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Abstract. Location-based social networks (LBSNs) have recently attracted a lot
of attention due to the number of novel services they can offer. Prior work on
analysis of LBSNs has mainly focused on the social part of these systems. Even
though it is important to know how different the structure of the social graph of
an LBSN is as compared to the friendship-based social networks (SNs), it raises
the interesting question of what kinds of linkages exist between locations and
friendships. The main problem we are investigating is to identify such connec-
tions between the social and the spatial planes of an LBSN. In particular, in this
paper we focus on answering the following general question “What are the bonds
between the social and spatial information in an LBSN and what are the met-
rics that can reveal them?” In order to tackle this problem, we employ the idea
of affiliation networks. Analyzing a dataset from a specific LBSN (Gowalla), we
make two main interesting observations; (i) the social network exhibitssigns of
homophilywith regards to the “places/venues” visited by the users, and (ii) the
“nature” of the visited venues that are common to users is powerful and informa-
tive in revealing the social/spatial linkages. We further show that the “entropy”
(or diversity) of a venue can be used to better connect spatial information with
the existing social relations. The entropy records the diversity of a venue and re-
quires only location history of users (it does not need temporal history). Finally,
we provide a simple application of our findings for predicting existing friendship
relations based on users’ historic spatial information. We show that even with
simple unsupervised learning models we can achieve significant improvement in
prediction when we consider features that capture the “nature” of the venue as
compared to the case where only apparent properties of the location history are
used (e.g., number of common visits).

1 Introduction

During the last few years, boosted by advancements in mobile handheld devices (e.g.,
smartphones), a new class of digital social networks, namely location-based social net-
works (LBSNs), has emerged. It is now possible to bring into the equation of online
social networks (OSNs) another dimension, that oflocation, due to the significantly
improved ability of mobile devices to accurately estimate their position or location.
The underlying communities not only have social ties (e.g., friendship) and/or interests
in common (e.g., sports), but they are also “connected” with regards to their geographic
locations (often mapped into “venues” as described later). In other words, LBSNs bond
the online and physical social ties through location information.



This bond can enable a number of novel, convenient, and appealing services mak-
ing LBSNs popular. People can now track their children’s locations. By tracking friends,
applications such as better coordination for scheduled meetings can be enabled. Appli-
cations can also include exploring new places through a list of venues that are within the
proximity of the current location. This list can now be accompanied by tips and recom-
mendations from people/friends that have visited these places. Even simply the number
of people that have visited a locale in the past or are present at the moment might be
helpful and informative. Other systems can also offer Groupon-like deals, providing
additional monetary incentives for someone to adopt their usage. A recent study has
also shown that “gaming” aspects of LBSNs form an important motivation for people
to start using them [12].

With LBSNs becoming prevalent, it becomes critical to comprehend and discrimi-
nate the types of knowledge we can obtain from the bond between locations and social
ties. For example, what correlations exist between users’ spatial trails and their social
behaviors as expressed through their friendships and do the spatial trails provide any in-
formation about social ties? Our primary objective in this work is to identify the existing
correlations and the metrics that can best capture them. Using the knowledge we obtain
from our study we further examinewhether we can use these correlations and metrics
to infer social informationonly from users’ locations. Going forward this can stimulate
our ability to deconstruct the interplay between the social and the spatial information
plane and apply it to new applications.

Interactions in an LBSN: An LBSN has two distinct components; a social net-
work and a location log for each member. The social part of the system resembles any
other existing online social network, where friendships are declared and people can in-
teract with their friends. What differentiates LBSNs from other OSNs are the type of
interactions that are feasible between the members of the network. The main feature of
this interaction is location sharing. While the “visible” interactions in a traditional OSN
are restricted to the virtual world, we can observe interactions within an LBSN in the
physical world as well. This is especially important for our study since it can shed light
on patterns that are otherwise difficult to identify.

Location sharing can be realized either through continuous tracking, in the form
of a temporal latitude/longitude trajectory (e.g., Loopt - see Figure 1) or via “check-
ins”, where users announce their presence in a place or venue at their convenience (e.g.,
Gowalla, Foursquare etc. - see Figure 2). Clearly, the second approach, where location
is tagged with semantic information as compared to a flat geographic trajectory, offers a
richer set of information, but with coarse location granularity. All major LBSNs follow
this latter approach and consequently, in this work we consider systems in which spatial
information is created via check-ins. We note here that using “check-in” history can be
challenging since fine grained temporal information is absent (e.g., users do not “check-
out” etc.).

