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Objectives

= After this tutorial, you will be able to

4 July, 2004

[model evaluation] produce ROC plots for categorical and
ranking classifiers and calculate their AUC; apply cross-
validation in doing so;

[model selection] use the ROC convex hull method to select
among categorical classifiers; determine the optimal decision
threshold for a ranking classifier (calibration);

[metrics] analyse a variety of machine learning metrics by
means of ROC isometrics; understand fundamental properties
such as skew-sensitivity and equivalence between metrics;

[model construction] appreciate that one model can be many
models from a ROC perspective; use ROC analysis to improve a
model’s AUC;

[multi-class ROC] understand multi-class approximations such
as the MAUC metric and calibration of multi-class probability
estimators; appreciate the main open problems in extending
ROC analysis to multi-class classification.
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Take-home messages

= |t is almost always a good idea to distinguish
performance between classes.

= ROC analysis is not just about ‘cost-sensitive
learning’.

= Ranking is a more fundamental notion than
classification.
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Outline

= Part I: Fundamentals (90 minutes)

= categorical classification: ROC plots, random selection between
models, the ROC convex hull, iso-accuracy lines

= ranking: ROC curves, the AUC metric, turning rankers into classifiers,
calibration, averaging

= interpretation: concavities, majority class performance
= alternatives: PN plots, precision-recall curves, DET curves, cost
curves
= Part ll: A broader view (60 minutes)

= understanding ML metrics: isometrics, basic types of linear isometric
plots, linear metrics and equivalences between them, non-linear
metrics, skew-sensitivity

= model manipulation: obtaining new models without re-training,
ordering decision tree branches and rules,repairing concavities,
locally adjusting rankings

= Part lll: Multi-class ROC (30 minutes)

= the general problem, multi-objective optimisation and the Pareto
front, approximations to Area Under ROC Surface, calibrating multi-
class probability estimators
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Part I: Fundamentals

= Categorical classification:
= ROC plots
= random selection between models
= the ROC convex hull
= iso-accuracy lines
= Ranking:
= ROC curves
= the AUC metric
= turning rankers into classifiers
= calibration

= Alternatives:
= PN plots
= precision-recall curves
= DET curves
= cost curves
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Receiver Operating Characteristic

= Originated from signal detection theory
= binary signal corrupted by Gaussian noise

= how to set the threshold (operating point) to
distinguish between presence/absence of signal?

= depends on (1) strength of signal, (2) noise variance,
and (3) desired hit rate or false alarm rate
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Signal detection theory

= slope of ROC curve is equal to likelihood ratio
L(x) = P(x | sig|.1al)
P(x | noise)

= if variances are equal, L(x) increases
monotonically with x and ROC curve is convex

= optimal threshold for x, such that L(x,) = ;(qzisel))
S1€Na

= concavities occur with unequal variances
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ROC analysis for classification

= Based on contingency table or confusion matrix

Predicted Predicted
positive negative
Positive | True positives | False negatives
examples
Negative | False positives | True negatives
examples

= Terminology:
= true positive = hit
= true negative = correct rejection
= false positive = false alarm (aka Type | error)

= false negative = miss (aka Type Il error)
= positive/negative refers to prediction
= true/false refers to correctness
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More terminology & notation

Predicted
positive

Predicted
negative

Positive
examples

TP

FN

Pos

Negative
examples

FP

TN

Neg

PPos

PNeg

N

* True positive rate tpr = TP/Pos = TP/TP+FN

= fraction of positives correctly predicted

= False positive rate fpr = FP/Neg = FP/FP+TN

= fraction of negatives incorrectly predicted

= =1 - true negative rate TN/FP+TN

= Accuracy acc = pos*tpr + neg*(1-fpr)
= weighted average of true positive and true

negative rates
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Example ROC plot
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ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)
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The ROC convex hull

Classifiers in ROC space
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= Classifiers on the convex hull achieve the best accuracy
for some class distributions

= Classifiers below the convex hull are always sub-optimal
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Why is the convex hull a curve?

