Chapter 1

Hidden Markov models

Abstract

This chapter will take you through all of the steps of HMMs and make you aware
of all of the important components which you should be aware of when using
them, but not go into the dynamic programming and algorithms necessary to
write your own software. For this recommend the book. Strong emphasis on
their use for remote protein homology detection

1.1 Introduction

Hidden Markov models (known as HMMs) can be applied as a probabilistic
approach to recognition problems. Their formulation is such that they are
particularly well suited to the recognition of strings of indeterminate length,
which are often problematic for other approaches. Nucleotide sequences of DNA
and amino acid sequences of proteins fit this description. During evolution they
are subject to random alterations which change their length by inserting and
deleting sequence. Recognition has been a central problem for understanding
and using biological sequences for some time, but the advent of the genome
sequencing projects has made it ever more important. HMMs have become one
of the most powerful and popular tools for genome analysis.

1.1.1 Applications

HMMs were first widely used in speech recognition, where the words are con-
sidered as strings of audio signal, the length of which is dependent on accent
and enunciation. They are now applied to a wide range of biological recogni-
tion problems. Their strength lies in the recognition of distant relationships,
analogous to the detection of a very weak signal. As a consequence they may
succeed where other methods fail to detect anything, but not be as well suited
in situations of high similarity.
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In this chapter the use of HMMs for remote protein homology detection
will be described in detail, although it should be noted that there are other
uses of HMMs for biological sequence analysis which are also important. The
most successful trans-membrane helix predictors use HMMs, and they have also
been used for the detection of CpG islands, regulatory regions, and for gene
prediction. Despite the emphasis, information is of general relevance and in the
resources section at the end of the chapter the other major HMM applications
are represented.

1.1.2 Performance

During evolution protein sequences are duplicated and subsequently altered.
In this way families of proteins evolve from a common ancestor into groups of
related proteins which usually have similar functions. HMMs can be used for
homology detection of these family members, and hence their ancestry and ap-
proximate function can be determined from their amino acid sequence alone.
This is essential in for the analysis of the large number of genome sequences,
which would take decades to carry out experimentally on a similar scale. Nu-
cleotide sequences can also be used but amino acid sequences are used in all
examples and descriptions in this chapter.

HMMs and some other methods, for example PSI-BLAST which is essen-
tially very similar, are able to detect relationships between a sequence and a
sequence family. By using the information contained in a family of sequences,
HMMs are able to detect more remote homology than methods which merely
compare a sequence to another single sequence. Pair-wise methods such as
BLAST compare individual sequences and although they are less successful in
detecting remote homology, they are computationally less expensive and there-
fore are still often useful. There are also more expensive methods for homology
detection, often involving the use of three-dimensional structure information
(e.g. threading or ab initio) which may perform better. However these methods
do not perform much better and are so much more computationally expensive
that they may not be applicable on a genomic scale, whereas HMMs are far
superior to pair-wise methods and are easily applicable on a genomic scale.

A profile of a family of sequences can be constructed in the from of an
HMM. This profile is constructed from a multiple sequence alignment of the
members of the family and should characterise the important common features
of the family. This profile is then compared to unknown sequences to determine
whether or not they fit the profile and are members of the family which the
model represents.

The SCOP all against all test

The primary sequence of members of the same family often have diverged to the
point where they have any amino acids in common, but they always retain the
same three-dimensional structure arrangement in the deeply buried hydrophobic
core. This allows family membership to be unambiguously identified from the
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protein’s structure. The SCOP database classifies all proteins of known struc-
ture into their constituent families. It is possible to assess performance of a
method by using it to compare all of the amino acid sequences of the structures,
then using the structure-based classification to mark the detected relationships
as true or false. Obviously the object of any method is to get as many true pos-
itives and as few false positives as possible. Figure 1 shows that in the region of
a 1% error rate the SAM-T99 hidden Markov model procedure performs better
than the PSI-BLAST profile method, and that both profile methods perform far
better than BLAST which is a pair-wise method. The other methods mentioned
earlier are too computationally expensive to include in this assessment.

1.2 What is a hidden Markov model?

A hidden Markov model is a Markov chain with hidden states providing a general
probabilistic model for sequences.

Why “hidden”?

A Markov chain is a collection of states linked by transitions between the states.
In a simple Markov chain the different states in the chain represent the possible
outcomes that a unit of the sequence can have. For example a general Markov
chain modeling DNA would have four states, one for each nucleotide; it would
have transitions from each state to every other state, and from every state to
itself. Any sequence can be traced through the model by passing from one state
to the next via the transitions.

In a hidden Markov model the states are less simple, and instead of having
a single known outcome they can have several possible outcomes. The model
is called “hidden” because the outcome of any given state is uncertain. For
example a general hidden Markov model modeling DNA would have one state
for each position in the sequence, each state having four possible outcomes; it
would have transitions from each position to the next. Any sequence can be
traced through the model, this time by passing from one state to the next in a
line via the transitions.

