as being hypothetical yet
homologous to proteins of known structure. The annotations derived
from these matches are available from a public web server at:
http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY. This server also enables
users to match their own sequences against the SUPERFAMILY model
library.
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Introduction

Protein structure prediction, to discover the fold
and hence information about the probable function
of the sequence of a gene about which nothing is
known, is possible via homology to a sequence of
known structure. Protein homology searching
methods have been the central tool in sequence
ing author:

n Markov model;
rotein Data Bank.
analysis for many years, and with the growth in
the experimental determination of new sequences
following Moore's law (largely due to the genome
projects), they are of increasing value. There are
more than 50 completely sequenced genomes at
the time of writing, including ®ve eukaryotes.
They comprise approximately a quarter of a
million sequences. Improvements in the speed of
homology methods enables larger-scale studies,
and improvements in their selectivity leads to dis-
covery of novel relationships. The system pre-
sented here probably offers the best selectivity
currently available for genomic-scale studies.
# 2001 Academic Press



904 Sequence Homology Assignment
Of the sequence comparison methods available,
pairwise searches perform much less selectively
than pro®le-based, of which hidden Markov
models1 ± 4 (HMMs) are apparently the best. The
work by Park et al.5 which is the basis of this asser-
tion, is supported by our more recent calculations.6

The SAM HMM package (http://www.cse.ucsc.
edu/research/compbio/sam.html) includes an
iterative model building procedure called T99,7

which improves remote homology detection. Of
the HMM procedures available, SAM T99 is the
most effective.

The implementation of HMMs is not entirely
straightforward. In the ®rst part of this paper we
describe calculations that (i) improve the perform-
ance of SAM HMMs and (ii) determine a good pro-
cedure for creating SAM HMM for sequences of
proteins of known structure.

In the second part of the paper we describe the
construction of a library of HMMs called SUPER-
FAMILY, that represent essentially all proteins of
known structure. This library of models extends
both aspects of performance: speed and selectivity.
A sequence can be searched against it at over an
order of magnitude faster than building a model
from a query sequence and searching an equivalent
database of target sequences. Expert creation and
selection of the models, coupled with consensus
information, has greatly improved the selectivity of
the library.

In the third part of the paper we describe the
use of the SUPERFAMILY library to annotate the
sequences of over 50 genomes. For each genome,
matches are made to sequences that form roughly
half the cytoplasmic proteins. These annotations
are available from a public web server at: http://
stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/cgi-bin/
gen_list.cgi.

This server also enables users to match their
own sequences again the SUPERFAMILY model
library.

Sequences, Domains and Homologies
of the Proteins of Known Structure

Many small proteins contain single domains,
whereas nearly all large proteins contain two or
more that have linked by recombination and
which occur in other proteins in isolation, in
combination with different partners, or in both
these states.8 ± 10 This means that to search for
homologies in large sets of sequences, it is more
effective to use HMMs that represent protein
domains (whole small proteins or the evolution-
ary units of large proteins). Thus to build
HMMs representing all proteins of known struc-
ture we must ®rst have the sequences of repre-
sentative sets of proteins, the de®nition of their
domain structure and a description of their hom-
ologies. These data are available from the SCOP
and ASTRAL databases.
SCOP database

This database10 contains a structural and evol-
utionary classi®cation of the proteins in the PDB11

and usually keeps up to date to within two to six
months. In SCOP, a multi-domain protein is split
up into its constituent domains, which are then
considered separately. These protein domains are
evolutionary units in that for a protein to be
divided into domains they must be observed in
isolation or in different combinations in nature.
The fundamental units used in the work described
here are the protein domains as classi®ed by
SCOP. Note that a domain which has another
domain inserted within it will comprise multiple
chains or regions of sequence.

SCOP is a hierarchical classi®cation, and the
level of classi®cation relevant to this work is the
``superfamily''. A superfamily is de®ned as a
group of domains which have structural and func-
tional evidence for their descent from a common
evolutionary ancestor. The level below superfamily
is the ``family'' level which groups together those
domains that have clear sequence similarities. The
level above superfamily is the ``fold'' which groups
domains that have the same major secondary struc-
ture with the same chain topology. Superfamilies
clustered at this level have either no evidence to
suggest an evolutionary relationship or only very
weak evidence that requires conformation.

The superfamily level contains the most distantly
related domains and so is the highest level for use-
ful remote homology detection. Proteins in the
same superfamily often have the same function,
and usually but not always have related functions.
Since SCOP classi®es protein domains separately, a
multi-domain protein may have contributions to
it's overall function from the different domains.

ASTRAL database

Files in this database12 provide sequences corre-
sponding to the SCOP domain de®nitions and are
derived from the SEQRES entries in PDB ®les.

Domains which are non-contiguous in sequence,
i.e. parts of the domain separated by the insertion
of another domain, are treated as a whole. Their
sequences are marked with separators between the
fragments representing regions belonging to other
domains. All PDB entries with sequences shorter
than 20 residues, or with poor quality or no
sequence information are omitted.

ASTRAL also has available sequence ®les ®ltered
to different levels of residue identity. The ASTRAL
entries are generated entirely automatically and
hence have a small number of documented errors.