Hence, we now have two types of information – the social ties between members
and check-ins of members of the LBSN. To analyze socio-spatial interactions within an
LBSN, we model it as an “affiliation network”, where the members are nodes of one
type and venues/places are nodes of the second type (see Figure 3). Using a dataset
from Gowalla [2], we analyze how thenumberandtypeof users’ common affiliations
(as measured through the number of common locales visited by them) are related to
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the affinities in the underlying social graph. The main contributions of our study can be
summarized as follows:

– We identify clear signs of location homophily, that is, members of the LBSN that
are friends are moresimilar compared to those that are non-friends. “Similarity”
here refers to thepercentageof visited places that are common between two users
(formally defined later).

– While simply the number of common places visited by two users does not provide
rich social knowledge, the user similarity as well as the “type” of their common
venues is a very descriptive feature.

Using the affiliation network model we are able to define the clustering coefficient
(cc) of a venue, which captures the type and diversity of the latter. As we will see later,
this cc has a strong correlation with the social relations in the graph; exactly what we
are looking for! However, its computation utilizes knowledge from the friendship graph,
resulting in the problem of circular reasoning. Hence, we examine other metrics, and
in particular we show that the entropy of a venue is very informative and helpful for
dealing with our problem.

Finally, we investigate the importance of the different features we consider through
simple unsupervised friendship prediction models. In particular, we seek to infer the ex-
isting affinity relations usingonly the users’ location history. Our evaluations reveal that
features that account for the type of a venue, can significantly improve the estimations
as compared to features that consider all venues equal.

Scope of our study: We would like to emphasize that our work is a study of the in-
terplay between the social and spatial information present in an LBSN. Even though this
connection can enable many new applications, such as location prediction, this study is
not focused on any specific one of them. Despite the fact that we examine some simple
friendship inference models utilizing our findings, our objective in this study isnot to
provide a social affinity classifier but to provide insights into the value of the location
information present in an LBSN and its strength for predicting social ties. For instance,
the relation between spatial and social data can have significant implications on users’
privacy. Privacy policies that avoid information leakage from one component of the
network to the other should be designed and be in place. We believe that this work can
stimulate further research and enhance existing – or even enable new – functionalities
within an LBSN.



The rest of the paper is organized as follows. Section 2 discusses work related to
our study, while Section 3 describes our affiliation network model for an LBSN and the
dataset. Section 4 briefly presents the analysis of the social graph of Gowalla. Our study
on the relation between users’ location information and their social ties is presented in
Section 5. Finally, Section 6 presents our friendship inference model, while Section 7
concludes our work.

2 Related Work

There is a set of studies that examine the structural properties of existing LBSNs. In
this context, structure refers not only to the properties of the social network graph (as in
OSNs) but also to the location component (e.g., physical distance to friends, time and
type of check-ins etc.). For instance, Chenget al.[1] use data from Foursquare to exam-
ine (i) the spatio-temporal properties of users’ check-ins, as well as (ii) their mobility
patterns. Similarly, Noulaset. al. [16] study the spatio-temporal properties of users
activities as captured through the inter-checkin times and the inter-checkin distances.
They further identify universal features for human urban mobility [15]. In alignment,
Choet al. [2] use cell phone location and LBSN data to understand the laws dictating
human mobility. Li and Chen [10] analyze data from Brightkite and after providing
the structural properties of the underlying social graph they try to identify correlations
between different user’s profile features, activity updates, and mobility patterns.

The majority of these studies deal explicitly either with the social part of the sys-
tem or the location component. Scellatoet al. [18] try to use information from both
components to identify the relation between friendship and geographic distance using
data from 3 different LBSNs (Gowalla, Foursquare and Brightkite). They find that the
socio-spatial structure of these systems cannot be explained by only geographic factors
or only social mechanisms. In addition, there exist a few studies in the literature that
examine and analyze the location data present in the system with the goal of revealing
undirect, hidden information. Noulaset al. [17] obtain a static snapshop of Foursquare
in order to analyze the activity in different neighborhoods of London and New York,
while Ye et al. [22] exploit social and spatial characteristics of LBSNs for location
recommendation.

None of the aforementioned works however, study the relation between the location
trace of a user and his social relationships. They are all mainly focused on identifying
patterns either in the social or in the spatial component of an LBSN. Eagleet al.[5] [6],
as well as Liet al. [11], have developed measures to quantify similarity of users based
on their mobility. This similarity can be later used to infer the social structure of the
users. They are focused on “co-location instances,” that is, situations where two users
are at the same place at the same time. However, given the fact that co-locations between
people can happen accidentally, especially in urban areas [13], simply accounting for
the number of co-existences can be expected to not be very accurate. Recently, Wanget
al. [20] using mobile phone data have identified a positive corelation between mobile
homophily, network proximity and social tie strength.