1.2.1 A sequence emitter

The above trivial examples of a Markov chain and a hidden Markov model show
how any sequence can be traced out, but it is not clear yet how this is useful.
To understand how HMMs are used they must first be thought of as a sequence
generator, it will then be explained how a sequence generator is useful. Let us
call the states described so far ’emission‘ states and define them as emitting a
single nucleotide, the hidden states are capable of emitting any single nucleotide.
The chain or the model can emit any sequence of nucleotides, infinite in the
case of the chain, and the finite length of the model in that case. In the case
of the Markov chain there are probabilities associated with each transition, and
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if these are not equal, then the chain is more likely to emit sequences with a
certain composition and arrangement than others. The hidden Markov model
has probabilities in each state associated with the different possible outcomes,
and if these are not equal, the model will be more likely to emit sequences
with certain outcomes in certain positions. In this way models can be profiles
representing a family of sequences with the common features characterised in
the probabilities.

All of the probabilities are independent, therefore any emission is not gov-
erned by previous emissions. Higher order Markov models are possible in theory
but are computationally intractable for biological problems.

A model may seem to be of limited use as a sequence generator, but it can
be used to answer the following question “given a known group of sequences,
is another given sequence a member of that group or not?”. Firstly a model
is constructed to represent the group by choosing the probabilities such that
the model is that which is most likely to have generated the given group of
sequences. Then it is possible to calculate the probability that the model would
generate the given sequence, thus giving the probability that the sequence is a
member of the initial group.

1.2.2 States and transitions

In the introduction to this chapter an emphasis was put on the fact that the
formulation of the hidden Markov model lends itself very well to sequences of
indeterminate length. So far only emission states have been discussed, but now
let us introduce some other states into the hidden Markov model which will bring
it closer to sequences observed in nature. Firstly there are two trivial states in
the model at the beginning and the end, called the ’start‘ and ’stop‘ states.
These are obviously the points at which a model starts and stops generating the
sequence.

Insertions

The emission states described so far of which there are one for each position
are all called 'match‘ states, but there are other types of emission states called
‘insert‘ states. These may appear between two match states with transitions
(and their associated probabilities) from the preceding match state, and to the
following match state. Like the match states they are also emit, and have asso-
ciated probabilities for each possible outcome. In this way if the transition from
the preceding match state is taken to the insert state instead of the transition
to the following match state, it will emit an extra outcome in between the two
match states. Adding an extra transition from the insert state to itself allows
the insertion of any number of extra outcomes. The probabilities of the tran-
sitions govern the likelihood of an insertion taking place, and the length of the
insertion.
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Deletions

There are also states which are not emission states called ’delete’ states, which
do not emit, and which merely pass on to other states via their transitions.
Putting a delete state in parallel with a match state, and transitions to and
from match states before and after, allow the match state to be skipped by
passing through the delete state instead. Delete states adjacent to each other
have transitions between each other allowing the skipping of more than one
match state in a row. The transition probabilities govern the likelihood and
length of a deletion.

1.2.3 Architecture

Figure 2 shows the typical arrangement of states and transitions in a hidden
Markov model used for sequence homology in biology. From now on let us
consider models representing protein families, which have 20 probabilities in
each match and insert state, one for each amino acid. The match states will
generally have very different emission probabilities from each other depending
on the local environment of the peptide at the corresponding position in the
protein. Insert states will generally have similar generic emission probabilities
as they affect only the amino acid composition of the length of inserted sequence.
The transition probabilities from match to insert are analogous to the ’gap open*
penalties in pair-wise methods such as BLAST, and the transitions from insert
states to themselves are analogous to gap ’extension‘penalties.

1.3 Model generation

1.3.1 Alignments

To generate an HMM representing a protein family a multiple sequence align-
ment of that family is used. The single most important factor in determining the
quality of an HMM is the alignment from which it is built. There are two factors:
the number and type of sequences in the alignment, and how well the sequences
are aligned. Models are improved by having a larger number of sequences in the
alignment which must all be true homologues to each other. As a rough guide,
a good model can usually be constructed from an alignment of 60 sequences.
The more diverse the sequences are the better; a large number of very similar
sequences contains less information than fewer very dissimilar ones. Obviously
the better the alignment of the sequence positions into columns, the better the
model which is built from that alignment. Ways of generating alignments for
model building are described in section 1.5.

In the most simple case a match state is created for each column of an align-
ment. In the match state the probabilities for each amino acid are proportional
to the observed frequencies in the corresponding column of the alignment. Ob-
viously the probabilities of all amino acids must add up to one. However usually
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alignments will have some deletions and insertions, which are better handled by
making use of the other states as well.