SUPERFAMILY database

The sequences which are used for the work pre-
sented here are available from the SUPERFAMILY
server, described in a later section, and are gener-
ated from the ASTRAL sequences yet differ in the
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following ways: (1) SUPERFAMILY sequence ®les
have any sequence shorter than 30 residues
removed rather than 20 in ASTRAL. Domains
which are split across more than one chain had
separate entries in ASTRAL which had to be joined
to make a single entry in SUPERFAMILY. The
ordering of the chains was obtained from NRDB
and NRDB90.13 Subsequent releases of ASTRAL
however now include these joined domains. (2) A
small number of documented ASTRAL errors
which are signi®cant are corrected by hand. (3)
Some errors in domain de®nitions in the SCOP
classi®cation were detected and corrected in the
SUPERFAMILY sequence ®les. These were mostly
due to typographical mistakes and have been cor-
rected in a subsequent release of SCOP. (4)
Sequences which are merely redundant shorter
parts of other sequences are removed when ®lter-
ing on sequence identity.

The SAM-T99 HMM procedure

The SAM-T99 HMM procedure was developed
by Kevin Karplus and his colleagues at Santa
Cruz. Here we give an outline of the procedure;
which is described in detail elsewhere.7

SAM-T99 starts from an initial alignment of
homologous sequences or a single query sequence,
this sequence or alignment is called the ``seed''.
The default procedure follows these steps: (1)
Using the initial sequence(s) and the WU-BLASTP
procedure (http://blast.wustl.edu/blast/), a
search of a large non-redundant protein database
is carried out to ®nd two sets of sequences. The
®rst set consists of close homologues of the query
sequence: those that match it with E-values of
0.00003 or less, and these are used to create the
initial HMM. The second set of sequences consists
of those that match the query with E-values of 500
or less and, therefore, will probably include more
distant homologues of the query sequence. (2) An
initial HMM is built from the ®rst set of close hom-
ologues from step (1). This is then used to search
the second set from step (1) for more homologues,
which are added to the ®rst set and realigned to
create a new and larger alignment from which a
new and better model can be built. (3) The initial
HMM is extended with additional homologues by
repeating step (2) for four iterations. In step (1), the
use of low E-values by WU-BLAST and a strict
HMM scoring threshold, ensures that only close
homologues are used. In the four iterations of step
(2), thresholds for the HMM score are gradually
decreased. (4) From the ®nal alignment produced
by the iterations in step (3), a model is built using
one of the scripts provided by the SAM package.
These scripts ®lter and weight the sequences in the
alignment before building the model.

The UCSC SAM package used to create the
HMMs and to score sequences with the HMMs
is available from http://www.cse.ucsc.edu/
research/compbio/sam.
Performance of a model from an alignment of
multiple homologous sequences versus
multiple models from single
homologous sequences

Previous practice by this group14 and others15

has been to build one HMM model for each pro-
tein family or superfamily using an accurate align-
ment of the sequences of diverse family members.
However, there are two problems with this
approach: one practical and one theoretical. The
practical problem is that producing accurate
sequence alignments is a not a trivial problem and
for very diverse sequences requires expert human
intervention. The theoretical problem is that it has
not been demonstrated that using one model built
from a good alignment of selected diverse
sequences produces better results than using mul-
tiple models built from different single seed
sequences and their homologues (as described
above). To investigate this second problem various
methods of modeling ®ve chosen superfamilies
were compared.

The ®ve superfamilies were selected because
detailed structural and sequence analyses were
available, along with the expert knowledge
acquired from these analyses (Bashford et al.16

and our unpublished work). These provide both
accurate structural-based hand-built sequence
alignments, and the means with which to verify
the results of homology searches.

The different models were built for each super-
family and searched against NRDB90, and then
checked and compared. All of the models were
built using the SAM T99 iterative procedure
described above.

The following four variations on the method
were investigated: (1) The accurate structure-based
alignments of the superfamily members were used
as the seed alignment for the default T99 pro-
cedure which generates the ®nal models. (2) The
accurate hand alignments were used as the seed,
but an additional constraint was applied; the struc-
turally conserved core regions of the alignment
were ®xed throughout the iterative procedure
which would usually re-align at every step. (3)
Completely automatic alignments of the same
sequences used in (1) and (2) were created with
ClustalW.17 These automatic alignments (with
many observed errors) were used as the T99 seed.
(4) The individual sequence members of the above
alignments were each used separately as seeds for
a set of models. The results from all models were
concatenated to give one result as in the other pro-
cedures.

The number of homologous sequences found by
these four procedures is given in Table 1. The hom-
ology criteria were as follows: any hit with a
``reverse'' score lower (better) than ÿ15 was taken
as a homologue, hence the comparisons presented
above depend on the scores produced by the
different methods being roughly equivalent. This
value (ÿ15) was the score found to produce a 1 %



Table 1. The numbers of hits found for different SCOP families using procedures 1-4 described in the text

Total number of hits

Superfamily Cupredoxins Cytochrome c Flavodoxins Globins Iset

Procedure (1) 94 22 121 492 8440
Procedure (2) 63 21 121 489 8431
Procedure (3) 82 22 119 492 8298
Procedure (4) 106 22 130 505 9687

These data were obtained with SAM-T98 on SCOP release 1.39. The nrdb90 database from 1998 was used including sequences
available at the time.
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rate of errors per query when using T98 (a slightly
older version of T99) to score all of PDB versus
PDB.5 The reverse score is offset against the score
of the sequence in reverse, this ®lters out low-com-
plexity matches.

The target sequences were checked by hand for
false homologues using a combination of annota-
tion, alignments, structural knowledge and further
sequence searching. A small number of unanno-
tated potential false homologues were found to be
in the search results, and only a couple of certain
false homologues. The immunoglobulins were not
checked because the homologues were too many,
and in the case of the ¯avodoxins the nitric oxide
reductases were not counted as false because they
are a well known case of sequence similarity
between different proteins.18

The results indicate that the use of multiple
models where each starts with a single sequence
produces the best results. When sequence align-
ments are used the addition of the constraints
described in (2) have little effect. The Cupredoxin
hand alignment included only members of one of
the three families within the superfamily and in
this case procedure (2) did badly. The data also
show that there is some loss in performance using
automatic alignments for seeding the T99 pro-
cedure, but not a great deal.