The work that is closer to ours is the study by Cranshawet al. [4]. In particular,
they introduce the notion of a location’s “entropy,” which captures itsdiversity with
regards to the people visiting it. Using a small scale dataset of location trajectories ob-
tained from 397 users of Locaccino the authors infer co-locations between users. They



examine the relation between features such as the intensity and duration of co-locations
between people, the diversity of these co-locations, and the users’ mobility regularities,
with the social structure of these users. The latter is obtained through their Facebook
accounts. They apply supervised learning classifiers on a set of 16 features to obtain the
structure. Scellatoet al.[19] took one step further and use location information in order
to improve friend recommendations. They are focused on the temporal evolution of the
social graph and they utilize a combination of information drawn from both the social
and location component to improve friend recommendations. On the contrary, we are
focused on a static snapshot of the network and we are looking into relations between
the two information planes of the system.

To further differentiate our work, the location information that Cranshawet al. [4]
consider includes thecomplete trajectoryof users, from which features such as the
duration of a co-location can be inferred. Nevertheless, despite the fact that such data
include fine-grained spatio-temporal information, note here that such data capture the
location of the device and not necessarily that of the user to begin with (a problem
identified in [4] as well). On the contrary, in an LBSN such as Gowalla or Foursquare,
people check-in to spots declaring their actual presence in a physical location. However,
users do not “check-out”, making it challenging, if not impossible, to obtain detailed
spatio-temporal information (e.g., co-location duration, even actual co-location at all).
Yet, as we show later, this information is promising in its ability to tie the spatial and
social plane of LBSNs. To summarize, in contrast to the work presented in [4] we are
only using the check-in history of users without considering information related to the
actual co-locations of users (i.e., temporal information).

3 Location Affiliation Network

In this section we will briefly describe the data set and affiliation network model for the
LBSNs used in this paper.

Gowalla dataset: The dataset consists of 6,442,892 public check-in data performed
by 196,591 Gowalla users in 647,923 distinct places, during the period between Febru-
ary 2009 and October 2010. Gowalla users also participate in a friendship network with
reciprocal relations, which consists of 950,327 links. The public dataset [2] includes
only an ID for the spot of the check-in. We have further crawled the web in order to
obtain a mapping between this id and the actual locale (or “spot” in the terminology of
Gowalla1). Note here that since the acquisition of Gowalla from Facebook, its public
website is offline. However, we were able to obtain a subset of the required information
through the Internet Archive Wayback Machine and Google Cache.

Affiliation network: Social relations can be formed due to a variety of reasons. For
instance, it has been observed that people tend to relate to others with similar character-
istics/interests (homophily) [9]. When we refer to immutable characteristics it is clear
that the main reason behind homophily is the mechanism ofselection[8]. For instance,
people prefer in general to socialize with people of the same nationality. However, when
we consider mutable characteristics (e.g., political views) it is not clear whether selec-
tion or social influence[7] leads to homophily. In the latter case, friendships were first
created and then people influenced each other and became similar.

1 We will use the terms locale, place, venue, spot and affiliation interchangeably.



Based on the above, link creation is affected by contextual factors related to the
similarity between the users. This similarity can refer to characteristics, activities, or
behaviors. However, the representation of a social network as a flat affinity graph is not
capable of capturing these surrounding contexts. Affiliation networks integrate “focal
points” (foci) of social interactions with the pure social graph [14]. An affiliation net-
work is essentially a bipartite graph with two sets of nodes,S andF . S is the set of
nodes that represents the members/users of the network, whileF represents the activ-
ities (affiliations or foci) into which users engage. An edge{(s, f) : s ∈ S ∧ f ∈ F}

exists, iffs is participating in focusf . Two usersu andv are said to be affiliated if they
participate in the same activityf . Hence, the affiliation network becomes the layer on
which the actual social network is created. As Watts states, “without any affiliations,
the chance that two people will be connected is negligible” [21].

If we further connect members ofS based on their social relations, we obtain
a social-affiliation network (see Figure 3). Using the latter we can analyze the co-
evolution of both the social and the affiliation networks. A new friendship might be
created due to a common friend (triadic closure), or due to a common affiliation (focal
closure). Furthermore, a new affiliation can be created due to a friend already affili-
ated with it (membership closure). Focal closure is an artifact of the selection process,
while membership closure is a type of social influence. In the LBSNs that we consider,
the setF consists of the locations/places that people inS can check-in. An affiliation
edge is created as long as a user has checked-in a specific spot. For instance, in Figure
3, Bob has checked-into the “School of Information Sciences” and hence there is an
affiliation edge that connects him with the corresponding focus.

