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Abstract. Simplex Volume Maximization (SiVM) exploits distance ge-
ometry for e�ciently factorizing gigantic matrices. It was proven success-
ful in game, social media, and plant mining. Here, we review the distance
geometry approach and argue that it generally suggests to factorize gi-
gantic matrices using search-based instead of optimization techniques.

1 Interpretable Matrix Factorization

Many modern data sets are available in form of a real-valued m × n matrix V
of rank r ≤ min(m,n). The columns v1, . . . ,vn of such a data matrix encode
information about n objects each of which is characterized by m features. Typi-
cal examples of objects include text documents, digital images, genomes, stocks,
or social groups. Examples of corresponding features are measurements such
as term frequency counts, intensity gradient magnitudes, or incidence relations
among the nodes of a graph. In most modern settings, the dimensions of the data
matrix are large so that it is useful to determine a compressed representation
that may be easier to analyze and interpret in light of domain-speci�c knowl-
edge. Formally, compressing a data matrix V ∈ Rm×n can be cast as a matrix

factorization (MF) task. The idea is to determine factor matrices W ∈ Rm×k
and H ∈ Rk×n whose product is a low-rank approximation of V. Formally, this

amounts to a minimization problem minW, H

∥∥V−WH
∥∥2 where ‖·‖ denotes a

suitable matrix norm, and one typically assumes k � r.
A common way of obtaining a low-rank approximation stems from truncat-

ing the singular value decomposition (SVD) where V = WSUT = WH. The
SVD is popular for it can be solved analytically and has signi�cant statistical
properties. The column vectors wi of W are orthogonal basis vectors that coin-
cide with the directions of largest variance in the data. Although there are many
successful applications of the SVD, for instance in information retrieval, it has
been criticized because the wi may lack interpretability with respect to the �eld
from which the data are drawn [6]. For example, the wi may point in the di-
rection of negative orthants even though the data itself is strictly non-negative.
Nevertheless, data analysts are often tempted to reify, i.e., to assign a �physical�
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meaning or interpretation to large singular components. In most cases, however,
this is not valid. Even if rei�cation is justi�ed, the interpretative claim cannot
arise from mathematics, but must be based on an intimate knowledge of the
application domain.

The most common way of compressing a data matrix such that the resulting
basis vectors are interpretable and faithful to the data at hand is to impose ad-
ditional constraints on the matrices W and H. An example is non-negative MF
(NMF), which imposes the constraint that entries of W and H are non-negative.
Another example of a constrained MF method is archetypal analysis (AA) as in-
troduced by [3]. It considers the NMF problem where W ∈ Rn×k and H ∈ Rk×n
are additionally required to be column stochastic matrices, i.e., they are to be
non-negative and each of their columns is to sum to 1. AA therefore represents
every column vector in V as a convex combination of convex combinations of
a subset of the columns of V. Such constrained MF problems are traditionally
solved analytically since they constitute quadratic optimization problems. Al-
though they are convex in either W or H, they are however not convex in WH
so that we su�ers from many local minima. Moreover, their memory and run-
time requirements scale quadratically with the number n of data and therefore
cannot easily cope with modern large-scale problems. A recent attempt to cir-
cumvent these problems is the CUR decomposition [6]. It aims at minimizing
‖V −CUR‖2 where the columns of C are selected from the columns of V, the
rows of R are selected from the rows of V, and U contains scaling coe�cients.
Similar to AA, the factorization is expressed in terms of actual data elements
and hence is readily interpretable. However, in contrast to AA, the selection is
not determined analytically but by means of importance sampling from the data
at hand. While this reduces memory and runtime requirements, it still requires
a complete view of the data. Therefore, neither of the methods discussed so far
easily applies to growing dataset that nowadays become increasingly common.

2 Matrix Factorization as Search

MF by means of column subset selection allows one to cast MF as a volume

maximization problem rather than as norm minimization [2]. It can be shown
that a subset W of k columns of V yields a better factorization than any other
subset of size k, if the volume of the parallelepiped spanned by the columns
of W exceeds the volumes spanned by the other selections. Following this line,
we have recently proposed a linear time approximation for maximising the vol-
ume of the simplex ∆W whose vertices correspond to the selected columns [9].
Intuitively, we aim at approximating the data by means of convex combina-
tions of selected vectors W ⊂ V. That is, we aim at compressing the data such
that vi ≈

∑k
j=1 wj hji where hi � 0 ∧ 1Thi = 1 ∀i . Then, data vectors

situated on the inside of the simplex ∆W can be reconstructed perfectly, i.e.,
‖vi−Whi‖2 = 0. Accordingly, the larger the volume of ∆W, the better the cor-
responding low-rank approximation of the entire data set will be. Such volume
maximization approaches are more e�cient than methods based on minimizing
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a matrix norm. Whereas the latter requires computing both matrices W and H
in every iteration, volume maximization methods compute the coe�cient ma-
trix H only after the matrix of basis vectors W has been determined. Moreover,
whereas evaluating ‖V −WH‖2 is of complexity O(n) for n data points vi,
evaluating Vol(W) or Vol(∆W) requires O(k3) for the k � n currently selected
columns. Moreover, transferring volume maximization from parallelepipeds to
simplices has the added bene�t that it allows for the use of distance geometry.
Given the lengths di,j of the edges between the k vertices of a (k − 1)-simplex

∆W, its volume Volk∆W can be computed based on this distance information

only (*): Volk∆W =
√

−1k

2k−1
(
(k−1)!