Further analysis of these data shows that not
only did the multiple models procedure (4) pro-
vide more hits but it found everything found by
the others. The individual models in this procedure
mostly found the same hits. Some models were
completely redundant with respect to others and
some found outliers which the others did not ®nd
(see below for a more detailed analysis of model
redundancy).

These results solve the theoretical problem of
whether one model or multiple models are most
effective, and hence remove the need for solving
the practical problem of accurately aligning dis-
tantly related sequences for the purpose of generat-
ing good hidden Markov models.

The SUPERFAMILY set of HMM Models

Seed sequences for the HMM library

Given that multiple models are to be built for
each SCOP superfamily, the question remains; how
should the models be generated? The model build-
ing procedure comparisons described show that it
is best to create models for a superfamily starting
with a set of single seed sequences. Here we use as
seeds for the models sets of what we call ``SUPER-
FAMILY'' sequences: these are based on the
sequences found for each SCOP superfamily in
ASTRAL ®ltered to remove any that have identities
greater than 95 %. Thus in the SUPERFAMILY
model library each superfamily is represented by
one or more models depending on how many
structures there are with less than 95 % sequence
identity in the given superfamily. Using the current
data this produces a model library of 4849 models
which is computationally viable both on a genomic
scale and on the scale of a fast, single query (see
below).

Studies on the effect of using models built from
seeds ®ltered to different percentages of sequence
identity showed that there is a strong fall off in the
coverage achieved, beginning when using seeds ®l-
tered to 40 % identity, and falling steadily from
30 % and below (Figure 1). Since reducing the
library from 95 % to 40 % only gives a reduction of
one-third in the computational cost, and some per-
formance is lost (e.g. �50 assignments for an aver-
age-sized bacterial genome), the seeds ®ltered to
95 % are still used. In fact, the main advantage in
using the larger library is an improvement in the
quality of the assignments, rather than an increase
in coverage. This is discussed below in the section
on the assignment procedure.

Model building parameters

There are many parameters which it is possible
to vary during the model building process. The
effects of a basic set of ®ve variations was chosen
as a guide to the best method for building the ®nal
set of models. For each set of parameters a model
library was built and scored against the sequences
as described below. The parameters which were
varied were: (1) the number of iterations in the T99
procedure. The default is 4 and up to 6 iterations
were tried. (2) The cut-off E-values of the iterations
in T99. At each iteration there is a cut off E-value
used to choose new homologues to be included in
the next model. (3) The limit on the score
threshold, and the maximum number of sequences
included in the large set of culled sequences used
in the T99 procedure. (4) The ®nal model-building



Figure 1. The effect of ®ltering
the seed sequences on percentage
sequence identity, is shown by
counting the number of domains
found in four different genomes.
As the percentage sequence identity
allowed between the seed
sequences used to build the models
increases, so more seeds, and hence
models are allowed. There is a gen-
eral trend that using more models
®nds more domains in the gen-
omes.
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script (mostly affecting the ®ltering of sequences in
the ®nal alignment). Again, the SAM package
includes a selection of scripts to use. (5) The Dirich-
let mixtures used in the regularizer for model-
building19 in T99. These encapsulate information
about the nature of the residue distributions which
are expected to be found in match states. The SAM
package includes several different prior libraries of
Dirichlet mixtures which can be used.

It was generally found that variations in (1), (2),
and (3) produced mostly linear changes. It was
possible to alter the parameters in a more ``loose''
direction improving the ratio of true to false
homologues (Figure 2(a)), but also increasing the
absolute error rate (Figure 2(b)). ``Tightening'' the
parameters made it possible to reduce the number
of badly built models, but also the coverage
(Figure 2(c)). This can be attributed to the fact that
looser parameters include more information in the
models but increase the risk of including incorrect
information, which leads to bad models. It was not
only found that the absolute coverage is increased
for looser models, which is dominated by a few
large superfamilies, but that it increased the aver-
age coverage per superfamily (excluding single-
tons) in a similar way. To optimise the model
library in its ®nal form the loosest parameters were
chosen to improve the coverage, and the models
were analysed by hand to rebuild the bad models
bringing the high error rate down. In fact, doing
this to the library removes the bad models, thus
producing entirely statistical (scoring) errors which
match the theoretical E-value very closely, which is
much lower than even the much tightest libraries
(see below and Figure 3(b)). This procedure cannot
be automated because of the complexity of the
decision-making process involved in classifying
inter-superfamily relationships as truly false. Some
very distant inter-superfamily relationships are
more acceptable than others depending on struc-
tural and functional similarities. Once the curation
has been carried out on the model library the ben-
e®ts are inherent within it, and carried forward to
all future scoring.

Looking in more detail at the various parameters
there are a few points worthy of note. The more
iterations which are used, and the larger the culled
set, the more computationally expensive the model
building becomes. Once again; an expensive pro-
cedure is affordable if it is only to be carried out
once, because the models can be used again and
again at no further cost. The changes of (4) and (5)
are of no extra cost. Using model-building script
``W0.5`` and prior library ``recode3.20.comp'' were
found to be improvements on the defaults from
work carried out at UCSC, which this work con-
®rms. Tightening the threshold in the ®nal iteration
(also suggested by UCSC) reduces the number of
bad models but does little or nothing to improve
the ratio of true to false hits. For an automatic pro-
cedure this is very desirable, but in the case of the
SUPERFAMILY model library which has bad
models re-built by hand (see below), doing this
reduces the ratio of true to false hits.