Before presenting our analysis, we would like to reiterate that data obtained from
a system like Gowalla cannot provide fine-grained spatio-temporal information as in
[4]. Hence, many of the detailed features used in that study are not available through
our dataset. However, even if we do not know whether two friends’ affiliations were
created simultaneously (i.e., co-location) or with a time lag, their common affiliation is
an indicator of a possible relation, and hence a socio-spatial tie. This can be attributed
to the fact that both selection and social influence dictate that “friends” will tend to
have a number of common affiliations. The difference is that in the former case these
affiliations were present when the friendship was formed (and they might have actually
caused this social relation to be formed), while in the latter the opposite occurred.

Using the terminology introduced to restate our main objective, we seek to identify
patterns/correlations in the social-affiliation network that can reveal ties between the
pure social and pure affiliation network. Note again that when we have a static snapshot
of a network, we do not know whether an affiliation or a friendship was created first.
However, once again, the actual underlying mechanism that caused the closure between
two users and a group is irrelevant and what matters is the existence of atriangle that
connects users and locales.

4 Social Network Analysis

In this section, we will briefly present our analysis of the social (friendship) graph of
Gowalla. There exist similar efforts in the literature for other online social networks and
hence this is not the main focus of our study. However, we are presenting these results
for completeness.
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Degree distribution: First, we examine the degree distribution of the network. We
compute the empirical probability density function of a user’s degree (Figure 4). The
degree distribution of Gowalla users follows a power law. This has been found to be
true for other social networks as well [21], and implies that the majority of the users
have very few friends (even none), while very few users have many friends. Formally
put, the probability of a nodeu having a degree ofx obeys the following rule:

Pr{degu = x} ∝
1

xα
(1)

In Figure 4 we have also fit a power law curve, with an exponent ofα = 1.75. The
highR2 value (R2 = 0.85) implies a good fit, which further supports the validity of the
underlying power law. The average node degree is also computed to be 9.66.

Clustering coefficient: Clustering coefficient (cc for short) is tightly related to the
notion of triadic closure. In particular, the clustering coefficient of Bob is an indicator of
how many triangles he participates in. Given that the clustering coefficient of Bob is the
ratio between the pair of his friends that are friends with each other, over all the possible
pairs between them, it is evident that it needs to be presented as a function of the node
degree. Figure 5 presents the (average) clustering coefficient of a user with respect to
his degree. As we can see, Gowalla users in general exhibit high coefficients, with the
average clustering coefficient being equal to 0.237. This means that on average there is
a 23.7% probability that two randomly selected friends of Bob will also be friends. This
fairly high clustering coefficient, in conjunction with the small average path length, are
strong indications that the social component of Gowalla is asmall world network.

Average neighbor degree:The average neighbor degreed(k) is a summary statistic
of the joint degree distribution. It is simply the average neighbor degree of the (average)
k-degree node. Figure 6 depictsd(k). As we can see there is nopreferenceof users to
connect to peers with dissimilar or similar degrees. This can be also captured from the
assortativity coefficient of the graph which is close to 0 (-0.029). The slight negative
value indicates a very small degree of disassortativity; there are slightly more links
connecting nodes of dissimilar degrees.

5 The Richness of Location Information

In this section we will analyze the structure of the spatial component of the LBSN.
Our goal is to identify existing correlations, if any, between location information or
spatial behavior (represented by the affiliations or checkins at various venues) and the
social structure of the network. We are mainly interested in both direct and indirect
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information derived from location history. For instance, the number of common venues
visited by users belongs to the first category. However, information related to thenature
of the venue is not directly observable from the trails, but it can be inferred.

Location-based user similarity: As previously mentioned, homophily is a phe-
nomenon that is very often observed in social networks. For instance, empirical studies
have shown that teenagers tend to create friendships with other teenagers with similar
scholastic performance and delinquent behavior (e.g., drug use) [8]. In another study,
Christakis and Fowler [3] found that social relationships exhibit signs of homophily
with regards to the obesity level, in a social network consisting of approximately 12,000
people. Regardless, of the reasons behind homophily, awareness of its existence can
help towards revealing possible social links by observations of people’s characteristics
and/or behaviors and vice versa. To the best of our knowledge there is no study to date
that examines homophily related to the locations visited by people. In what follows,
we take a first approach to this problem. Our analysis indicates that there aresigns of
homophily with regards to the spatial behavior of the users. However, we would like
to particularly emphasize that we do not claim to have completely answered this ques-
tion. Identifying homophily in a social network is an extremely challenging task, which
would require the study of longitudinal data, possibly from different networks, on a
much larger scale. We hope though, that our work will encourage further research on
this topic, which becomes increasingly important nowadays more than ever, with the
prevalence of mobile devices with positioning capabilities and the availability of huge
volumes of spatial data.