)2 det(A) where det
(
A
)
is the Cayley-Menger

determinant [1]. And, it naturally leads to search-based MF approaches.

A simple greedy best-�rst search algorithm for MF that immediately follows
from what has been discussed so far works as follows. Given a data matrix V, we
determine an initial selection X2 = {a, b} where va and vb are the two columns
that are maximally far apart. That is, we initialize with the largest possible 1-
simplex. Then, we consider every possible extension of this simplex by another
vertex and apply (*) to compute the corresponding volume Vol′. The extended
simplex that yields the largest volume is considered for further expansion. This
process continues, until k columns have been selected from V. Lower bound-
ing (*) by assuming that all selected vertices are equidistant turns this greedy
best-�rst into the linear time MF approach called Simplex Volume Maximiza-
tion (SiVM) [9]. SiVM was proven to be successful for the fast and interpretable
analysis of massive game and twitter data [7], of large, sparse graphs [8] as well
as � when combined with statistical learning techniques � of drought stress of
plants [4, 5]. However, we can explore and exploit the link established between
MF and search even further. For instance, a greedy stochastic hill climbing al-
gorithm (sSiVM) starts with a random initial selection of k columns of V and
iteratively improves on it. In each iteration, a new candidate column is chosen
at random and tested against the current selection: for each of the currently
selected columns, we verify if replacing it by the new candidate would increase
the simplex volume according to (*). The column whose replacement results in
the largest gain is replaced. An apparent bene�t of sSiVM is that it does not
require batch processing or knowledge of the entire data matrix. It allows for
timely data matrix compression even if the data arrive one at a time. Since it
consumes only O(k) memory, it represents a truly low-cost approach to MF.

In an ongoing project on social media usage, we are running a script that
constantly downloads user annotated images from the Internet. We are thus in
need of a method that allows for compressing this huge collection of data in an
online fashion. sSiVM appears to provide a solution. To illustrate this, we con-
sidered a standard data matrix representing Internet images collected by [10].
This publicly available data has the images re-scaled to a resolution of 32 × 32
pixels in 3 color channels and also provides an abstract representation using
384-dimensional GIST feature vectors. Up to when writing the present paper,
sSiVM processed a stream of about 1,600,000 images (randomly selected). This



4 K. Kersting et al.

0 2000 4000 6000 8000 10000
Time in seconds

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

Vo
lu

m
e

Fig. 1. (Left) Examples of 12 basis images found after 1,6 million Internet images were
seen by sSiVM. (Right) Temporal evolution of the solution produced by sSiVM while
computing the results shown on the left-hand side.

amounts to a matrix of 614,400,000 entries. Except for sSiVM, none of the meth-
ods discussed in this paper could reasonably handle this setting when running
on a single computer. Figure 1(Left) shows a selection of 12 basis images ob-
tained by sSiVM. They bear a geometric similarity to Fourier basis functions
or Gabor �lters. This is in fact a convincing sanity check, since GIST features
are a frequency domain representation of digital images; images most similar to
elementary sine or cosine functions form the extreme points in this space. To-
gether with the measured runtime, see Fig. 1(Right), these results underline that
search-based MF approaches are a viable alternative to optimization approaches.

References

1. L. M. Blumenthal. Theory and Applications of Distance Geometry. Oxford Uni-
versity Press, 1953.

2. A. Civril and M. Magdon-Ismail. On Selecting A Maximum Volume Sub-matrix
of a Matrix and Related Problems. TCS, 410(47�49):4801�4811, 2009.

3. A. Cutler and L. Breiman. Archetypal Analysis. Technometr., 36(4):338�347, 1994.
4. K. Kersting, M. Wahabzada, C. Roemer, C. Thurau, A. Ballvora, U. Rascher,

J. Leon, C. Bauckhage, and L. Pluemer. Simplex distributions for embedding data
matrices over time. In SDM, 2012.

5. K. Kersting, Z. Xu, M. Wahabzada, C. Bauckhage, C. Thurau, C. Roemer, A. Bal-
lvora, U. Rascher, J. Leon, and L. Pluemer. Pre�symptomatic prediction of plant
drought stress using dirichlet�aggregation regression on hyperspectral images. In
AAAI � Computational Sustainability and AI Track, 2012.

6. M.W. Mahoney and P. Drineas. CUR Matrix Decompositions for Improved Data
Analysis. PNAS, 106(3):697�702, 2009.

7. C. Thurau, K. Kersting, and C. Bauckhage. Yes We Can � Simplex Volume Max-
imization for Descriptive Web-Scale Matrix Factorization. In Proc. CIKM, 2010.

8. C. Thurau, K. Kersting, and C. Bauckhage. Deterministic CUR for improved
large�scale data analysis: An empirical study. In SDM, 2012.

9. C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage. Descriptive matrix fac-
torization for sustainability: Adopting the principle of opposites. DAMI, 24(2):325�
�354, 2012.

10. A. Torralba, . Fergus, and W.T. Freeman. 80 Million Tiny Images: A Large Data
Set for Nonparametric Object and Scene Recognition. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 30(11):1958�1970, 2008.