Free insertion modules

A Free Insertion Module (FIM) in a model allows
the free insertion of any number of residues at that
point in the sequence without penalty to the score.
If you have a non-contiguous domain, it is possible
to replace the inserted domain with a FIM in the
model, thus giving the same score to a non-contig-
uous sequence with a domain inserted as a contig-
uous sequence. This amounts to removing any gap
penalties at one point which might penalise an
inserted domain where one is expected. The FIMs



Figure 2 (legend opposite)
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may be (i) inserted before the T99 process, or (ii)
inserted in the ®nal model after the T99 process, or
(iii) not used at all.

Models were built for all non-contiguous
domains in the three possible ways, scored against
the PDB as before and compared. It was found
that FIMs did not make much difference, but that
using them ((i) and (ii) above) was slightly detri-
mental. The models without FIMs ((iii) above)
were found to have an HMM segment with very
high insert transition probabilities at the point of
the inserted domain. In fact the T99 procedure suc-
cessfully detects the point of insertion and allows
large insertions at very low penalty without the
need for intervention.

Curation of the model library

Once a library has been created it is tested. Its
models are scored against every SUPERFAMILY
sequence. The hits which the models make are
then classi®ed as true or false depending on
whether or not they are classi®ed by SCOP in the
same superfamily.

It was discovered from this that false positives
can arise for two reasons: (1) Errors in scoring.
These are random scoring errors which occur
because a sequence from another superfamily is
assigned a score with a higher signi®cance than it
biologically deserves because of a chance similarity
in sequence. Statistically this is expected to happen.
The E-value is a prediction of how often this will
happen by chance per query. (2) Errors in model-
building. These are errors arising at the model-
building stage. Such a problem will cause a model
to consistently score certain false homologues with
a signi®cant score, because it is inherently built in
to the model to do so. For example if members of
other superfamilies somehow get into the align-
ment during the T99 procedure, then the model
will also be built from these false sequences, caus-
ing it to match them with a signi®cant score.

Models which have errors at the building stage
((2) above) can be recognised because their false
homologues will all be related to each other, occur
frequently and are assigned very signi®cant scores.
Scoring errors ((1) above) will inevitably produce a
very few false homologues which are unrelated
and will tend to have borderline scores. It is poss-
ible to plot the proportion of the models which
make errors against different potential E-value
thresholds. A change in behaviour (characterised
by a jump discontinuity of the derivative) is
observed at the point where the errors cease to be
dominated by the model building errors, of which
there will be many more with lower E-values than
scoring errors.

Examination of the numbers of models involved
in errors of both kinds, shows that a small percen-
tage of models which have model-building errors
produce most of the observed errors. By excluding
less than 4 % of the models over 90 % of the errors
are removed. Figure 3 compares a library with and
without the 4 % of badly built models against a full
library. This theory of two types of errors is con-
®rmed by the errors of a library which has had
badly built models removed. The error rate is then
very much closer to the theoretical curve for stat-
istical errors than that given by the full library
(Figure 3).



Figure 2. (a) The ability for models to discriminate between true and false positives is shown for ®ve different
model-building parameters in an all-against-all validation test of SCOP 1.53 sequences ®ltered to 95 % sequence iden-
tity. (b) The same validation test shows the proportion of models which produce errors at a given E-value threshold.
The theoretical curve shows what would be unavoidably expected by chance. (c) The same validation test shows the
average coverage per model per superfamily excluding singleton superfamilies at any given E-value. Singletons are
excluded because they will have an average coverage of 100 % by merely ®nding themselves, and thus skew the dis-
tribution. In these Figures ®ve different model building parameters were compared. Modlib1 refers to the default par-
ameters with the exception of using an alternative Dirichlet mixture, and a very slightly lower E-value for the last
iteration, and the W0.5 script. Modlib2 refers to using ®ve iterations, and a slightly larger culled set. Modlib3 refers
to the default SAM-T99 parameters with the W0.5 script. Modlib4 refers to the default parameters with no model-
building script. Modlib5 refers to using six iterations, a much larger culled set, and higher E-value thresholds.

Sequence Homology Assignment 909
These excluded models are analysed by hand,
comparing the structures to ®nd the cause of their
persistent errors. About half of these problem
models appeared to be genuinely badly built, these
are re-run with more restrictive parameters (see
next section) and re-checked until they are behav-
ing properly. In this way all of the superfamilies
are properly represented. By doing this the ®nal
model library has 90 % of its false homologues
removed and the error rate becomes very close to
the theoretical value.

The other half of the problem models turned out
to actually be behaving well and to involve either
technical limitations in SCOP or the current lack of



Figure 3. (a) The error rate produced by models built from ®ve different model-building parameters in an all-
against-all validation test of SCOP 1.53 sequences ®ltered to 95 % sequence identity. The theoretical line shows the
unavoidable error rate expected by chance alone. (b) The error rates of the ®ve model-building parameters are shown
here once all models with false hits below an E-value of 0.01 are removed. This demonstrates that a small number
(�2 %) of bad models are causing most of the errors.
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structural data for plausible superfamily relation-
ships: (1) The majority of these models detect inter-
superfamily relationships between the few superfa-
milies which are in fact related, but classi®ed sep-
arately for technical reasons. Most notable of these
are the NAD(P) Rossmann domains and the FAD/
NAD(P), and nucleotide binding Rossmann-like
domains (see SCOP annotation). There were many
relationships detected between these three superfa-
milies and a few others such as the N-terminal of
MurD superfamily. (2) Members of SCOP superfa-
milies are classi®ed according to whether, in the
light of the currently known structural sequence
and functional evidence, they possess a common
evolutionary ancestor. Use of this evidence is con-
servative in that proteins, for which evidence of an
evolutionary relationship is not strong, are placed
in the same fold category but as separate super-
families. This means that some models may well
collect sequences that allow them to detect relation-
ships between different superfamilies that go
beyond that available from the current structural,
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sequence, and functional evidence. This is particu-
larly true for TIM barrel superfamilies.5,20 Also
1c20 and 1bmy (ARID-like domains) have
sequence homology but were classi®ed separately
in SCOP (Table 2). They have subsequently been
re-classi®ed.