1.3.2 Transition probabilities

Often when an alignment is generated not all regions are aligned, but there are
regions along the sequence which were not possible to align. For example a
group of proteins will conserve the same secondary structure elements, but may
not have the same structure in their loops, and furthermore the loops may vary
a great deal in length from one protein to the next. In this case the regions of
secondary structure will be aligned, but some loop regions are unaligned.

Implicit state assignment

If the alignment specifies which parts are aligned and which are not, then the
columns which are specified as aligned are used to build match states. Each
unaligned region of the alignment is used to build a single insert state between
the last match state before the unaligned region begins, and the first match
state after the region ends. The more sequences there are in the alignment
which have residues in the unaligned area, the higher the transition probability
from the match to that insert state. The longer the unaligned region is, the
higher the transition probability will be from insert to itself. Just as the emission
probabilities from any state must add up to one, all of the transition probabilities
leading from a particular state must also add up to one. Similarly match to
delete transition probabilities are affected by the observed deletions. In an
aligned region, the transition probability from the previous match state to a
delete state as opposed to the match state, is affected by the corresponding
column in the alignment. The transition to the delete state will be higher
the more sequences there are in the alignment with no residue aligned in that
column.

Background rates

There may be many columns in the alignment which have a residue aligned
in every sequence, and many continuous aligned regions with no unaligned re-
gions between aligned columns. Using this information only in the way described
above would lead to some zero transition probabilities to delete and insert states.
It is important when building a model to not only use the observed information
from the alignment, but also to use prior information as is discussed in more de-
tail in 1.3.3. What is meant by this is that we have prior information on protein
sequences in general before seeing the observed information in the alignment.
We know for example that an insertion or a deletion is possible anywhere in
a new sequence, even if we have not yet already observed one in a sequence
(in the alignment) at that position. For this reason it is usually undesirable
to have any transitions with zero probability. Using knowledge of insertions
and deletions gathered from large numbers of sequences, the background rates
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can be calculated. These background rates are combined with the observations
from the alignment, the ratio between them depending on the significance of
the observations (number of sequences in the alignment). In this way there are
never any transitions with zero probability.

Automatic state assignment

An alignment may not have the aligned and unaligned regions specified. This
may be because the method used to generate the alignments forces the alignment
of everything regardless of similarity, or simply that the information is discarded.
In this situation it is not clear how to build the match and insert states in the
model. The simplest solution to this problem is to declare all columns which
have an aligned residue in more than half (or some other proportion) of the
sequences as aligned, and these become match states. Those remaining are
represented by insert states.

A more sophisticated method is called MAP match-insert assignment. This
is a dynamic programming algorithm which essentially amounts to generating
the combination of match and insert states which are most likely to have pro-
duced the observed alignment. This is very good, and in theory could be applied
to alignments which have the aligned and unaligned regions specified, by dis-
carding the information and using MAP to choose the match and insert states.
This may work in some situations with untrusted alignments, but for good qual-
ity alignments better models are built by using the alignment implicitly.

1.3.3 Emission probabilities

In the same way that zero probabilities of transitions are undesirable, zero
probabilities in a match or insert state for the emission of a given amino acid is
undesirable. If the model is going to be able to match new distant homologous
members of the family, it will have to allow for the possibility of amino acids in
positions where none is observed in the alignment.

Pseudo-counts

The most straight forward way to avoid zero emission probabilities is to add
pseudo-counts to the observed counts of amino acids in each column of the
alignment. By adding a single count to each of the 20 amino acids observed in
a column of the alignment, there is a non-zero probability of every amino acid.
Furthermore the greater the number of sequences in the alignment the less the
contribution from the pseudo-counts will be. Using single pseudo-counts is called
"Laplace’s rule‘.

In reality all amino acids are not equal. Some are more common than others
and therefore more likely to be substituted into a position in the alignment. So
better than single pseudo-counts is to use the frequency of amino acids in nature
to add fractional pseudo-counts proportional to the background distribution.
Extending this still further it is possible to not only use our prior knowledge



8 CHAPTER 1. HIDDEN MARKOV MODELS

of the background distribution, but of the similarity between amino acids. The
likelihood of certain amino acids replacing others depends on their properties,
such as hydrophobicity, charge, and size. There are substitution matrices such
as the BLOSSUM and PAM matrices which can be used to give a probability of
any amino acid being substituted by any other. These substitution matrices are
normally used by pair-wise comparison methods for scoring the observed sub-
stitutions between two proteins. A substitution matrix can be used to generate
pseudo-counts whose distribution is dependent on the observed amino acids in
the alignment. The proportions used for pseudo-counts can be generated by
taking the distribution of substitution probabilities from the matrix, for each
amino acid observed in the alignment, and averaging them.

