Part ll: A broader view

» Understanding ML metrics:

= jsometrics, basic types of linear isometric plots
= linear metrics and equivalences between them
= skew-sensitivity

= non-linear metrics

= Model manipulation:

= obtaining new models without re-training
= ordering decision tree branches
= repairing concavities by locally adjusting rankings
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Understanding ML metrics

= We are referring here to metrics (or heuristics)
that are used to rank (fpr,tpr) points

= j.e., classifiers or parts of classifiers
= NB. different sense of ranking than before!

* Metrics are equivalent if their rankings are
the same

= absolute value of metric not important

= This can be visualised very clearly by means
of ROC isometrics

= additional benefit of studying skew-sensitivity
= see (Flach, 2003) and (Furnkranz & Flach, 2003)
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True positive rate
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= |n 2D ROC space = |n 3D ROC space

= c=1, c=1/2 = acc =0.5, acc=0.8
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Isometrics and skew ratio

= Accuracy is weighted average of true

positive/negative rates:

acc = pos - tpr + neg - (1 - fpr) = tpr + ¢ - (1= fpr)

C+1
= Skew ratio indicates relative importance of
negatives over positives

= without costs: ¢ = neg/pos

» [sometric plots show contour lines in 2D ROC
space for a given metric with skew ratio as
parameter
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Skew-sensitivity

= Strongly skew-insensitive metric is
independent of skew ratio

= jsometric surfaces in 3D ROC space are vertical
= can be obtained for any metric by fixing c
= Weakly skew-insensitive metric has the same
isometric landscape for different values of c

= any collection of ROC points is ranked the same
way, regardless of ¢

= Line of skew-indifference: points where the
metric is independent of ¢

= for accuracy, this is the line tpr+fpr-1=0
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Types of isometric plots

a) Parallel linear isometrics
= accuracy, weighted relative accuracy (WRAcc)

b) Rotating linear isometrics
= precision, lift, F-measure

c) Non-linear isometrics
= decision tree splitting criteria

4 July, 2004 ICML’04 tutorial on ROC analysis — © Peter Flach Part 1l: 55/80



Symmetries

» |nverting predictions of classifier
= ROC space: point-mirroring through (0.5, 0.5)
= contingency table: swapping columns

» |nverting test labels

= ROC space: mirroring along ascending diagonal

= contingency table: swapping rows

= affects skew ratio (c becomes 1/c), so a test for skew-
insensitivity

* |nverting both predictions and test labels

= ROC space: mirroring along descending diagonal
= contingency table: swapping rows and columns
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Weighted relative accuracy

* Original definition:
wracc/4 = P(x)- [P(+ | X) - P(+)] = P(x,+) - P(x)- P(+)

4c

= |n ROC notation: wracc =
(C + 1)

(tpr — fpr)

= Weakly skew-insensitive: isometrics are
parallel to diagonal
= strongly skew-insensitive version: tpr-fpr
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Precision or confidence

= Precision is defined as
pos - tpr tpr

pos - tpr + neg - fpr ) tpr + c- fpr

prec =

= Weakly skew-insensitive, rotating isometrics
= on tpr = fpr diagonal, prec = pos

= Two variants with fixed value on diagonal
= relative precision: relprec = prec — pos
= lift: lift = prec/ pos
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True positive rate
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Precision isometrics
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F-measure

= F-measure is harmonic average of precision
and recall

= alternatively, F-measure = precision (recall) with
FP (FN) replaced with (FP+FN)/2

2tpr
tpr + c- fpr +1

= |n ROC notation: F =

tpr
c:fpr+1

= Equivalent but simpler: G-=

= fpr=0 is line of skew-indifference
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F-measure isometrics
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True positive rate

F-measure isometrics
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Generalised linear isometrics

= Laplace correction and m-estimate are other
examples which translate the rotation point

= General form:

tpr + ma
tpr +c- fpr + m

= m=0: precision
= m—oo: parallel isometrics with slope Ci—ca j

4 July, 2004

= e.g. accuracy: a=1/2
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Linear metrics: summary

Metric Formula Skew-insensitive Isometric
version slope
Accuracy tpr + c(1- fpr) (tpr +1-fpr) C
c+1 2
WRAcc* 4c (tpr - fpr) tpr - fpr 1
(c+1)°
Precision* _ _tpr
tpr+c- fpr tpr + fpr

