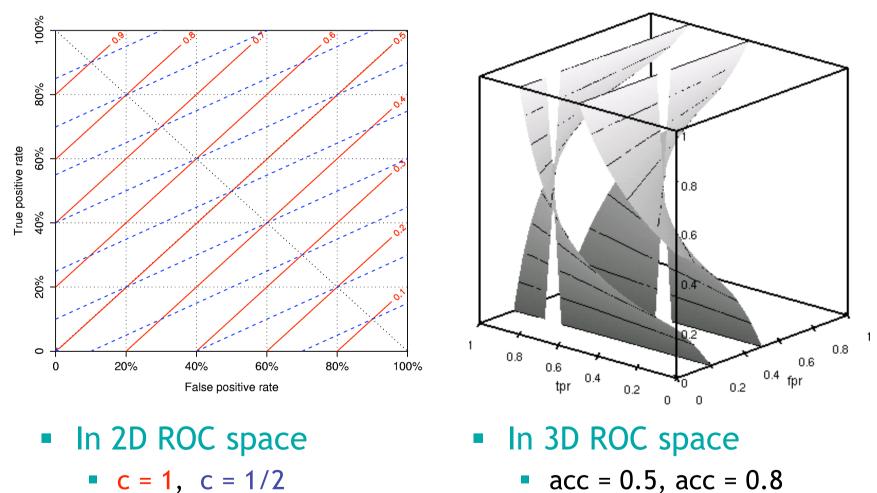
Part II: A broader view

- Understanding ML metrics:
 - isometrics, basic types of linear isometric plots
 - linear metrics and equivalences between them
 - skew-sensitivity
 - non-linear metrics
- Model manipulation:
 - obtaining new models without re-training
 - ordering decision tree branches
 - repairing concavities by locally adjusting rankings

Understanding ML metrics

- We are referring here to metrics (or heuristics) that are used to rank (*fpr,tpr*) points
 - i.e., classifiers or parts of classifiers
 - NB. different sense of ranking than before!
- Metrics are equivalent if their rankings are the same
 - absolute value of metric not important
- This can be visualised very clearly by means of ROC isometrics
 - additional benefit of studying skew-sensitivity
 - see (Flach, 2003) and (Fürnkranz & Flach, 2003)

Iso-accuracy lines revisited



acc = 0.5, acc = 0.8

Isometrics and skew ratio

- Accuracy is weighted average of true positive/negative rates: $acc = pos \cdot tpr + neg \cdot (1 - fpr) = \frac{tpr + c \cdot (1 - fpr)}{c + 1}$
- Skew ratio indicates relative importance of negatives over positives
 - without costs: c = neg/pos
- Isometric plots show contour lines in 2D ROC space for a given metric with skew ratio as parameter

Skew-sensitivity

- Strongly skew-insensitive metric is independent of skew ratio
 - isometric surfaces in 3D ROC space are vertical
 - can be obtained for any metric by fixing c
- Weakly skew-insensitive metric has the same isometric landscape for different values of c
 - any collection of ROC points is ranked the same way, regardless of c
- Line of skew-indifference: points where the metric is independent of c

for accuracy, this is the line tpr+fpr-1=0

Types of isometric plots

a) Parallel linear isometrics

accuracy, weighted relative accuracy (WRAcc)

b) Rotating linear isometrics

- precision, lift, F-measure
- c) Non-linear isometrics
 - decision tree splitting criteria

Symmetries

- Inverting predictions of classifier
 - ROC space: point-mirroring through (0.5, 0.5)
 - contingency table: swapping columns
- Inverting test labels
 - ROC space: mirroring along ascending diagonal
 - contingency table: swapping rows
 - affects skew ratio (c becomes 1/c), so a test for skewinsensitivity
- Inverting both predictions and test labels
 - ROC space: mirroring along descending diagonal
 - contingency table: swapping rows and columns