Let us defineLc, to be the set of venues that userc has checked-in. Then we define
the similaritys(u, v) betweenu andv (who have each visited at least one venue) as the
following ratio:

s(u, v) =
|Lu ∩ Lv|

|Lu ∪ Lv|
(2)

The numerator is the number of common places visited by the two users, while the
denominator is the number of places visited by at least one of them. The above ratio is
the Jaccard similarity coefficient. We have calculated this ratio for pairs of users that
are friends and pairs of users that are not friends. We have also further distinguished the
pairs of users as being in geographic proximity or not, based on their “home” locations.
We have set up a threshold of 120 miles for defining pairs that are “nearby” or “distant”.

Figure 7 presents the similarity for three classes of pairs; nearby pairs of friends,
distant pairs of friends and nearby pairs of non-friends. Clearly, friends that reside in
geographic proximity to each other, have the highest similarity scores. Approximately,
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35% of them have coefficients larger than 5%, which means that 5% of the places they
have visited are common. This number might seem small, but it is actually fairly large
if we think of the number of places we visit every day. The importance of this value
becomes even more clear when we see the similarity index for nearby pairs of non-
friends, which is practically 0 even though they are in geographic proximity! Note here
that, even friends that are far away, exhibit similarity much higher than nearby pairs
of users that are not friends. This is an important result since it implies evidence of
homophily in the network with regards to the places visited. Users that are friends will
visit the same spots, even if their home locations are far apart. Users that are not friends,
even if they are in proximity (e.g., in the same city) are unlikely to visit the same places.

Note here that in the definition of users similarity (Equation 2), we have not consid-
ered any temporal information. We consider all common venues that have been visited
by two users, regardless of whether they visited them at the same time or not. The
reason for this, is that people can besimilar in ways that do not dictate co-location.
For instance, if the selection process is responsible for the high similarity values, peo-
ple with the same affiliations (captured from the places they visit) will tend to create
friendships. On the other hand, if social influence is responsible for the high similarity
coefficient, people will tend to visit places that they have heard from their friends (how-
ever, not necessarily with them). Hence, the Jaccard similarity index can be quite help-
ful in bonding social and location information, even without the fine grained temporal
information used in previous works. The importance of this finding is that it indicates
that the characteristics of location information can be substantially different between
friends and non-friends.

Next, Figure 8 shows the similarity values for nearby friends as a function of dis-
tance between home locations. As we can see, distance does not appear to have any
effect on the similarity for these users. A slight decrease of the (average) coefficient can
be observed, but it is not significant. However, distance appears to be critical for friends
that live far apart (as one might have expected). As we see in Figure 9, after some
distance (approximately 2,500 miles) the similarity values are drastically reduced. Bob
will have less opportunities to “follow” the trails of his friend Alice if she lives far
away. Due to space limitations, we do not plot the similarity indexes for the pairs of
non-friends, but as one can see from the cumulative distribution function, the majority
of these points lay slightly above or on they = 0 line irrespective of the distance.

Figures 10 and 11 present the similarity of two near friends as a function of the num-
ber of their distinct affiliations and their check-in counts respectively. Even though our
data consist of a static snapshot, this figure can be seen as an “emulation” of the tem-



poral evolution of the similarity value of two nearby friends. Higher levels of activity
represent later points in time, when users have been using the system for longer periods
and thus, have more affiliations and check-ins. Further, the similarity scores take their
maximum values for pairs of users with low levels of activity (i.e., small number of
affiliations and check-ins). Based on the above “temporal emulation” this corresponds
to early stages of system adoption. This behavior can be attributed to the fact that the
denominator of Equation 2 increases faster as compared to the enumerator. One possi-
ble reason that can cause this is as follows. Consider Bob and his friend Alice. Bob will
hear from Alice about a few places and he will tend to visit some of them, increasing
the numerator ofs(Bob,Alice). However, he will hear about other spots from his friends
Jack and Jill (who might have no relation with Alice). Hence, he might be tempted to
visit some of these spots as well, increasing the denominator faster and overall reducing
the Jaccard index as his (and Alice’s) level of activity increases. Therefore, even friends
might exhibit low(er) similarity scores after some time, and for this reason the absolute
number of common foci might be a more robust metric over longer time spans. Later
in Section 6 we will use|Lu ∩ Lv| as the feature of our baseline social link prediction.
The similarity of a pair of users, balances the above quantity, by considering the activ-
ity of both users. Such a balancing, in essence, captures the diversity of the two users;
the larger the denominator, the more places they visit (more diverse user pair). As we
will see in our evaluations, this balancing can provide better connection between social
and spatial information. We note here that similarity values of non-friends are small
regardless their level of activity (omitted due to space limitations).