(3) There are domains with local structural simi-
larities which are detected by the models but the
overall domain structure is different. 1b0p and
1fum (Figure 4) have an interesting identical dis-
continuous structural motif, but the rest of the
domain does not even share the same secondary
structure, one being all alpha and the other being
mostly beta. 1psd (residues 108-295 on chain ``a''
form a Rossmann domain) and 1b6r (residues 1-78
chain a form a Biotin carboxylase N-terminal
domain-like domain) superpose 35 residues to
within 1.14 angstroms, but the rest of the structure
does not superpose at all (Figure 5).

(4) Another common cause of these problems is
due to multi-domain proteins which have similar
(e.g. a long alpha-helical linker) or very variable
sequence around the domain boundaries. An
example is the glyceraldehyde-3-phosphate dehy-
drogenase-like two-domain proteins. As a result of
this the models blur the domain boundaries and
may detect part of the other domain. A related pro-
blem occurs when the domain boundary de®-
nitions vary slightly from one protein to another ,
in these cases they can be made consistent in the
sequence ®les. 1qtm (residues 423-447) and 1kfs
(residues 519-544) show an example of this; there
is a six-turn alpha-helix which belongs to one
domain in one de®nition, and the other domain in
the other de®nition. These domain boundaries
have subsequently been re-classi®ed.

(5) A further cause is when two proteins have
different domain boundaries which cause the parts
to be classi®ed differently. In the case of 1hfe
(chain ``s''), 1feh (residues 520-574 chain a) which
are Fe-only hydrogenases, a fragment is classi®ed
differently when it is a separate chain and when it
is part of the main domain. In the case of 1qax
(residues 4-108 chain a) and 1dqa (residues 462-586
chain a) a section which forms part of a domain is
Table 2. An example of an alignment of two
which produced a false hit
classi®ed as part of another domain when the rest
of its domain is not present. This has subsequently
been re-classi®ed.

(6) The last case is where there is a simple dis-
agreement between the SCOP classi®cation and the
homology suggested by the scores. Mostly in these
cases the homology suggested by the scores is
simply wrong. The errors are scoring errors (natu-
ral statistical ¯uctuations) and are not caused by
badly built models. For example 1sig (sigma70 sub-
unit fragment from RNA polymerase) and 2fb4
(Immunoglobulin), have 16 residues which align
almost identically yet the structures are unrelated.
The section in question is b-sheet in one structure
and helical in the other (Table 3). A rare example is
of 1zrn and 1ek1 (HAD-like proteins) which match
each other and superpose over 100 residues to
within 1.655 angstroms r.m.s. deviation, indicating
that they are clearly related structures (Figure 6),
and have subsequently been re-classi®ed in SCOP.

A further check was carried out by examination
of the lengths of hits to unknown sequences. The
library was scored against the Escherichia coli gen-
ome and the lengths of the hits were compared to
the lengths of the models. It was found that most
discrepancies in length were due to genuine inser-
tions (sometimes of entire domains). Others were
caused by matches to repeat domains, where there
is a strong sequence similarity across several
domains and the model matches parts from differ-
ent domains. The EF hands were a common source
of differences in length, as well as some circularly
permuted sequences. As these cases were relatively
few, and as there is no way to automatically separ-
ate genuine inserted domains from mis-matches,
these models were left as they were. This does not
greatly impair the homology detection of the
model, merely its ability to distinguish the domain
boundaries correctly.

Redundancy of models

Once the model library has been constructed it
may be examined and ®ltered for redundancy.
Since the redundancy of the seeds of the models is
unrelated sequences of known structure



Figure 4. (a) The structure of a single domain of the
multi-domain protein 1fum, which is classi®ed in SCOP
in the globin-like fold, and the superfamily is alpha-heli-
cal ferredoxin. This domain covers residues 106-243 of
chain b. There is a structural motif (green) which con-
sists of two helices which are sequentially joined by part
of the supporting helical structure. (b) The structure of a
single domain of the multi-domain protein 1b0p, which
is classi®ed in SCOP in the ferredoxin-like fold, and the
4Fe-4S ferredoxins superfamily. This domain covers resi-
dues 669-785 of chain a. In this case the same structural
motif(green) as in (a) has the two helices sequentially
joined by part of the supporting beta-sheet structure.

Figure 5. Shown here is the superposition of a part of
two domains from the structures 1psd (residues 108-295
on chain a) and 1b6r (residues 1-78). The coloured
region covers 35 residues which superpose with an
r.m.s. deviation of 1.14 angstroms. These domains
belong to two different superfamilies: Biotin carboxylase
N-terminal domain-like, and NAD(P)-binding Ross-
mann-fold domains.
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only indirectly linked to the percentage sequence
identity of the models other measures of similarity
must be introduced. Two measures of redundancy
can be de®ned. These are based on the common
percentage of: (1) the sequences of the multiple
alignment from which the ®nal models are built,
(2) the sequences hit by the models from 50 com-
plete genomes (see below).

