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Part III: Multi-class ROC

 The general problem
 multi-objective optimisation
 Pareto front
 convex hull

 Searching and approximating the ROC hyper-
surface
 multi-class AUC
 multi-class calibration
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The general problem

 Two-class ROC analysis is a special case of
multi-objective optimisation
 don’t commit to trade-off between objectives

 Pareto front is the set of points for which no
other point improves all objectives
 points not on the Pareto front are dominated
 assumes monotonic trade-off between objectives

 Convex hull is subset of Pareto front
 assumes linear trade-off between objectives

 e.g. accuracy, but not precision
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How many dimensions?
 Depends on the cost model

 1-vs-rest: fixed misclassification cost C(¬c|c) for
each class c∈C —> |C| dimensions
 ROC space spanned by either tpr for each class or fpr

for each class

 1-vs-1: different misclassification costs C(ci|cj)
for each pair of classes ci≠cj —> |C|(|C|–1)
dimensions
 ROC space spanned by fpr for each (ordered) pair of

classes

 Results about convex hull, optimal point
given linear cost function etc. generalise
 (Srinivasan, 1999)
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Multi-class AUC

 In the most general case, we want to
calculate Volume Under ROC Surface (VUS)
 See (Mossman, 1999) for VUS in the 1-vs-rest

three-class case

 Can be approximated by projecting down to
set of two-dimensional curves and averaging
 MAUC (Hand & Till, 2001): 1-vs-1, unweighted

average
 (Provost & Domingos, 2001): 1-vs-rest, AUC for

class c weighted by P(c)
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Multi-class calibration

1. How to manipulate scores f(x,c) in order to
obtain different ROC points?
 depends on the cost model

2. How to search these ROC points to find
optimum?
 exhaustive search probably infeasible, so needs

to be approximated
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A simple 1-vs-rest approach

1. From thresholds to weights:
 predict argmaxc wc f(x,c)
 NB. two-class thresholds are a special case:

 w+ f(x,+) > w– f(x,–) ⇔ f(x,+)/f(x,–) > w–/w+

2. Setting the weights (Lachiche & Flach, 2003)
 Assume an ordering on classes and set the weights

in a greedy fashion
 Set w1 = 1
 For classes c=2 to n

 look for the best weight wc according to the weights
fixed so far for classes c'<c, using the two-class
algorithm
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3

1 2

Example: 3 classes

(0,0,1)

(1,0,0)

(0,1,0)
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Discussion

 Strong experimental results
 13 significant wins (95%), 22 draws, 2 losses on UCI

data

 Sensitive to the ordering of classes
 largest classes first is best

 No guarantee to find a global (or even a local)
optimum
 lots of scope for improvement, e.g. stochastic search
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The many faces of ROC analysis

 ROC analysis for model evaluation and selection
 key idea: separate performance on classes
 think rankers, not classifiers!
 information in ROC curves not easily captured by statistics

 ROC visualisation for understanding ML metrics
 towards a theory of ML metrics

 types of metrics, equivalences, skew-sensitivity

 ROC metrics for use within ML algorithms
 one classifier can be many classifiers!
 separate skew-insensitive parts of learning…

 probabilistic model, unlabelled tree

 …from skew-sensitive parts
 selecting thresholds or class weights, labelling and pruning
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Outlook

 Several issues not covered in this tutorial
 optimising AUC rather than accuracy when

training (several papers at ICML’03 and ICML’04)
 e.g. RankBoost optimises AUC (Cortes & Mohri, 2003)

 Many open problems remain
 ROC analysis in rule learning

 overlapping rules

 relation between training skew and testing skew
 multi-class ROC analysis
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