Focal closure: In an affiliation network, the foci are also nodes of the network.
Hence, we can define metrics such as the degree distribution and the clustering co-
efficient for venues. The degree of an affiliation-nodel (i.e., a venue) is the number of
distinct users that have visited it. In other words, it is the number of user-affiliation links
whose one endpoint isl. Figure 12 depicts the affiliation degree distribution, which as
we can see follows a power law as well, with exponentα = 2.01 (R2 = 0.89). There are
a few places with many visitors, while there are many venues with few visitors. The av-
erage focus degree is 3.11. Table 1 has the top and bottom 5 venues with regards to their
degree. Note here that the bottom 5 venues were randomly selected since there are many
venues (almost half) with degree of 1. The top spots are all major transportation hubs
(airports or train stations), while the less popular places are morelocalized/personal
venues (e.g., “room”, which most probably refers to a home, office etc.). The top de-
gree spots are expected to increase the number of common affiliations for many users;
the higher the degree of a locale more user pairs will exhibit an increased number of
common foci. However, as one can imagine, common affiliations such as a big airport
happen rather randomly than due to actual similarity. On the contrary, if Bob and Jack
have a local food joint as common affiliation it is highly possible that this is due to their
similarity (e.g., they have the same gastronomical preferences).

If our above claim does not hold and all affiliations areequalone should expect that
the more common foci two people have, the more probable it is for them to be friends.
However, our data indicate that this is not the case in an LBSN. Figure 13 presents the
friendship probability between a pair of users with respect to the number of common
venues visited by them. As we can see there is no clear connection between the two
quantities. For small values of common venues there seems to be a linear relationship,
but as the number of common affiliations increases, there is little (if any) correlation. In



0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Number of common affiliations

P
ro

ba
bi

lit
y 

of
 fr

ie
nd

sh
ip

 

 

Fig. 13. No clear correla-
tion exists between # of
common foci and friend-
ship probability.
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lower degree tend to
have lower clustering
coefficient as well.
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Fig. 15. Common venues
of friends have larger
clustering coefficient as
compared to non-friends.

Top-5 spots SFO airportStockholm Central StationAUS airport DFW airport LAX airport
Bottom-5 spots “Room” Farmer’s Market Gas stationApparel storeConvenient store

Table 1.Top and bottom 5 venues based on their degree.

particular, for a number of common venues smaller than 100, the correlation coefficient
is fairly high (0.61). However, for larger number of common venues, this coefficients
drops to just 0.2. This further supports our previous claim, that the actual affiliation,
rather than just the number of the common affiliations, plays an important role in pre-
dicting the social relations.

In order to further examine the role of the type of a venue on the social relationships
we examine the clustering coefficient of a focus. Let us consider venuel which has a
degree ofk > 1. All the possible social links between the users affiliated withl are
k(k − 1)/2. If n of them exist then the clustering coefficient,CC(l) is defined as:

CC(l) =
n

k(k − 1)/2
(3)

This clustering coefficient captures the nature of the place in many ways. It ex-
presses how tightly connected are the people that visit this venue. The higher the cc is,
the more connected are the people affiliated with it.

Figure 14 shows the clustering coefficient as a function of the venue’s degree. As
we can see venues with lower degree have a higher average clustering coefficient. This
is a sign that venues with lower degree might venture socialization. Delving more into
this issue we present in Figure 15 the CDF of the average clustering coefficient of
the common venues for user pairs that are friends and those who are not. For friends,
the average clustering coefficient of their common affiliations is much higher (mean
value is 0.068) as compared to those of non friends (mean value is 0.019). Finally,
Figure 16 plots the probability of friendship between two users as a function of the
average clustering coefficient of their common spots. As we see there is a clear positive
correlation between the two quantities, which is also revealed from the high correlation
coefficient between the two variables (calculcated equal to 0.89). The higher the average
cc of the common foci, the larger the friendship probability.

Especially, the last result clearly indicates that the actualnatureof the venue plays
an important role to whether affiliated users are related through a friendship or not.
On the one hand, places with high clustering coefficient, attract sets of people that are
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Fig. 16. Positive orre-
lation between avg cc
of common venues and
friendship probability.
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Fig. 18. The entropy of a
spot increases with its de-
gree.

more tightly connected in the social plane. In addition these sets are usually small,
if we recall the connection between affiliation cc and affiliation degree. On the other
hand, spots with low clustering coefficient attract many people that are not socially
related, just because these places have special features (e.g., large hub-airports, train
stations, supermarkets etc.). One could arguably compute the average cc of the common
affiliation of two people and find the probability of friendship through a simple linear
regression model (Figure 16).