Prior libraries

The most successful method of using prior information is to use Dirichlet mix-
tures. Rather than using the overall background distribution of amino acids, it
is possible to use a mixture of different distributions drawn from different local
environments in proteins. For example at a position in a protein where there
is currently a small hydrophobic (buried) residue, it is unlikely that a large hy-
drophilic residue will be substituted. A prior library is a collection of Dirichlet
distributions derived from a large number of observed amino acids in different
natural local environments. These distributions represent our prior knowledge
of what substitutions are expected to be likely at different positions. For each
position in the alignment a mixture of these Dirichlet distributions taken from
the library is used. The proportions with which they are mixed is derived by
estimating the likelihood for each prior (Dirichlet mixture) that it could have
generated that column in the alignment. A library of 20 automatically generated
priors has been shown to perform well.

1.3.4 Sequence weighting

It was mentioned earlier that ideally the alignment should contain many se-
quences, and that they should be as diverse as possible whilst remaining re-
lated. Due to the nature of evolution via duplication, there may be some very
closely related sequences and some very distantly related ones. When building
a model from the alignment this is taken into consideration. Until now all se-
quences were described as being weighted equally, but models can be improved
by weighting them. If every sequence had equal contribution to the probabilities
in the model, then it would be biased toward closely related sequences.

Let us imagine an alignment of a family of related sequences, where di-
vergence and duplication have taken place. In this family there are several
divergent subgroups, each consisting of more closely related proteins. Let us
say that one of these subgroups is larger than all of the others put together,
which is a common situation. If all sequences are given equal weight then the
model will represent the characteristics of the large subgroup too strongly. As a
consequence the HMM will not model the true divergence of the family. What is
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wanted is something like equal weighting of subgroups without losing the lesser,
but still useful information contained in the differences between closely related
members of subgroups.

There are various ways of weighting the sequences. Many are based on tree
representations of the sequences, taking the contribution to the probabilities
in the model from the branch lengths. Other weighting schemes are based on
similarity distances between sequences, or by using the affect of the weights on
the model to maximise its ability to discriminate the sequences from a random
model. However the scheme used by most methods is to maximise the sum of
the entropy in the model. This amounts to making the statistical spread of the
model as broad as possible, hence making it as general as possible. More general
models will match more distant homologues.

1.4 Sequence scoring

The most common use of HMMSs is for remote homology detection. Usually an
HMM is first built to represent a protein family and then searched against a
database of sequences to discover new members of the family. Each sequence
in the database is compared to the model and assigned a score; the ability of
these scores to separate true from false homologues, and to accurately predict
the level of certainty determines the success.

1.4.1 Algorithms

There are two common algorithms for sequence scoring: Viterbi, and EM. Both
of these can be solved using dynamic programming which is very efficient and
makes the large calculation computationally practical. The Viterbi algorithm is
faster than the EM algorithm, but the EM algorithm performs slightly better.

Viterbi

The Viterbi algorithm is also known as the ’best path‘ algorithm. For a given
model and a given sequence, the Viterbi algorithm calculates the most probable
path through the states and transitions of the model. This path gives the
probability of the model generating the sequence, and hence a score which is
related to the likelihood of the sequence in question being a member of the
family which the model represents.

Expectation maximisation

The expectation minimisation (EM) algorithm is also known as the ’all paths‘
algorithm. Tt is possible for a model to generate the same sequence via different
paths through the states and transitions of the model. The EM algorithm
calculates the sum of the probabilities across all paths rather than just the most
probable path.
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1.4.2 Local or global

Scoring a model against a sequence can be done in several ways depending on
what is known about the model and the sequence.

Global

The simplest form is global scoring which directly compares the whole model to
the whole sequence, and should be used when it is known that the model and
the sequence are comparable (and hence have a similar length). Global scoring
starts at the begin state, follows a path via transitions to the first emission state
which emits the first residue of the sequence being scored. It continues through
the model generating the entire sequence until it follows a path via transitions
from the emission of the last residue in the sequence to the end state.

Global/local

Many proteins, especially in eukaryotes, are multi-domain proteins. Domains
are evolutionary units (building blocks) of proteins which are duplicated and
recombined to form many multi-domain proteins with different combinations of
these domain sub-units. Multi-domain proteins vary both in the number and
type of domains from which they are built. As a consequence sequence searches
will not always be comparing like proteins. For example if there is a family of
single domain proteins for which an HMM is built, searching this model against
all of the sequences in a genome using global scoring is inappropriate. If this
domain also appears as a sub-unit of a multi-domain protein, then the model will
assign a bad score to the whole protein using global scoring, despite containing a
homologous domain. This is a very common situation in genome analysis. For
example the human genome contains tens of thousands of proteins, over half
of which are multi-domain, and they are built from combinations of domains
belonging to only hundreds of families.

