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Part II: A broader view

 Understanding ML metrics:
 isometrics, basic types of linear isometric plots
 linear metrics and equivalences between them
 skew-sensitivity
 non-linear metrics

 Model manipulation:
 obtaining new models without re-training
 ordering decision tree branches
 repairing concavities by locally adjusting rankings



4 July, 2004 ICML’04 tutorial on ROC analysis — © Peter Flach Part II: 51/80

Understanding ML metrics

 We are referring here to metrics (or heuristics)
that are used to rank (fpr,tpr) points
 i.e., classifiers or parts of classifiers

 NB. different sense of ranking than before!

 Metrics are equivalent if their rankings are
the same
 absolute value of metric not important

 This can be visualised very clearly by means
of ROC isometrics
 additional benefit of studying skew-sensitivity
 see (Flach, 2003) and (Fürnkranz & Flach, 2003)
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Iso-accuracy lines revisited

 In 2D ROC space
 c = 1,  c = 1/2

 In 3D ROC space
 acc = 0.5, acc = 0.8
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Isometrics and skew ratio

 Accuracy is weighted average of true
positive/negative rates:

 Skew ratio indicates relative importance of
negatives over positives
 without costs: c = neg/pos

 Isometric plots show contour lines in 2D ROC
space for a given metric with skew ratio as
parameter

    

€ 

acc = pos ⋅ tpr + neg ⋅ (1− fpr) =
tpr + c ⋅ (1− fpr)

c + 1



4 July, 2004 ICML’04 tutorial on ROC analysis — © Peter Flach Part II: 54/80

Skew-sensitivity

 Strongly skew-insensitive metric is
independent of skew ratio
 isometric surfaces in 3D ROC space are vertical
 can be obtained for any metric by fixing c

 Weakly skew-insensitive metric has the same
isometric landscape for different values of c
 any collection of ROC points is ranked the same

way, regardless of c

 Line of skew-indifference: points where the
metric is independent of c
 for accuracy, this is the line tpr+fpr–1=0
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Types of isometric plots

a) Parallel linear isometrics
 accuracy, weighted relative accuracy (WRAcc)

b) Rotating linear isometrics
 precision, lift, F-measure

c) Non-linear isometrics
 decision tree splitting criteria
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Symmetries

 Inverting predictions of classifier
 ROC space: point-mirroring through (0.5, 0.5)
 contingency table: swapping columns

 Inverting test labels
 ROC space: mirroring along ascending diagonal
 contingency table: swapping rows

 affects skew ratio (c becomes 1/c), so a test for skew-
insensitivity

 Inverting both predictions and test labels
 ROC space: mirroring along descending diagonal
 contingency table: swapping rows and columns
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Weighted relative accuracy

 Original definition:

 In ROC notation:

 Weakly skew-insensitive: isometrics are
parallel to diagonal
 strongly skew-insensitive version: tpr–fpr

    

€ 

wracc/4 = P(x) ⋅ [P(+|x)− P(+)] = P(x,+)− P(x) ⋅ P(+)

    

€ 

wracc =
4c

(c + 1)2
(tpr − fpr)
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Precision or confidence

 Precision is defined as

 Weakly skew-insensitive, rotating isometrics
 on tpr = fpr diagonal, prec = pos

 Two variants with fixed value on diagonal
 relative precision:
 lift:

  

€ 

prec =
pos ⋅ tpr

pos ⋅ tpr + neg ⋅ fpr
=

tpr
tpr + c ⋅ fpr

  

€ 

relprec = prec − pos

    

€ 

lift = prec/pos
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Precision isometrics

€ 

tpr
tpr + c ⋅ fpr

c = 1,  
c = 1/2
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F-measure

 F-measure is harmonic average of precision
and recall
 alternatively, F-measure = precision (recall) with

FP (FN) replaced with (FP+FN)/2

 In ROC notation:

 Equivalent but simpler:

 fpr=0 is line of skew-indifference

    

€ 

F =
2tpr

tpr + c ⋅ fpr + 1

    

€ 

G =
tpr

c ⋅ fpr + 1
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F-measure isometrics

€ 

2tpr
tpr + c ⋅ fpr +1

€ 

tpr
c ⋅ fpr +1

c = 1,  
c = 5
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F-measure isometrics

€ 

tpr
c ⋅ fpr +1

–1/c
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Generalised linear isometrics
 Laplace correction and m-estimate are other

examples which translate the rotation point

 General form:
 m=0: precision
 m→∞: parallel isometrics with slope

 e.g. accuracy: a=1/2

  

€ 

tpr + ma
tpr + c ⋅ fpr + m

    

€ 

ac
1− a

–m/c –m(1–a)/c

–m

–ma
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Linear metrics: summary
Metric Formula Skew-insensitive

version
Isometric

slope

Accuracy
    

€ 

tpr + c(1− fpr)
c + 1     

€ 

(tpr + 1− fpr)
2

c

WRAcc*
    

€ 

4c
(c + 1)2

(tpr − fpr)   