Lift* c+1 tpr tpr tpr

2 tpr+c-fpr tpr + fpr fpr
Relative 2¢ (tpr - fpr) tpr - fpr
precision® c+1tpr+c- fpr tpr + fpr
F-measure 2tpr 2tpr

tpr +c- fpr +1 tpr + fpr +1 tpr
G-measure tpr tpr fpr+1/c

c-fpr+1 for +1

All metrics are re-scaled such that the strongly skew-insensitive
version is in [0,1] or [-1,1]. An asterisk (*) denotes weak skew-insensitivity.
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Splitting criteria

Children
TP FN Pos
FP [ TN | Neg
Left | Right [ N

Parent

= Splitting criteria are invariant under swapping
columns, i.e. point-mirroring through (0,0)
= if cost-insensitive then isometrics are symmetric
across both diagonals

= They compare impurity of the parent with
weighted average impurity of the children:
Imp(Pos / N,Neg /N)— Left/N-Imp(TP/Left,FP/Left) - Right/N-Imp(FN/Right, TN / Right)
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Different impurity measures

= relative impurity is defined as weighted impurity of
(left) child in proportion to impurity of parent

Impurity Imp(p,n) Relative impurity

Entropy ~plog p-nlogn
Gini index 4pn (1+c¢)-tpr- fpr
tpr +c - fpr

DM 24/pn \tpr - fpr

All impurity measures are re-scaled to [0,1]. DKM refers to (Dietterich, Kearns
& Mansour, 1996). The cost-insensitivity of DKM-split for binary splits was shown
by (Drummond & Holte, 2000).
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Information gain isometrics
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Gini-split isometrics
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Comments on Gini-split

* More skew-sensitive than information gain

= Equivalent to two-by-two %2 normalised by
sample size (i.e., ¢?)
= Strongly skew-insensitive version obtained by
setting c=1:
G’.m._ROC=1_2-tpr-fpr_2-(1—tpr)-(1—fpr)
tpr + fpr 1-tpr +1- fpr

= impurity of child takes impurity of parent into
account

= no need to weight the impurity of children
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DKM-split isometrics
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Skew-insensitive splitting

= The best splits do well on both classes, even
with highly unbalanced data sets

= [nflating a class does not change split quality
= bar rounding errors and tie-breaking

= Skew-sensitivity comes into play when
pruning a decision tree
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ROC-based model manipulation

= ROC analysis allows creation of model
variants without re-training

= (Part I) manipulating ranker thresholds

= Example: re-labelling decision trees
= (Ferri et al., 2002)

= Example: locally adjusting rankings
= (Flach & Wu, 2003)
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Re-labelling decision trees

= A decision tree can be seen as an unlabelled tree
(a clustering tree):

= Given n leaves and 2 classes, there are 2" possible
labellings, each representing a classifier

= Use ROC analysis to select the best labellings

Training
Distribution Labellings
+ -
Leaf 1 | 40 | 20 - - - - + + + +
Lleaf 2 | 50 | 10 . . + + . . + +
Leaf 3 | 30 | 50 - + - + - + - +

4 July, 2004

ICML’04 tutorial on ROC analysis — © Peter Flach Part 1l: 74/80



DT labellings in ROC space
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Selecting optimal labellings

+ -
Leaf 2 | 50 10 - + + +
1. Rank leaves by eaf1 140 | 20 - | - 1 + 1 «

likelihood ratio Leaf 3
P(LI+)/P(L]-)

2. For each possible split
point, label leaves
before split + and
after split -

True positive rate

0 0.2 0.4 0.6 0.8 1
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Why does it work?

= Decision trees are rankers if we use class
distributions in the leaves

= Probability Estimation Trees (Provost & Domingos,
2003)

= ROC curve can be constructed by sliding
threshold

= just as with naive Bayes

= Equivalently, we can order instances, which
boils down do ordering leaves

= because all instances in a leaf are ranked
together

= NB. Curve may not be convex on test set
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Repairing concavities

= Concavities in ROC curves from rankers
indicate worse-than-random segments in the
ranking

» |dea 1: use binned ranking (aka discretised
scores) —> convex hull

* |dea 2: invert ranking in segment

= Need to avoid overfitting
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Example

naive Bayes on XOR data
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= Effectively introduces a second decision
boundary
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Summary of Part Il

= [sometric plots visualise the behaviour of
machine learning metrics

= equivalences, skew-sensitivity, skew-insensitive
versions

= One model can be many models

= ROC analysis can be used to obtain alternative
labellings of trees, adjust rankings, etc.
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