However, there is a problem with the above approach. In order to calculate the
average cc of a venue, the social relationships need to be known! Hence, the cc does not
provide anindependentsocio-spatial information linkage. Therefore, we need to find
a feature of the affiliations, that (i) captures the nature of the venue, (ii) does not require
the knowledge social relationships in order to be computed and (iii) is correlated with
the friendship probability. This feature is the affiliation’s entropy as we will describe in
what follows.

The entropy of a place: Cranshawet al. [4] were the first to introduce the notion
of entropy of a location as a measure of its diversity. IfPl(u) is the fraction of check-ins
in affiliation l contributed by useru, then the entropy ofl is given by:

e(l) = −
∑

u:u∈S∧Pl(u)>0

Pl(u)log(Pl(u)) (4)

From Equation 4 we can see that when a place is visited by many people in equal
(and thus, small) proportions, its entropy will be high. In other words, high entropy
corresponds to places like airports that exhibit large diversity. On the other hand, when
the mass ofPl(u) is concentrated only to a few people, the diversity in this location is
small and so is the entropy.

Figure 17 depicts a histogram of the entropy values for all the venues in our dataset.
As we see most of the venues have small entropy values, while there are some that
exhibit high entropy values. It is interesting to see that there is an increasing trend of
the entropy of a place with its degree (Figure 18). Furthermore, the top-5 degree places
are also the top-5 entropy places (with different ranking) as it can be seen in the red
solid ellipse. A number of (the many) bottom-5 degree places are still bottom-5 entropy
places. However, if we notice more carefully in the dashed, black ellipse in Figure 18,
some venues with the lowest degree, do not exhibit the lowest entropy (although still
smaller than 1).



Fig. 19. Venues with
higher clustering coeffi-
cient tend to have lower
entropy.
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Fig. 21. Negative correla-
tion between the avg en-
tropy of common foci and
friendship probability.

Previously, we observed that there is a positive correlation between the average clus-
tering coefficient of the common venues of two users and their friendship probability.
To examine whether entropy is a good candidate for a similar correlation, we first ex-
amine its relation to cc. Figure 19 depicts the entropy of a venue as a function of its
clustering coefficient. As we can see, the entropy tends to be lower as the clustering co-
efficient increases. High entropy translates to more random co-visits to the venue, and
therefore a lower clustering coefficient. Hence, there appears to be a negative relation
between these two measures (we expect a similar negative relation between the average
entropy of common venues and friendship probability).

Since entropy appears to have similar characteristics with the affiliation clustering
coefficient we want to further examine its ability to bond affiliation and social infor-
mation. In Figure 13 we identified that the number of common affiliations is not very
useful in terms of inferring the existing social relations especially when the number of
common affiliations is growing (e.g.,> 100). We seek to further examine if we can
obtain any additional knowledge by utilizing the information about the entropy. Using
the same data, we consider pairs of users that have the same number of common foci.
We divide them into two categories, friends and non-friends. For each one of these cat-
egories we compute the average entropy of the common spots visited and we plot the
results in Figure 20. It is clear now that the average entropy of the common affiliations
for the case of pairs of friends is indeed lower compared to the case of non-friends and
appears to be a good candidate for bridging the social and spatial components of an
LBSN.

Next, we compute the average friendship probability between two users as a func-
tion of the average entropy of their common affiliations. The results presented in Figure
21 are promising. There appears to be a significant (negative) correlation between these
two variables (correlation coefficient is equal to -0.7). Their relation follows a power
law with exponentα = −1.69, as compared to the linear relation between the average
cc of the common venues and the friendship probability (Figure 16). This last result,
further supports our above argument that the entropy of a place can be used to tie the
two information planes and drive applications such as revealing social affinities from
location histories. We will examine the latter in the following section.



6 Revealing Friendships

In the previous section, we have examined the user similarity and various venue-related
metrics and their correlation with the users’ social relations. To summarize, the feature
that appears to be able to capture the best the interplay between the social and spatial
components of an LBSN is the cc. However, as explained in Section 5, its strong corre-
lation might be illusive, since its calculation explicitly utilizes the social relationships.
We further found that the entropy of the common places visited by two users appears to
be correlated with their probability of friendship as well and that friends tend to have
higher similarity scores. Our analysis therefore implies that similar metrics can be used
to make an educated judgment with regards to the social relationship between two ran-
domly selected users whose spatial behaviors are known in terms of the common venues
and their entropy. Alternatively, by utilizing a mix of social and partial spatial location
it might be possible to estimate future visits of users. The list of possible applications
realized through the bonds between social and spatial information in an LBSN is long
and not the focus of our study.