€ 

tpr − fpr 1

Precision*
  

€ 

tpr
tpr + c ⋅ fpr   

€ 

tpr
tpr + fpr

Lift*
    

€ 

c + 1
2

tpr
tpr + c ⋅ fpr   

€ 

tpr
tpr + fpr

Relative
precision*

    

€ 

2c
c + 1

(tpr − fpr)
tpr + c ⋅ fpr   

€ 

tpr − fpr
tpr + fpr

  

€ 

tpr
fpr

F-measure
    

€ 

2tpr
tpr + c ⋅ fpr + 1     

€ 

2tpr
tpr + fpr + 1

G-measure
    

€ 

tpr
c ⋅ fpr + 1     

€ 

tpr
fpr + 1

    

€ 

tpr
fpr + 1/c

All metrics are re-scaled such that the strongly skew-insensitive 
version is in [0,1] or [–1,1]. An asterisk (*) denotes weak skew-insensitivity. 

€ 

}

€ 

}
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Splitting criteria

 Splitting criteria are invariant under swapping
columns, i.e. point-mirroring through (0,0)
 if cost-insensitive then isometrics are symmetric

across both diagonals

 They compare impurity of the parent with
weighted average impurity of the children:

Children
TP FN Pos

Parent FP TN Neg
Left Right N

    

€ 

Imp(Pos/N,Neg/N)− Left/N ⋅ Imp(TP/Left,FP/Left)− Right/N ⋅ Imp(FN/Right,TN/Right)
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ROC space for splitting criteria

Left child all +,
right child all –

Left child all –,
right child all +Left child empty

Right child empty

A useless split into
equal-sized children

This split…

…is worth the same 
as this split
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Impurity Imp(p,n) Relative impurity

Entropy     

€ 

−plog p − nlog n

Gini index     

€ 

4pn
    

€ 

(1+ c) ⋅ tpr ⋅ fpr
tpr + c ⋅ fpr

DKM
    

€ 

2 pn   

€ 

tpr ⋅ fpr

All impurity measures are re-scaled to [0,1]. DKM refers to (Dietterich, Kearns 
& Mansour, 1996). The cost-insensitivity of DKM-split for binary splits was shown 
by (Drummond & Holte, 2000). 

Different impurity measures

 relative impurity is defined as weighted impurity of
(left) child in proportion to impurity of parent
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Information gain isometrics

c = 1,  
c = 1/10
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Gini-split isometrics

c = 1,  
c = 1/10
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€ 

Gini − ROC = 1−
2 ⋅ tpr ⋅ fpr
tpr + fpr

−
2 ⋅ (1− tpr) ⋅ (1− fpr)

1− tpr + 1− fpr

Comments on Gini-split

 More skew-sensitive than information gain
 Equivalent to two-by-two χ2 normalised by

sample size (i.e., φ2)
 Strongly skew-insensitive version obtained by

setting c=1:

 impurity of child takes impurity of parent into
account

 no need to weight the impurity of children
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DKM-split isometrics

c = 1,  
c = 1/10
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Skew-insensitive splitting

 The best splits do well on both classes, even
with highly unbalanced data sets

 Inflating a class does not change split quality
 bar rounding errors and tie-breaking

 Skew-sensitivity comes into play when
pruning a decision tree
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ROC-based model manipulation

 ROC analysis allows creation of model
variants without re-training
 (Part I) manipulating ranker thresholds

 Example: re-labelling decision trees
 (Ferri et al., 2002)

 Example: locally adjusting rankings
 (Flach & Wu, 2003)
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Re-labelling decision trees

 A decision tree can be seen as an unlabelled tree
(a clustering tree):
 Given n leaves and 2 classes, there are 2n possible

labellings, each representing a classifier

 Use ROC analysis to select the best labellings
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DT labellings in ROC space

False  positive  rate
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False  positive  rate
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Selecting optimal labellings
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1. Rank leaves by
likelihood ratio
P(l|+)/P(l|–)

2. For each possible split
point, label leaves
before split + and
after split –
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Why does it work?
 Decision trees are rankers if we use class

distributions in the leaves
 Probability Estimation Trees (Provost & Domingos,

2003)

 ROC curve can be constructed by sliding
threshold
 just as with naïve Bayes

 Equivalently, we can order instances, which
boils down do ordering leaves
 because all instances in a leaf are ranked

together

 NB. Curve may not be convex on test set
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Repairing concavities

 Concavities in ROC curves from rankers
indicate worse-than-random segments in the
ranking

 Idea 1: use binned ranking (aka discretised
scores) —> convex hull

 Idea 2: invert ranking in segment

 Need to avoid overfitting
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Example

 Effectively introduces a second decision
boundary
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Summary of Part II

 Isometric plots visualise the behaviour of
machine learning metrics
 equivalences, skew-sensitivity, skew-insensitive

versions

 One model can be many models
 ROC analysis can be used to obtain alternative

labellings of trees, adjust rankings, etc.