Weighted relative accuracy

Original definition:

wracc / 4 = $P(x) \cdot [P(+ | x) - P(+)] = P(x, +) - P(x) \cdot P(+)$

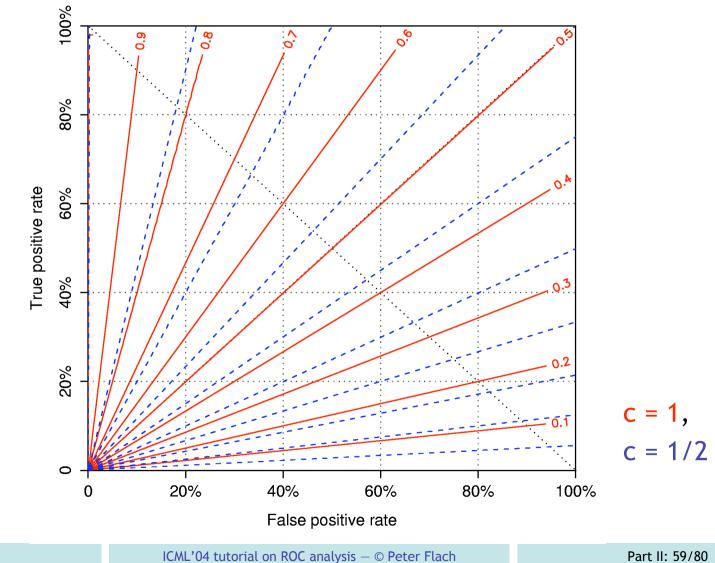
• In ROC notation:
$$wracc = \frac{4c}{(c+1)^2}(tpr - fpr)$$

- Weakly skew-insensitive: isometrics are parallel to diagonal
 - strongly skew-insensitive version: tpr-fpr

Precision or confidence

- Precision is defined as $prec = \frac{pos \cdot tpr}{pos \cdot tpr + neg \cdot fpr} = \frac{tpr}{tpr + c \cdot fpr}$
- Weakly skew-insensitive, rotating isometrics
 - on *tpr* = *fpr* diagonal, *prec* = *pos*
- Two variants with fixed value on diagonal
 - relative precision: relprec = prec pos
 - lift: lift = prec / pos

Precision isometrics



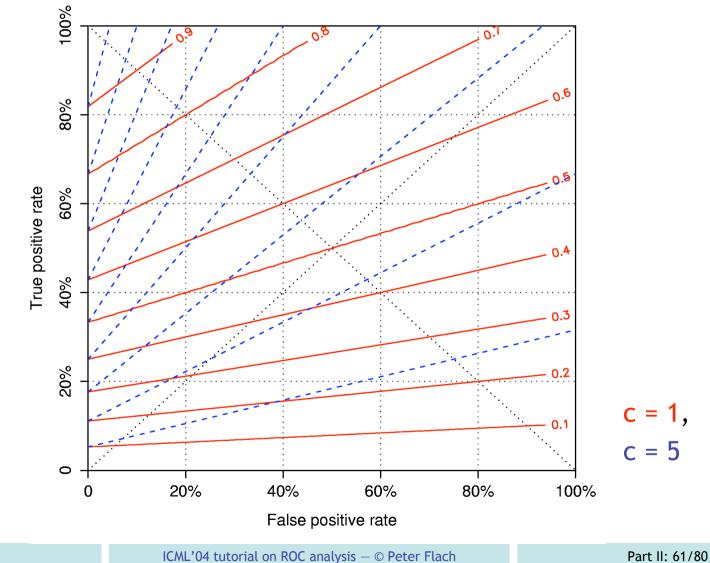
F-measure

- F-measure is harmonic average of precision and recall
 - alternatively, F-measure = precision (recall) with FP (FN) replaced with (FP+FN)/2