Global/local (model/sequence) scoring allows the first emission from the
model to begin at any point in the sequence, and for the last emission to end
at any point. In this way the model matches the best-scoring region of the
sequence. This should also allow for more than one match to the sequence;
many multi-domain proteins contain repeats of the same domain. Usually after
the model matches a region of the sequence that region is eliminated and the
next best-scoring region is searched for, allowing multiple matches of a single
model to different regions of a single sequence.

Local

Fully local scoring finds the best-scoring match of any region of a model to any
region of the sequence. Local model scoring can be achieved in two ways. One
way is to built a model with a local-scoring architecture. By adding transitions
from every match state to the end state and from the begin state to every match
state, it allows the path through the model to jump in and out at any point.
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The other way is to calculate the scores on sub-regions of the model as part of
the sequence searching procedure. Both approaches essentially amount to the
same thing.

Fully local scoring not only has the advantage that no prior knowledge of
the domain composition of the model or the sequence is required, but also
improves remote homology detection. Parts (e.g. loops) of very distantly related
proteins may have evolved beyond all recognition whilst the core of the protein
is retained. Local scoring allows the best score for those parts of the protein
which have been retained, without penalising the overall score by forcing the
variable regions to match to each other when they may no longer have anything
in common. The longest possible match will still however always be sought,
because longer matches are less likely to occur by chance and therefore are
higher-scoring.

Local scoring should be used for most applications. Other scoring should
only be used if the model and sequence are known to be comparable in some
way, in these cases the use of this prior knowledge to select the type of scoring
may improve results.

Local/Global

Local/global (model/sequence) scoring is the same as fully local scoring except
it forces the first emission to be the first residue of the sequence, and the last
emission to be the last of the sequence. This is only useful for scoring fragments
of sequence.

1.4.3 Null models

Some sequence patterns and compositions are more common in nature than
others. Models built to represent families which have common types of se-
quences will be more likely to match other sequences than models built from
unusual families. A very common problem with sequence comparison methods
is that false matches with high scores are given to low complexity sequences and
sequences with repeats. For example a protein family which has amino acid dis-
tributions which are close to the background, might score highly an unrelated
sequence which only has common residues, because the chance of being able
to find suitable paths through the model emitting the correct sequence will be
higher.

To overcome this problem a null model is introduced. The null model rep-
resents the alternative to the given family profile model, and the scores for that
model are offset against the null model. This means that a model which is close
to the null requires a stronger match to get a high score from the comparison
than a model which is very far from the null.
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Fixed null

The most simple form of the null model is the equivalent of the family profile
model with the probabilities replaced by those from the background distribution.
This null model can be thought of as the broadest possible model representing
all natural protein sequence.

Geometric mean

Using the fixed null model will improve the discrimination of the family model
against common sequences, but there may still be cases where unrelated se-
quences are able to match a model because they have a similar sequence com-
position to the model, even if that sequence composition is not necessarily com-
mon. This will happen far less frequently than with common sequences, but is
still a possibility. To combat this problem a null model can be defined from the
family model. Rather than taking the probabilities from the background distri-
bution, the null model probabilities are calculated as the geometric mean of the
probabilities across all states of the family model. This way the null model has
the same sequence composition as the family model.

Reverse null

There is still a possibility that a model might have a pattern of important
characteristic residues, small in number and thus not affecting the composition
much, yet likely to occur in other proteins. For example proteins with disulphide
bonds between cysteine residues, could have those cysteines so highly conserved
that it becomes the most important characteristic of the profile (family model).
There are likely to be some other unrelated proteins which also have some
disulphide bonds between cysteines, and which can be matched to the relevant
states in the model. The reverse null model is the model in reverse. The
symmetry means that the score of the sequence to the reverse null model is
the same as the score of the reverse sequence to the ordinary family model.
The resulting score is calculated simply by scoring the sequence against the
model and then subtracting the score that the same sequence in reverse gets
to the model. In the example of the proteins with highly conserved cysteines,
the cysteines will match in both directions, and so the difference between the
forward and reverse scores will depend on the rest of the protein.

Using the reverse null model has the additional advantage of generating
accurate E-values (see 1.4.4) directly, whereas using the other null models means
that E-values must be calculated from an ad hoc estimation of the distribution
of scores (see 1.4.4). The reverse null has the disadvantage that the sequence
must be scored in both directions requiring double the computation.

1.4.4 E-values

Expectation values (E-values) are a general value not specific to HMMs and are
supplied by many sequence comparison methods. In theory E-values from any
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model, and even any method should be comparable.

‘What E-values mean

Since HMMs are a probabilistic method, statistically one expects occasional
chance errors. E-values are the expectation of the number of errors per query.
If an HMM is used to score a database of sequences (a query), then the expected
number of sequences unrelated to the model (errors), which have the same score
or better than any sequence, is given by its E-value. It is important to note that
an E-value is only true in the context of the query, for example a query on a
large database will have more errors than a query on a small database searched
with the same model. E-values can be used to decide what error rate you are
prepared to allow in your results, but they say nothing about the success rate.