In this section, we want to examine the importance of the metrics we considered for
estimating the existing users’ affinity relations. In other words, considering the graph
in Figure 3 and assuming we are only aware of the solid edges, can we estimate the
dashed ones? To reiterate, our goal is not to be able to provide a full fledged clustering
algorithm on the affinities/ties of the social graph; we only want to examine the strength
of the explored metrics in estimating social relations.

We first consider a simple unsupervised, threshold-based, inference model. In par-
ticular, for every pair of users, we compute the following metrics, (i) number of com-
mon venues (our baseline), (ii) user similarity, (iii) average/min/max entropy of com-
mon venues, and (iv) average/min/max cc of common venues. Then, based on a thresh-
old comparison we classify the pair as being friends or not and we obtain the (fitted)
ROC curves for the positive instances presented in Figure 22. We focus on the positive
(friends) instances, since there is a strong unbalanced distribution of the friends/non-
friends instances in the network. Hence even a simple classifier that states every pair
as non-friends, would exhibit a very good overall performance, but it would perform
very poorly in the classification of the instances of friends. The table on the left also
provides the area under the curve (AUC); the larger the AUC, the better is the quality
we have in our assessments (lower false positives and larger true positives). As we ex-
pected, the average and min cc provide the best performance, while the entropy metrics
together with the user similarity come right after, performing better than the baseline
of simply the number of common venues. Establishments that are less diverse in terms
of people that socialize there tend to be better indicators of bonds, and this information
can be used to accurately infer social relations. Furthermore, balancing the number of
common venues between two users with their activity improves the prediction, since it
accounts for the user pair’s diversity as explained earlier.

We further examine an unsupervised clustering algorithm, that operates on the same
set of features. We use a simple k-means algorithm and compute the precision and recall
on the positive instances. Briefly, precision is the fraction of friendship predictions that
are correct, while recall is the fraction of actual friendships that the algorithm was
able to identify. The results are presented in the right table at Figure 22 and as we
can see again, the features that consider the type of the venue can significantly improve



Metric AUC

# common venues0.63
User similarity 0.73
Avg entropy 0.71
Min entropy 0.76
Max entropy 0.66

Avg cc 0.88
Min cc 0.65
Max cc 0.94
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# of common venues
User similarity
Avg Entropy
Min Entropy
Max Entropy
Avg CC
Min CC
Max CC

Metric PrecisionRecall

# common venues 0.11 0.016
User similarity 0.28 0.25
Avg entropy 0.42 0.59
Min entropy 0.44 0.63
Max entropy 0.37 0.46

Avg cc 0.89 0.23
Min cc 0.85 0.3
Max cc 0.85 0.3

Full entropy 0.42 0.63
Full cc 0.83 0.33

All features 0.52 0.6

Fig. 22. The predictive power of each considered feature using simple unsupervised learning
algorithms: (i) threshold-based (Left table and figure in the middle) and (ii) k-means (Right table).
Full entropy (cc) refers to using all the entropy (cc) related features.

our inference capability. For example, by using the average entropy of the common
venues visited by two people we are able to recover 63% of the actual friendships,
while from all our friendship predictions, 44% of them are correct. The corresponding
percentages when using only the number of common affiliations, are only 1.6% and
11%; a significant improvement. Our results clearly indicate that metrics such as the
entropy and the cc of a venue can help towards the improvement of functionalities such
as relationships inference, location prediction etc. It is interesting to observe, that the
user similarity performs fairly poor in this test. The reason for this is that there are still
friends with low similarity, who are clustered together with the non-friends (low recall),
while there are a few non-friends who exhibit larger similarity values and are clustered
together with the friends. However, since the friend instances are extremely small in
number (as compared to the non-friends), this leads to an overall low precision.

Based on the above results, we believe that defining a user similarity metric that
accounts for the entropy of the visited venues can further improve the performance. We
seek to examine similar approaches as part of our future work.

7 Conclusions

In this paper we model an LBSN as an affiliation network and by analyzing data from a
commercial network we identify bonds between the social and spatial information plane
of the system. We find that friends exhibit in general much larger similarity with regards
to the number of common venues visited, as compared to non-friends. Considering only
the number of common venues between two users, is not very helpful for strongly tying
the two components of the network. Even though user similarity can provide a better
bonding, the diversity of these common venues with regards to people visiting them
is more informative and connect these two parts better. This is also supported by the
evaluations and results from simple, unsupervised social link classifiers.

In the future, we seek to examine the location homophily issue in greater detail
using longitudinal data and various different similarity metrics (e.g., cosine similarity
on an appropriately defined feature vector). As aforementioned, we also opt to intergrate



information for the venue entropy in the user similarity and examine any performance
improvements in bonding social and spatial information of an LBSN.
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