= Any performance on a line segment
connecting two ROC points can be achieved
by randomly choosing between them
= the ascending default performance diagonal is
just a special case
= The classifiers on the ROC convex hull can be
combined to form the ROCCH-hybrid (Provost
& Fawcett, 2001)
= ordered sequence of classifiers

= can be turned into a ranker
= as with decision trees, see later
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Iso-accuracy lines

= [so-accuracy line connects ROC points with the same
accuracy
= pos*tpr + neg*(1-fpr) = a

100%

a-neg neg
pos  pos

= tpr = fpr

80%

= Parallel ascending lines
with slope neg/pos
= higher lines are better

= on descending diagonal,
tpr = a

True positive rate
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Iso-accuracy & convex hull

= Each line segment on the convex hull is an
iso-accuracy line for a particular class
distribution

= under that distribution, the two classifiers on the
end-points achieve the same accuracy

= for distributions skewed towards negatives
(steeper slope), the left one is better

= for distributions skewed towards positives
(flatter slope), the right one is better

= Each classifier on convex hull is optimal for a
specific range of class distributions
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Selecting the optimal classifier

= For uniform class distribution, C4.5 is optimal
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= and achieves about 82% accuracy
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Selecting the optimal classifier

Classifiers in ROC space
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= With four times as many +ves as -ves, SVM is optimal
= and achieves about 84% accuracy
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Selecting the optimal classifier
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= With four times as many -ves as +ves, CN2 is optimal
= and achieves about 86% accuracy
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Selecting the optimal classifier
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= With less than 9% positives, AlwaysNeg is optimal
= With less than 11% negatives, AlwaysPos is optimal
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Incorporating costs and profits

= |so-accuracy and iso-error lines are the same
= err = pos*(1-tpr) + neg*fpr
= slope of iso-error line is neg/pos
= |[ncorporating misclassification costs:
= cost = pos*(1-tpr)*C(-|+) + neg*fpr*C(+]-)
= slope of iso-cost line is neg*C(+|-)/pos*C(- | +)
= [ncorporating correct classification profits:
= cost = pos*(1-tpr)*C(-|+) + neg*fpr*C(+|-) +
pos*tpr*C(+|+) + neg*(1-fpr)*C(-|-)
= slope of iso-yield line is
neg*[C(+]-)-C(-1-)]/pos*[C(-+)-C(+]+)]
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Skew

= From a decision-making perspective, the
cost matrix has one degree of freedom

= need full cost matrix to determine absolute yield

= There is no reason to distinguish between
cost skew and class skew

= skew ratio expresses relative importance of
negatives vs. positives

= ROC analysis deals with skew-sensitivity
rather than cost-sensitivity
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Rankers and classifiers

= A scoring classifier outputs scores f(x,+)
and f(x,-) for each class

= e.g. estimate class-conditional likelihoods
P(x|+) and P(x]-)

= scores don’t need to be normalised
= f(x) = f(x,+)/f(X,-) can be used to rank
instances from most to least likely positive
= e.g. likelihood ratio P(x|+)/P(x]|-)

= Rankers can be turned into classifiers by
setting a threshold on f(x)
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Drawing ROC curves for rankers

= Naive method:

= consider all possible thresholds
= in fact, only k+1 for k instances

= construct contingency table for each threshold
= plot in ROC space

= Practical method:

= rank test instances on decreasing score f(x)

= starting in (0,0), if the next instance in the
ranking is +ve move 1/Pos up, if it is -ve move
1/Neg to the right

= make diagonal move in case of ties
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Some example ROC curves

halance-scale | naive Bayes | all

[ ]
=]
—
[}
[

o

80

§0 70

TF Rate

o0 10 20 30 40 450

FF Rate

= Good separation between classes, convex curve

4 July, 2004 ICML’04 tutorial on ROC analysis — © Peter Flach Part I: 24/49



Some example ROC curves

adult | naive Bayes | all
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= Reasonable separation, mostly convex
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Some example ROC curves

tic-tac-toe | naive Bayes | all
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= Fairly poor separation, mostly convex
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Some example ROC curves

hreast-cancer | naive Bayes | all
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= Poor separation, large and small concavities

4 July, 2004 ICML’04 tutorial on ROC analysis — © Peter Flach Part I: 27/49



Some example ROC curves

TF Ratz

FP Rate

= Random performance
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ROC curves for rankers

= The curve visualises the quality of the ranker
or probabilistic model on a test set, without
committing to a classification threshold

= aggregates over all possible thresholds

= The slope of the curve indicates class
distribution in that segment of the ranking