For each superfamily, every model was com-
pared to every other model in the same superfam-
ily using the criteria de®ned above. Although no
two models in the library have exactly the same
state and transition probabilities, under the two cri-
teria de®ned above 30 % of the models were found
to be 100 % redundant on both counts. The covari-
ance between the percentage sequence identity of
the seed, model-building sequences, and genome
sequence hits shows that there is no signi®cant cor-
relation of the sequence identity between model
seeds and the sequence identity between genome
hits made by the models (r � 0.135). What this
means is that sequence identity of the seeds of
models is a very poor measure of similarity. Only
58 % of models score their seed sequence higher
than any other seed sequence, and only 33 % score
their seed higher than any sequence in the com-
pleted genomes. This means that a model really
does represent its superfamily ®rst and foremost,
and not its seed sequence as might be thought.



Figure 6. The superposition of PDB structures 1zrn
and 1ek1 (residues 4-225 chain a), which are in different
superfamilies in SCOP, yield 91 residues (shown) with
1.49 angstroms r.m.s. deviation from each other.

Table 3. An example of an excellent alignment of 16
residues, which can occur by chance in unrelated pro-
teins
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Superfamily Assignment Procedure

Once the model library has been built it should
be implemented in the best way possible. The aim
is to identify the superfamilies of domains in
sequences. Since most domains are part of multi-
domain proteins, the domain boundaries must
often be identi®ed as well as their assignment to a
superfamily. This can be particularly dif®cult in
the case of non-contiguous domains.

For a given query sequence for which the
domains and their superfamilies are not known,
every model is scored (using local Viterbi scoring)
across the whole sequence detecting any occur-
rences of a domain belonging to the superfamily
which the model represents. For each region
(domain) which is hit, the model which scores the
highest has its superfamily assigned to that region.
This reduces scoring (inevitable statistical) errors
by nearly a factor of 2 since incorrect matches are
only kept if they are not better matched by another
superfamily (unpublished calculations). If the
incorrect match is a member of a superfamily for
which there is a structure, then the model(s)
belonging to the correct superfamily will score
higher thus knocking out the incorrect assignment.
Using a model library built from seed sequences
with less than 95 % identity rather than 40 % does
not give a large improvement in the coverage, but
does, via the assignment procedure, increase the
quality of the assignments.

The greatest problem arises in the de®nition of
the region which is matched. Often the hits will
overlap, and when there is a domain inserted in
another, the assignment will be completely within
the other. Unfortunately using the domain de®-
nitions from the regions hit by the models alone
did not prove adequate. The assignments to 20
genomes were analysed and a complicated pro-
cedure was developed to cope with such things as
overlapping and inserted domains. This procedure
was rejected because it allowed some false assign-
ments to remain.

The solution is that every sequence region which
is hit by a model is aligned to that model. For any
given query sequence all alignments are compared
to each other and the number of residues aligned
to the same position is calculated. This number is
declared as the overlap. This means that the num-
ber of residues overlapping between alignments is
the sum of the residues with a match state in both
models. For a full sequence the regions are
assigned one by one, beginning with the highest
scoring and adding each subsequent non-con¯ict-
ing lower score in turn. A con¯ict is de®ned as an
overlap of 20 % or more. A detailed study of non-
contiguous assignments looking at all inserted
domains, long sequence matches and overlapping
assignments found only four errors out of 3041
assignments. The value of 20 % was suggested by
studies on the initial assignment procedure which
was ultimately rejected. This procedure adds a sig-
ni®cant time to the overall procedure, but it is
worth the cost and is not suf®cient to threaten the
viability of the whole procedure on a genomic
scale.

Assignment of superfamilies to
genome sequences

A model library based on the 1.53 release of
SCOP was used to carry out structural superfamily
assignments of 56 complete genomes. The domains
within sequences which hit with a signi®cant score
were uniquely assigned to a superfamily. The cre-
ation of the SUPERFAMILY structural assignment
procedure and model library has allowed compre-
hensive descriptions of the domain genome
sequences on a scale not previously possible
(Table 4). The assignments cover roughly 45 %
of prokaryotic and 35 % of eukaryotic genome
peptide sequences.

No signi®cant difference in the distribution of
the scores given to each assignment was found
between genomes. Differences were found how-



Table 4. Genome assignments using the SUPERFAMILY model library and procedure

A. The extent of the SUPERFAMILY assignments to the sequences from 56 genomes
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B. The extent of the SUPERFAMILY assignments from 11 miscellaneous sequence sets including five alternative human gene sets
and some incomplete genomes

A, The genome assignments for 56 genomes using the model library and assignment procedure. For each genome the table shows
in order: the name of the species of the genome; a two-letter code (ab); the number of genes comprising the genome; the number of
genes which have at least one SCOP domain assigned; the percentage of genes with at least one domain assigned; the percentage of
the actual sequence covered by SCOP domains because multi-domain genes may have some domains assigned but not others; the
total number of domains assigned; the total number (out of the possible 859) of superfamilies represented by at least one domain in
the genome.

B, The assignments for 11 miscellaneous sequence sets including amongst other things ®ve alternative human gene sets and some
incomplete genomes. In A the current ensembl (version 1.1) is used for Homo sapiens.
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ever between the distributions for each genome of
the sequence identities between the matched gen-
ome sequences and the sequences used to seed the
HMMs (Figure 7). For a few genomes, namely Hae-
mophilus in¯uenzae and Buchnera, a very high cover-
age of the genome was observed (the high number
of E. coli genes with 100 % identity is due to its
over-representation in the PDB). This was
accompanied by a markedly different sequence
identity distribution across the genome. They have
proportionally far more sequences with high iden-
tity to sequences of known structure than other
genomes, which accounts for the high number of
assignments.