Calibration

The errors produced by HMM scores follow an extreme value distribution. One
way of estimating E-values is to score the model against a large number of
random sequences (assumed unrelated to the model, and therefore all errors)
and plot the distribution. An extreme value distribution can be fitted to the
results and used to estimate the E-values of scores produced by the model.
The process of scoring random sequences and fitting the distribution is often
called model calibration. This method has the disadvantage that many random
sequences must be scored to get an accurate estimation of the distribution, and
this is computationally expensive.

Reverse null E-values

Another approach is to score the reverse of the sequence as well as the sequence
itself; this is the reverse null model mentioned earlier. Since the reverse se-
quence has the same error distribution as the forward sequence, subtracting the
reverse score from the forward score cancels out the component of ‘error’ from
the distribution. Both forward and reverse scores are expected to be drawn
from the same Gumbel distribution which has two parameters, however the dif-
ference of two variables drawn from the same Gumbel distribution follows a
simpler one-parameter distribution. It appears to be the case empirically that
the parameter is the same for all models and equal to one, so the distribution of
the differences in forward and reverse scores is known. The E-value can then be
directly estimated from the query conditions (database size), without the need
for ad hoc model calibration requiring the scoring of random sequences and the
fitting of the distribution.

1.4.5 Hardware acceleration

Some companies have developed hardware acceleration for HMMs. There are
chips called ’field programmable gate arrays‘ which are configurable to use dy-
namic programming algorithms and boards are manufactured with many of
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these chips. These chips are also able to run the inner loop of complex al-
gorithms in one clock cycle, whereas conventional processors require tens of
thousands of cycles. Since most HMM search problems are naturally massively
parallel, the parallelisation is relatively easy and many of these boards can
be implemented together with some post-processing software, effectively giving
thousands of processors in a single machine. Although the technology is very
expensive, it is still much cheaper than the equivalent power in conventional
hardware. These accelerators open a realm of investigative possibilities on a
large genomic scale which was previously only possible for pair-wise methods
and is unlikely to become possible for most other sequence comparison methods.

1.5 Multiple sequence alignments

1.5.1 From models

Multiple sequence alignments are required for model building, but HMMs can
also be used to produce multiple sequence alignments. Good quality multiple
sequence alignments are important because they give information beyond mere
homology. For example three-dimensional models of proteins can be constructed
from sequence alignments if one of the sequences has a known structure. If a
sequence is found to be homologous to another for which the three-dimensional
structure has been experimentally determined, the alignment can be used to
replace the side-chains of the corresponding amino acids on the backbone of the
known template structure. Multiple sequence alignments are particularly useful
because the patterns of conservation indicate the evolutionary constraints which
in turn suggest the functional and structural constraints on the proteins in the
aligned family.

The multiple sequence alignments produced by HMMs are not true multiple
sequence alignments in the way that those produced by ClustalW are. ClustalW
compares every sequence to every other sequence, whereas HMM aligning com-
pares every sequence to the model independently so that the alignment between
sequences is by proxy. Adding new sequences to a ClustalW alignment will add
new information which may alter the alignment of other sequences; adding new
sequences to an HMM alignment never changes the alignment of any sequences
relative to each other.

An alignment between a sequence and an HMM can be described by the path
through the states of the model. Every residue in the sequence which is emitted
by a match state will be aligned to that position in the model, match states
which are omitted via a delete state will be empty columns of the alignment, and
residues emitted by insert states will merely be padded out between the columns
corresponding to match states. Subsequent sequences are aligned in the same
way, so that there is a column in the alignment for each match state filled by the
residues of the sequences which have been emitted by that state. Figure 3 shows
a multiple sequence alignment generated by an HMM. The numbering across
the top corresponds to the match states of the model, the columns of which
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contain upper case residues (aligned) or dashes where the path has passed via
a delete state emitting nothing. The lower case residues are generated by insert
states (unaligned), and these parts of the alignment are just padded out between
the numbered columns filling in the other sequences with dots to maintain the
alignment as a whole.

Algorithms

To create alignments to HMMs the path through the model is required. This can
be calculated using the Viterbi algorithm for calculating the best path described
in 1.4.1 . The EM algorithm calculates the sum across paths, which does not
give a single path which is required for an alignment. The EM algorithm can
however be used to calculate the most likely path, which is much slower than
calculating the best path but slightly better. The EM algorithm is first used to
evaluate all possible paths, calculating the probability of each residue appearing
in each model state and the probability of each transition being used. A second
(Viterbi-style) dynamic programming is then performed on these probabilities
to find the most likely path (see, for example, Holmes and Durbin in Recomb98).

1.5.2 For models

As mentioned earlier the single most important factor in model building is the
multiple sequence alignment. There are many sources of alignments so only
some of the more important ones are discussed here.