= diagonal segment -> locally random behaviour

= Concavities indicate locally worse than
random behaviour

= convex hull corresponds to discretising scores
= can potentially do better: repairing concavities
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The AUC metric

= The Area Under ROC Curve (AUC) assesses the
ranking in terms of separation of the classes
= all the +ves before the -ves: AUC=1
= random ordering: AUC=0.5
= all the -ves before the +ves: AUC=0

= Equivalent to the Mann-Whitney-Wilcoxon
sum of ranks test

= estimates probability that randomly chosen +ve is
ranked before randomly chosen -ve

o 2. ZPostPos+1/2 \ hare S, is the sum of ranks of +ves
Pos - Neg

= Gini coefficient = 2*AUC-1 (area above diag.)
= NB. not the same as Gini index!
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AUC=0.5 not always random
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= Poor performance because data requires two
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classification boundaries
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Turning rankers into classifiers

= Requires decision rule, i.e. setting a
threshold on the scores f(x)

= e.g. Bayesian: predict positive if PX1+) _ Neg
= equivalently: g(()’::i))l’;:; 1 P(x|-) Pos

= |f scores are calibrated we can use a default
threshold of 1

= with uncalibrated scores we need to learn the
threshold from the data

= NB. naive Bayes is uncalibrated
= j.e. don’t use Pos/Neg as prior!
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Uncalibrated threshold
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Calibrated threshold
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Calibration

= Easy in the two-class case: calculate
accuracy in each point/threshold while
tracing the curve, and return the threshold

with maximum accuracy

= NB. only calibrates the threshold, not the
probabilities -> (Zadrozny & Elkan, 2002)

= Non-trivial in the multi-class case
= discussed later
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Averaging ROC curves

= To obtain a cross-validated ROC curve

= just combine all test folds with scores for each
instance, and draw a single ROC curve

= To obtain cross-validated AUC estimate with
error bounds
= calculate AUC in each test fold and average

= or calculate AUC from single cv-ed curve and use
bootstrap resampling for error bounds

= To obtain ROC curve with error bars
= vertical averaging (sample at fixed fpr points)
= threshold averaging (sample at fixed thresholds)
= see (Fawcett, 2004)
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Averaging ROC curves
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covered positive examples

PN spaces

= PN spaces are ROC spaces with non-
normalised axes

= X-axis: covered -ves n (instead of fpr = n/Neg)

= y-axis: covered +ves p (instead of tpr = p/Pos)

D:n‘,./.,

covered positive examples
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covered negative examples
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PN spaces vs. ROC spaces

= PN spaces can be used if class distribution
(reflected by shape) is fixed

= good for analysing behaviour of learning

algorithm on single dataset (Gamberger & Lavrac,
2002; Furnkranz & Flach, 2003)

o

* In PN spaces, iso-accuracy
lines always have slope 1

= PN spaces can be nested
to reflect covering strategy

amples
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overad

o

]
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Precision-recall curves

Predicted | Predicted
positive negative
Positive TP FN Pos
examples
Negative FP TN Neg
examples
PPos PNeg N

* Precision prec = TP/PPos = TP/TP+FP

= fraction of positive predictions correct

= Recall rec = tpr = TP/Pos = TP/TP+FN

= fraction of positives correctly predicted

= Note: neither depends on true negatives
= makes sense in information retrieval, where true
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negatives tend to dominate —> low fpr easy
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PR curves vs. ROC curves

= Two ROC curves = Corresponding PR curves
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DET curves (Martin et al., 1997)
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= Detection Error Trade-off
= false negative rate instead of true positive rate

= re-scaling using normal deviate scale
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Cost curves (prummond & Holte, 2001)

- Classifier 1
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Operating range
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Lower envelope
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Varying thresholds
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Taking costs into account

= Error rate is err = (1-tpr)*pos + fpr*(1-pos)

= Define probability cost function as
pos - C(-1+)
pos - C(-| +)+ neg - C(+ | -)

pcf =

= Normalised expected cost is
nec = (1-tpr)*pcf + fpr*(1-pcf)
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ROC curve vs. cost curve
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Summary of Part |

= ROC analysis is useful for evaluating
performance of classifiers and rankers

= key idea: separate performance on classes

= ROC curves contain a wealth of information
for understanding and improving
performance of classifiers

= requires visual inspection
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