• In ROC notation:
$$F = \frac{2tpr}{tpr + c \cdot fpr + 1}$$

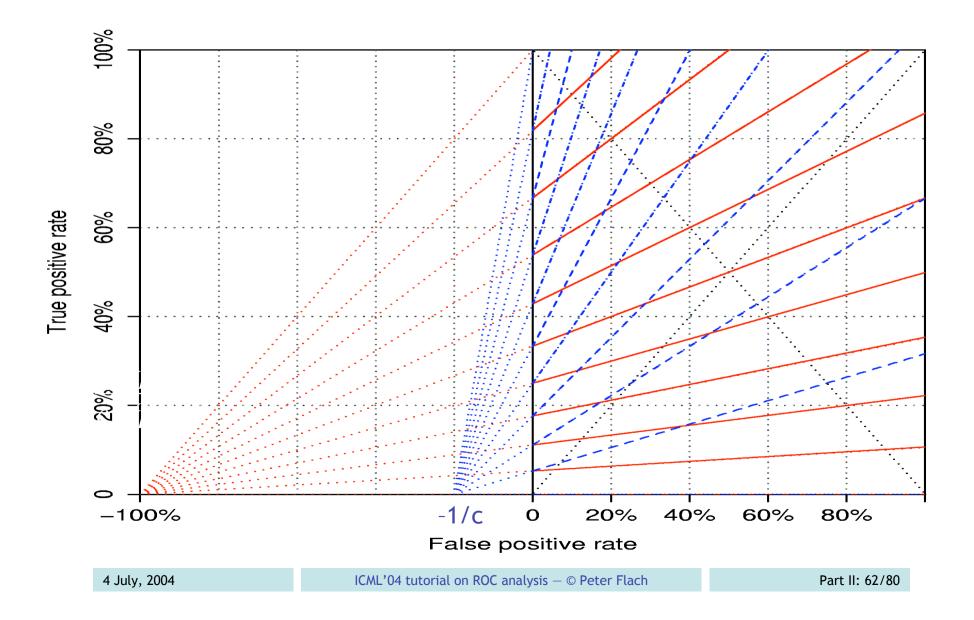
- Equivalent but simpler: $G = \frac{tpr}{c \cdot fpr + 1}$
- fpr=0 is line of skew-indifference

F-measure isometrics



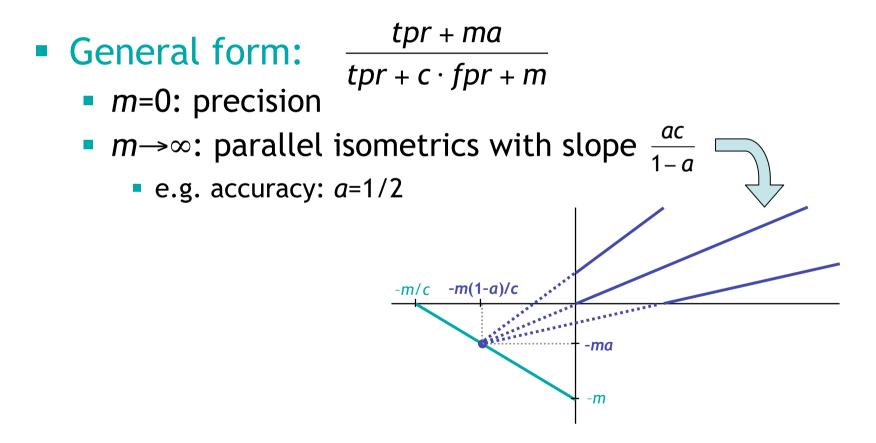
4 July, 2004

F-measure isometrics



Generalised linear isometrics

 Laplace correction and *m*-estimate are other examples which translate the rotation point



Linear metrics: summary

Metric	Formula	Skew-insensitive version	lsometric slope
Accuracy	<u>tpr + c(1 – fpr)</u> c + 1	<u>(tpr + 1 – fpr)</u> 2	С
WRAcc*	$\frac{4c}{(c+1)^2}(tpr-fpr)$	tpr – fpr	1
Precision*	$\frac{tpr}{tpr + c \cdot fpr}$	$\frac{tpr}{tpr + fpr}$	
Lift*	$\frac{c+1}{2}\frac{tpr}{tpr+c\cdot fpr}$	tpr tpr + fpr	tpr fpr
Relative precision*	$\frac{2c}{c+1}\frac{(tpr-fpr)}{tpr+c\cdot fpr}$	<u>tpr – fpr</u> tpr + fpr	
F-measure	$\frac{2tpr}{tpr + c \cdot fpr + 1}$	$\frac{2tpr}{tpr + fpr + 1}$	tpr
G-measure	$\frac{tpr}{c \cdot fpr + 1}$	$\frac{tpr}{fpr+1}$	fpr + 1/ c

All metrics are re-scaled such that the strongly skew-insensitive version is in [0,1] or [-1,1]. An asterisk (*) denotes weak skew-insensitivity.