As well as giving assignments that can be used
in new investigations into genomes, they provide
potential new annotations. An analysis of
sequences previously unassigned showed that in
Figure 7. This Figure shows high
order polynomial curves ®tted to
the number of domains found with
a given percentage sequence iden-
tity to a PDB sequence for 38 gen-
omes. The curves are normalised
on the total number of domains
found.



Figure 8. The genomes shown
here were searched for entries with
no annotation using keywords
speci®c to each genome such as
``unknown'' and ``hypothetical pro-
tein''. Please see Table 4 for a key
to the genome names. The number
of SCOP domains found by
SUPERFAMILY in sequences with
no previous annotation is shown.
Also shown are the number of pre-
viously unannotated sequences
which have a hit to a SCOP
domain with a P-value < 0.001
using Wu-BLAST. All genomes
were provided with some novel
annotation, and an average of 15 %
of the genes in a genome were pro-
vided with potential annotation
where previously there was none.
Please refer to Table 4 for a key to
the genome names.
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most genomes the SUPERFAMILY HMMs detect
large numbers of novel assignments. The extent of
this varies greatly with the quality of annotation
carried out on the genomes by the sequencing pro-
jects (Figure 8). It is also worth noting that the
novel assignments do not in general have marginal
scores as one might expect; 63 % of the novel
assignments to eukaryotes scored with an E-value
lower than 10ÿ8 which is an excellent score.

A comparison with the homologies found for
genome sequences by pairwise comparison
and other methods

To assess the improvement in the detection of
homology made by the SAM HMMs described
here, we compared their performance with that of
a pairwise sequence comparison method. For this
comparison we used WU-BLAST because previous
work has shown that this is one of the most effec-
tive of the pairwise methods.21

The 4849 SCOP sequences that were used to
seed the SUPERFAMILY HMM models were
directly matched by WU-BLAST to the sequences
of the genomes in Table 4. For this calculation we
used WU-BLAST version 2.0a19 with default par-
ameters and matrix (BLOSSUM62). All those WU-
BLAST matches with E-values of less than 0.001
were taken as signi®cant. This E-value is expected
to select matches whose signi®cance is the same as
the SAM HMM scores (see Brenner et al.21). The
ratio of the number of sequences matched by the
two methods is very similar for the different gen-
omes: the WU-BLAST procedure makes matches to
half the number of sequences that are matched by
SAM HMMs.
On a more detailed level we compared the num-
ber of ``hypothetical'' sequences matched by the
WU-BLAST and SAM HMM procedures. At this
level WU-BLAST matched between 4 % and 36 %
of those matched by the SAM HMMs (see
Figure 8).

The coverage presented in Table 4 shows that
54 % of the genes of Mycoplasma genitalium have a
structural assignment. The current SUPERFAMILY
HMM library which has been recently updated to
release 1.55 of SCOP has structural assignments to
61 % of the genes. It is possible to compare cover-
age for this genome with many other methods
because it is very small (480 sequences) and so
most methods have a comparable analysis. Gen-
Threader22 covers 53 % (Jones, personal communi-
cation) of the genes, but is computationally costly
and as a consequence has not been applied to
many genomes. PSI-BLAST23 has been used by
several groups yielding coverages of 37 % (Huynen
et al.24), 39 % (Wolf et al.25), and 41 % (Teichmann
et al.26). However, these ®gures were obtained
using the fewer PDB sequences available at the
time. Much more extensive use has been made
recently by Gene3D (http://www.biochem.ucl.a-
c.uk/bsm/cath_new/Gene3D) which covers 41 %
of Mycoplasma genitalium proteins, and has been
applied to over 30 genomes including two of the
smaller eukaryotes. None of these methods have
been applied as extensively as the work presented
here however, and most notably there is a lack of
analysis of larger eukaryote genomes.

The SUPERFAMILY public server

As well as being used to produce genome
assignments the library can be used to carry out
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structural assignments for other sequences of inter-
est. A public web server has been set up to serve
the model library at http://stash.mrc-lmb.cam.a-
c.uk/SUPERFAMILY.

The library may be searched with many (amino
acid or nucleotide) sequences at a time by entering
them in FASTA format.27 It includes a BLAST pre-
®lter to remove the most obvious assignments
without running the more costly HMM searches.
The server will return all of the structural domains
present in the sequences with the regions and links
to SCOP. The service has already been extensively
used, in particular by structural genomics groups
to aid the selection of targets.

The server also makes the assignments to the
genomes described here publicly available along
with some analysis which has been carried out.
The assignments can be browsed starting with
either a superfamily or a genome, selecting the
second from a list.

Also available on the server is an alignment pro-
cedure which allows multiple sequences to be
aligned to the models in the library. Query
sequences used in searches of the library may be
aligned to the models, or sequences can be pasted
in or uploaded in FASTA format. Genome
sequences and PDB sequences are available on the
server to include in the multiple alignments with-
out the need to enter them.

It is the intention that the SUPERFAMILY
models themselves will be made available to
download. The library will be kept updated with
every release of SCOP and is being used to provide
a feedback loop for the testing and improvement
of SCOP.

As the structural coverage of sequence space
increases, especially from the work of structural
genomics projects, the coverage of the library
will increase as will the quality of the assign-
ments.