Structural alignments

The most reliable high quality sequence alignments are the result of a detailed
analysis of proteins of known structure. By superimposing three-dimensional
structures on each other a very accurate correspondence between positions in
the sequences can be obtained. Furthermore it is possible to make alignments of
sets of extremely divergent proteins because although their sequences may have
diverged beyond the point of having any residues in common, their core structure
is maintained. The ability to recognise more distant homologues using structural
comparison methods rather than purely sequence-based methods enables the
inclusion of more divergent members. It is usually necessary to include sequences
of unknown structure in the structure-based alignment to increase numbers.
This can be done by using automatic sequence search methods (such as BLAST)
with very certain score thresholds to ensure true homology, which can be added
to the alignment using the close similarity in combination with knowledge of
key residues and structural context obtained from the structural analysis of the
family.

The disadvantages of using hand curated structural alignments are that they
are very laborious to produce, and require experimentally determined three-
dimensional structures which are not always available, especially in sufficient
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quantities. There are automatic procedures for structural alignment which elim-
inate the need for doing it by hand, but these are less accurate and reliable, and
will sometimes fail altogether in the case of very divergent proteins.

Automatic methods

There may already be sequence alignments available from databases or litera-
ture, but in the absence of reliable and up to date data they must be generated
from scratch. There are two steps in automatic sequence alignment generation:
finding the diverse set of related family members, and creating the multiple
alignment. Usually homologues are sought by searching the sequences against
a large non-redundant database (e.g. NRDB90), which consists of all the major
sequence resources concatenated and filtered to eliminate highly similar (re-
dundant) sequences. There are many freely available programs and software
packages for both of these tasks and it is not the purpose of this chapter to
list and review them all. It should be said however that it is important that
whichever method is used, the sequence homologues should be selected with
a high degree of certainty, otherwise possible errors will be propagated to the
model. Another pit-fall to be avoided is the inclusion of low-complexity or re-
peat sequences, which can be masked using a program such as ’seg‘. Due to the
short-comings of fully automatic procedures, combining automatic procedures
with hand curation is common practice, and most HMM-based databases adopt
this to a greater or lesser degree.

SAM-T98

There is more than one software package for using HMMs for remote homology
detection, but there is only one which does not require alignments for model-
building, because it creates its own using an iterative procedure similar to PSI-
BLAST. The SAM package comes with a procedure called ‘T98” which was
later improved and renamed ‘T99’. This procedure creates multiple alignments
of homologous sequences for the purpose of model building. The procedure
begins with a seed, which can be a single sequence or a set of sequences, aligned
or not. The procedure then uses a large non-redundant database of sequences
from which to extract homologues by an iterative process to add to a growing
alignment.
The default T98 procedure follows these steps:

1. Using the initial sequence(s) and the WU-BLASTP procedure (http://blast.wustl.edu/blast),

a search of a large non-redundant protein database is carried out to
find two sets of sequences. The first set consists of close homologues
of the query sequence: those that match it with E-values of 0.00003
or less, and these are used to create the initial alignment (step 2).
The second set of sequences consists of those that match the query
with E-values of 500 or less and, therefore, will probably include
more distant homologues of the query sequence.
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2. Sequences from the non-redundant database in the set of close ho-
mologues are aligned with each other and with the seed sequence.

3. An initial HMM is built from the alignment of sequences created in
step 2.
4. This model is then used to search the second set from step 1 for more

homologues, which are added to the first set and re-aligned to create
a new and larger alignment from which a new and better model can
be built. The initial HMM is extended with additional homologues
by repeating steps 2,3, and 4 for four iterations. In step 1, the use of
low E-values by WU-BLAST and a strict HMM scoring threshold,
ensures that only close homologues are used. In the four iterations,
thresholds for the HMM score are gradually decreased making the
model gradually more general.

5. From the final alignment produced by the iterations of steps 2,3,
and 4, a model is built using one of the scripts provided by the
SAM package. These scripts filter and weight the sequences in the
alignment before building the model.

As well as being fully automatic, this iterative process produces very general
models which are excellent for remote homology detection.

1.6 Resources

These resources are all computer-based utilities and databases available either
for download or access via the internet. This section is not a review of all
that which is available, but indicates important resources for the most common
uses, and provides a starting point for those wishing to use HMM technology in
practical applications.

1.6.1 Software

These are software packages which it is possible to download and install so that
they can be run locally on private computers.