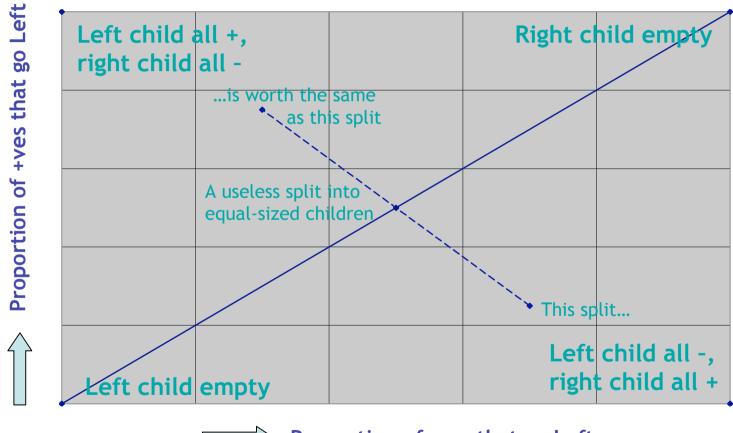
Splitting criteria

	Chil		
Daront	TP	FN	Pos
Parent	FP	TN	Neg
	Left	Right	Ν

- Splitting criteria are invariant under swapping columns, i.e. point-mirroring through (0,0)
 - if cost-insensitive then isometrics are symmetric across both diagonals
- They compare impurity of the parent with weighted average impurity of the children:

 $Imp(Pos / N, Neg / N) - Left / N \cdot Imp(TP / Left, FP / Left) - Right / N \cdot Imp(FN / Right, TN / Right)$

ROC space for splitting criteria



Proportion of -ves that go Left

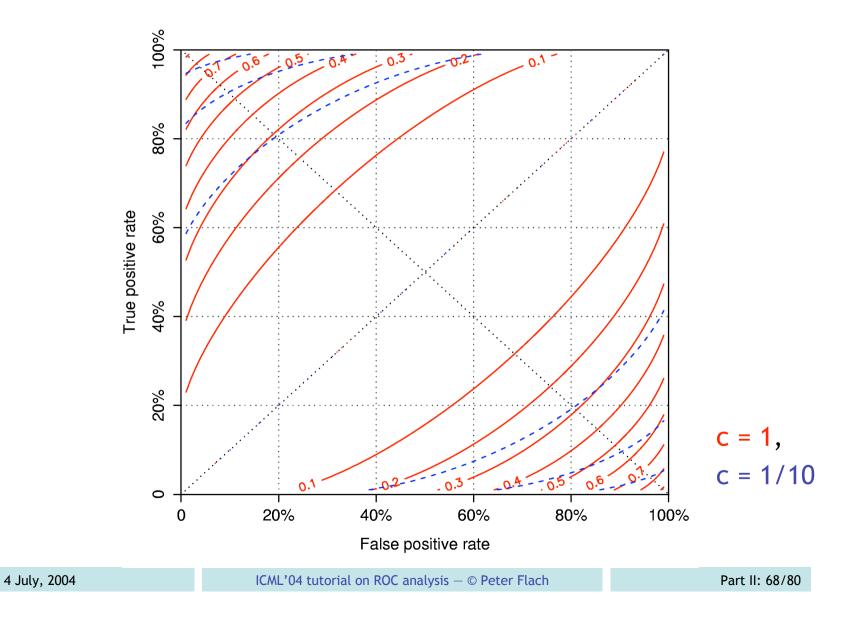
Different impurity measures

 relative impurity is defined as weighted impurity of (left) child in proportion to impurity of parent

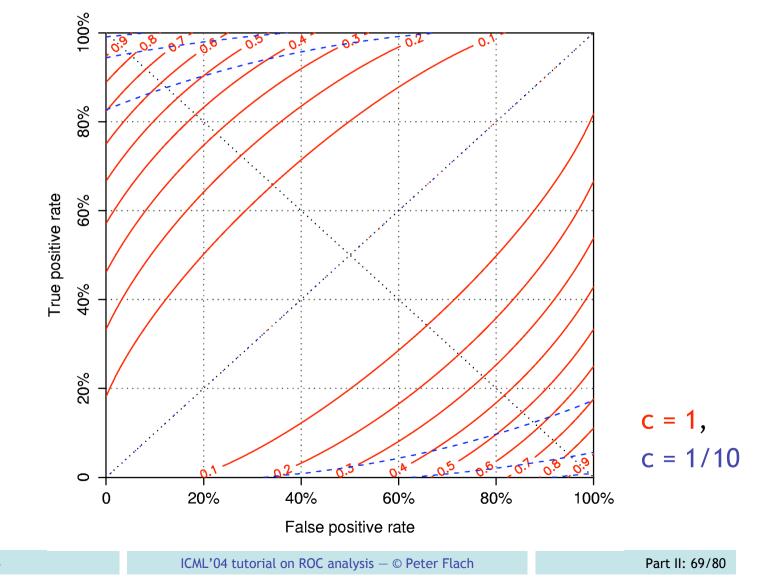
Impurity	Imp(p,n)	Relative impurity
Entropy	-plog p – nlog n	
Gini index	4pn	$\frac{(1+c)\cdot tpr \cdot fpr}{tpr + c \cdot fpr}$
DKM	2√pn	$\sqrt{tpr \cdot fpr}$

All impurity measures are re-scaled to [0,1]. DKM refers to (Dietterich, Kearns & Mansour, 1996). The cost-insensitivity of DKM-split for binary splits was shown by (Drummond & Holte, 2000).