Validation

The model library performs extremely well in
validation tests against SCOP but, as it has been
heavily trained on these validation tests them-
selves, the rigorous test is one of blind predic-
tion such as the CASP28 test. SUPERFAMILY
was submitted to the LiveBench(http://bioin-
fo.pl/LiveBench) continuous bench marking of
prediction servers, which is based on the CASP
concept and offers dif®cult targets of recently
solved structures. All targets have a BLAST29 E-
value higher than 0.1 to all other members of
the PDB. Out of the 203 targets in the Live-
Bench-2 project (collected between 13.4.00 and
29.12.00), 45 were assigned to the correct SCOP
superfamily by SUPERFAMILY and one falsely
assigned. The one incorrect assignment involved
a very short cysteine-rich protein and sequences
of this kind are known to produce false matches
with good scores.5
Discussion

The SUPERFAMILY HMM library

Here, we have described and assessed new pro-
cedures for the determination of homology by hid-
den Markov models; the construction of a library
of models that represents almost all proteins of
known structure, and the demonstration that
sequences that comprise some 45 % of bacterial
genomes and 35 % of eukaryotic genomes match
these models

It has been established that by using multiple
models each starting from a single seed sequence
at least as many, if not more, homologues can be
found than by using an accurate structurally based
hand alignment to build a single model. This
removes the need for accurate structural align-
ments for building a good model library. The prin-
ciple does not extend to sequences of unknown
structure because the SCOP classi®cation, which is
obtained by detailed structural analysis, is essential
for determining the set of overlapping models
which should represent a superfamily.

A model library has been made for all proteins
of known structure. A superfamily is represented
by many separate models each of which is attempt-
ing to model the whole superfamily. The model
building procedure is very sensitive which is why
a different seed sequence will produce a different
model even though they are attempting to model
the same superfamily. This is also the reason that
the models are built from a 95 % non-redundant
set rather than a less redundant one. Thus, though
the models will mostly hit the same sequences they
do so with different scores for the common
matches and some models uniquely match differ-
ent outliers.

The two major factors which contribute to the
performance of this library are (i) each superfamily
is represented by many models rather than a single
model and (ii) the ability to use SCOP/PDB
sequence analysis to improve the models' perform-
ance. This second factor leads to the rejection of
some models, the re-building of others and gui-
dance in homology decision. Further to this,
sequences queried against the library will be tested
against every model so that the results are cross-
compared, i.e. a sequence hitting one model may
not be considered true if it hits another model with
a higher signi®cance. This is an extremely import-
ant contribution in genomic assignments, where
regions will frequently hit many models especially
within a single superfamily. The library leans heav-
ily on the extensive and accurate information con-
tained in the SCOP classi®cation, ensuring that the
assignments are as good as they can be given what
is currently known.

Possible inter-superfamily relationships for
which there is not yet structural evidence have
been detected, most of which are structurally
plausible.
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Since the models for the library are created once
and then re-used on a large scale, more effort can
be spent on making the models as good as poss-
ible. The two areas in which the models can be
improved at greater expense than would be practi-
cal for a single use are as follows: computationally
expensive model-building parameters can be used
on large computing resources over a long period of
time, the models can be assessed and tuned using
expert knowledge both in individual cases and
across the whole library.

The models described here have been used for
high-throughput genomic studies. The results of
this work and the models themselves provide the
basis of a public web service (http://stash.mrc-
lmb.cam.ac.uk/SUPERFAMILY).

The genome sequences matched by the HMMs

The library has been used to assign structures to
sequences from over 50 genomes with a coverage
of roughly 35 % of eukaryotic sequences and 45 %
of prokaryotic sequences. Membrane proteins are
believed to form 20-30 % of all sequences. There
are only a few models for membrane sequences in
SUPERFAMILY. This means that the SUPERFAMI-
LIES HMMS match somewhat more that half of
cytoplasmic proteins in bacteria and half, or a little
less, of those in eukaryotes.

Since the library is based on known structures,
as more novel folds are discovered through struc-
tural genomics projects, the number of matched
genome sequences is expected to quickly rise.

The applications of this model library are several
and it is already being used by many other projects
within this laboratory and outside. The annotation
provided by the genome assignments is already
being used by many genome projects either as an
aid to annotation or as annotation in its own right:
for example those for mouse (http://www.gsc.ri-
ken.go.jp/e/FANTOM) and Arabidopsis thaliana
(http://www.arabidopsis.org). The procedure has
recently been added to the ENSEMBL (http://
www.ensembl.org) pipeline for annotation of the
human genome. The library is also being used by
structural genomics projects to make predictions of
the structure of their targets, and to suggest poten-
tial targets, e.g. SPiNE(http://spine.mbb.yale.edu/
spine). The SUPERFAMILY web server is heavily
accessed for genome assignments and sequence
alignments. The server has already processed
nearly 10,000 requests for sequence queries against
the model library this year.

The genome projects themselves usually anno-
tate the genes, but the annotation is just free text
entries which are understandably very minimal
and incomplete due to the volume of data involved
(between 500 and 30,000 genes per genome), and
the methods used. The free text is of little use for
global studies of a genome because it requires
human interpretation not possible on this scale.
There are no standards of annotation between gen-
omes, so inter-genome comparisons can be dif®-
cult, if not impossible. Using the model library to
assign structural domains to all genome sequences
provides both the necessary information about the
genes, and the framework of classi®cation (SCOP)
for new comparative studies consistent across all
genomes. Thus the SUPERFAMILY genome assign-
ments have formed the basis of several compara-
tive studies, for example on domain
recombination30 and on the evolution and for-
mation of small molecule metabolic pathways.31
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