Remote protein homology detection and alignment

These are the software packages which carry out the functions which have been
the focus of this chapter, and which have implemented the features which have
been described.
The Sequence Alignment and Modeling system (SAM) is available under li-
cense which is awarded free of charge for academic use. This is the most complete
software package for HMMs in this area. The SAM package (http://www.cse.ucsc.edu/research/compbio/sam.html)
contains programs for model building from multiple sequence alignments, se-
quence searching (model scoring), and sequence alignment. Most importantly
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the SAM package contains the T99 software which can build a model from a
single seed sequence, used to iteratively search a large database for homologues,
build a multiple alignment from the homologues, and from that a model repre-
senting the family of sequences to which the original seed belongs. SAM also
has several helper scripts and an abundance of features and programs for expert
users. SAM uses EM scoring with the reverse null model by default, and takes
the architecture from the alignment when model building. The SAM package is
not obviously the most popular due to the licensing and a past reputation for
being less easy to install and use than HMMER.

The HMMER package (http://hmmer.wustl.edu) is possibly the most pop-
ular, and has open source code under the GNU public license. The HMMER
package is similar to SAM, and contains the same basic components with the
exception of the T99 iterative procedure. Independant multiple sequence align-
ments are required to build models. HMMER uses Viterbi scoring by default,
and estimates the model architecture from the alignment for model building.
HMMER models need to be calibrated for the generation of E-value scores.

Comparing SAM and HMMER default procedures for model building and
scoring, shows that on average SAM performs slightly better, but that HMMER
is faster at scoring although much slower at building models if calibration time
is included.

SAM and HMMER are both excellent popular packages, but it is worth also
mentioning HMMpro (http://www.netid.com) which is commercially produced
and META-MEME (http://metameme.sdsc.edu) which is motif-based.

Gene finding

The Wise2 software package (http://) is used extensively on the human genome
and others. It is focused on comparing DNA sequences at the level of its con-
ceptual translation, regardless of error and introns. The GeneWise part of the
package makes use of the Dynamite code generation software for HMMs and
compares an HMM profile to DNA sequence, modeling the occurance of in-
trons. GeneMark (http://opal.biology.gatech.edu/GeneMark) is another HMM
based software package for gene prediction worth mentioning.

Trans-membrane helix prediction

Trans-membrane helices can be predicted with relatively high accuracy, the au-
thors claim well above 90%. TMHMM (http://www.cbs.dtu.dk/krogh/ TMHMM)
is one of the best performing methods and uses HMMSs. The model is cyclic and
has seven states: helix core, helix caps on either side, loop on the cytoplasmic
side, two loops for the non-cytoplasmic side, and a globular domain state in the
middle of each loop.

HMM Topology of Proteins (HMMTOP at http://www.enzim.hu/hmmtop)
is another hidden Markov model based trans-membrane predictor.
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General HMM tools

There are some general mathematical tools available to carry out some of the

basic calculations which have been discussed, most of which are directed at

speech recognition applications, but may still be useful to those wishing to get

involved in programming but do not wish to write their own code to implement

the algorithms from scratch. The GNU Hidden Markov Model programming li-

brary (http://www.zaik.uni-koeln.de/ " hmm/ghmm) provides most of the com-

ponents, and is freely and publicly available.

There is Matlab software package called HMM toolbox (http://www.cs.berkeley.edu/~ murphyk/Bayes/hmm.html

with links to other Matlab HMM resources. This software is also distributed

under the GNU public license, so is freely and publicly available.

1.6.2 Databases

There are a large number of databases which can be accessed via the internet,
and a more complete listing can be obtained from the Nucleic Acids Research
database issue which comes out in January of every year. It is worth mentioning
however some of the most popular databases which all use libraries of hidden
Markov models.

SUPERFAMILY

The SUPERFAMILY database (http://supfam.org) is a library of hidden Markov
models representing all proteins of known structure. It is based on the SCOP
(http://scop.mrc-lmb.cam.ac.uk/scop) domain classification of proteins at the
superfamily level. The SUPERFAMILY database primarily uses the SAM soft-
ware but provides models in both SAM and HMMER, formats. The library of
models has been searched against all completely sequenced genomes and the
assignments are available on the web site, as well as a sequence search facility
and a service providing multiple alignments. SUPERFAMILY is available freely
for academic use.

PFAM

The PFAM protein families database (http://www.sanger.ac.uk /Software/Pfam)
is a highly curated database of sequence families. The database provides anno-
tation of the families as well as multiple alignments and hidden Markov models
built from them. The information in this database is very accurate and has a
good coverage. PFAM uses the HMMER, package, and is freely available.

SMART

The Simple Modular Architecture Research Tool (SMART at http://smart.embl-
heidelberg.de) is similar to PFAM except that it covers only domain families
found in signalling, extracellular, and chromatin-associated proteins. SMART
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also uses the HMMER software. There is a web server for searches but the
models are only available via the InterPro consortium.

TIGRFAMs

The TIGRFAMs (http://www.tigr.org/TIGRFAMs) database is another cu-
rated sequence-based HMM library based on the clustering of sequences from
microbial genome projects. The families are classified by their functional simi-
larity. This database uses the HMMER, software and the models are available
under the GNU public license.