Information gain isometrics



Gini-split isometrics



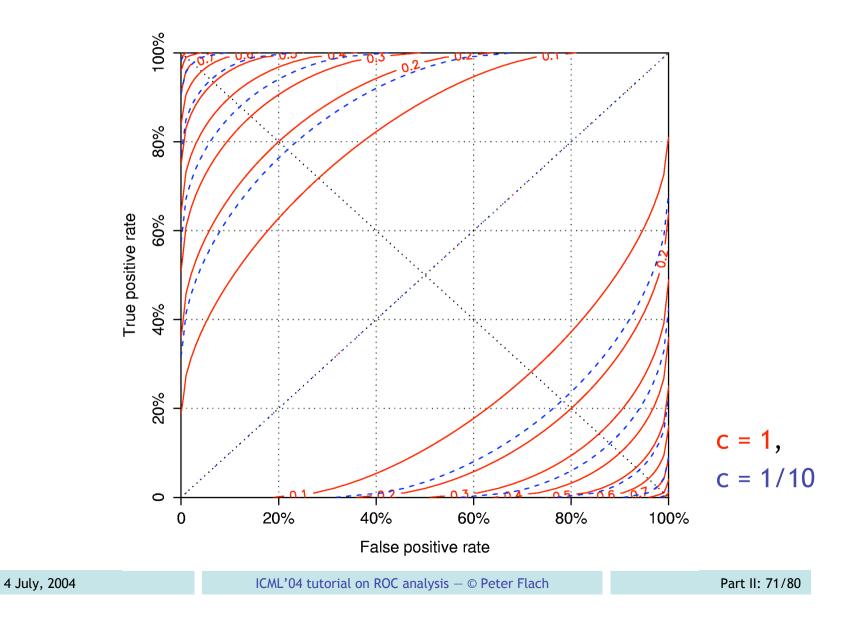
Comments on Gini-split

- More skew-sensitive than information gain
- Equivalent to two-by-two χ^2 normalised by sample size (i.e., $\phi^2)$
- Strongly skew-insensitive version obtained by setting c=1:

$$Gini - ROC = 1 - \frac{2 \cdot tpr \cdot fpr}{tpr + fpr} - \frac{2 \cdot (1 - tpr) \cdot (1 - fpr)}{1 - tpr + 1 - fpr}$$

- impurity of child takes impurity of parent into account
- no need to weight the impurity of children

DKM-split isometrics



Skew-insensitive splitting

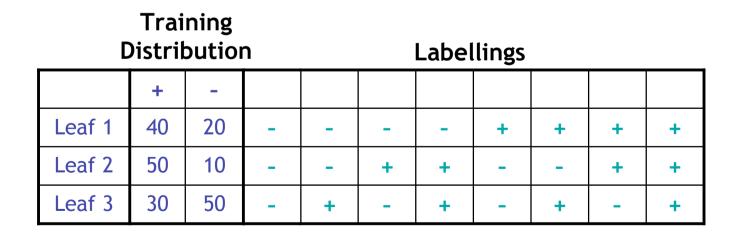
- The best splits do well on both classes, even with highly unbalanced data sets
- Inflating a class does not change split quality
 - bar rounding errors and tie-breaking
- Skew-sensitivity comes into play when pruning a decision tree

ROC-based model manipulation

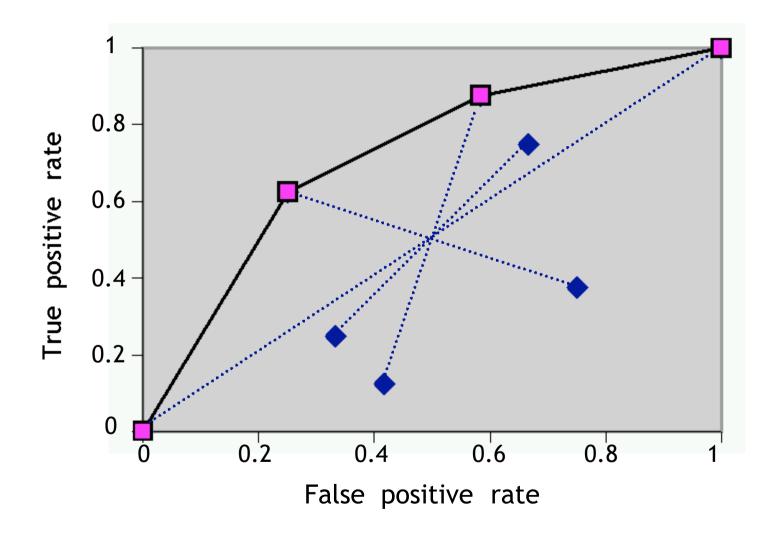
- ROC analysis allows creation of model variants without re-training
 - (Part I) manipulating ranker thresholds
- Example: re-labelling decision trees
 - (Ferri et al., 2002)
- Example: locally adjusting rankings
 - (Flach & Wu, 2003)

Re-labelling decision trees

- A decision tree can be seen as an unlabelled tree (a clustering tree):
 - Given n leaves and 2 classes, there are 2ⁿ possible labellings, each representing a classifier
- Use ROC analysis to select the best labellings

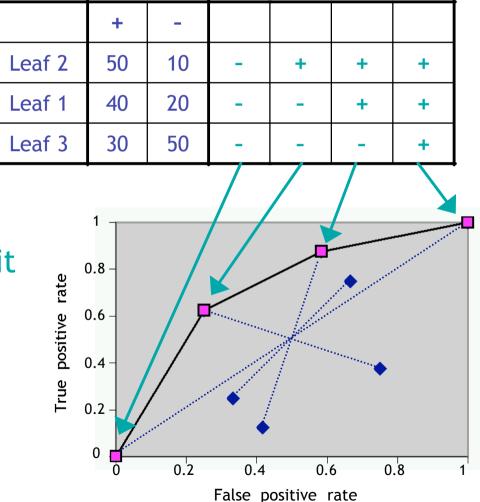


DT labellings in ROC space



Selecting optimal labellings

 Rank leaves by likelihood ratio P(l|+)/P(l|-)



2. For each possible split point, label leaves before split + and after split -

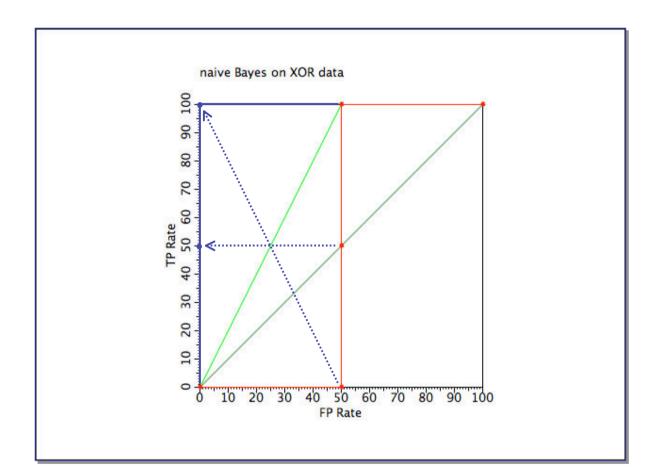
Why does it work?

- Decision trees are rankers if we use class distributions in the leaves
 - Probability Estimation Trees (Provost & Domingos, 2003)
- ROC curve can be constructed by sliding threshold
 - just as with naïve Bayes
- Equivalently, we can order instances, which boils down do ordering leaves
 - because all instances in a leaf are ranked together
- NB. Curve may not be convex on test set

Repairing concavities

- Concavities in ROC curves from rankers indicate worse-than-random segments in the ranking
- Idea 1: use binned ranking (aka discretised scores) -> convex hull
- Idea 2: invert ranking in segment
- Need to avoid overfitting

Example



 Effectively introduces a second decision boundary

Summary of Part II

- Isometric plots visualise the behaviour of machine learning metrics
 - equivalences, skew-sensitivity, skew-insensitive versions
- One model can be many models
 - ROC analysis can be used to obtain alternative labellings of trees, adjust rankings, etc.