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Abstract. Distinct social networks are interconnected via bridge users,
who play thus a key role when crossing information is investigated in
the context of Social Internetworking analysis. Unfortunately, not always
users make their role of bridge explicit by specifying the so-called me edge
(i.e., the edge connecting the accounts of the same user in two distinct
social networks), missing thus a potentially very useful information. As
a consequence, discovering missing me edges is an important problem to
face in this context yet not so far investigated. In this paper, we propose a
common-neighbors approach to detecting missing me edges, which returns
good results in real life settings. Indeed, an experimental campaign shows
both that the state-of-the-art common-neighbors approaches cannot be
effectively applied to our problem and, conversely, that our approach
returns precise and complete results.

Keywords: Link Prediction, Link Mining, Social networks, Social Internet-
working.

1 Introduction

In the last years (on-line) social networks have been showing an enormous de-
velopment becoming probably the main actor of the Web 2.0. The rapid and
revolutionary diffusion of social networks among all segments of the population
has attracted the interest of many researchers from disparate fields [19], such
as sociology, psychology, economy, computer science, etc., also for the applica-
tions which the analysis of involved data can enable. In this landscape, Social
Network Analysis and Social Network Mining [9] have assumed an important
role, since both the hugeness of data and their graph-based organization have
enforced the development of specific models and methods allowing the study of
social-network data to discover knowledge from them. Clearly, the graph-based
data schema gives a great information power to links among data, since it allows
people profiles, resources, activities, and so on, to be directly (and indirectly)
related. The crucial role of relationships in the expression of an individual’s
personality as well as in her social identity, traditionally recognized by social
sciences, is even strengthened in the field of virtual societies, where relationship
links are the main form of expression of participation of individuals to the com-
munity. To make more challenging the analysis of this reality it concurs the fact



that the scenario where we operate is not the one of single, isolated, indepen-
dent social networks, but a universe composed of a constellation of several social
networks, each forming a community with specific connotations, but strongly
interconnected with each other. It is a matter of fact that, despite the inherent
underlying heterogeneity, the interaction among distinct social networks is the
basis of a new emergent internetworking scenario enabling a lot of strategic ap-
plications, whose main strength will be just the integration of possibly different
communities yet preserving their diversity and autonomy. Clearly, social mining
and analysis approaches may strongly rely on this huge multi-network source
of information, which also reflects multiple aspects of people personal life, thus
enabling a lot of powerful discovering activities.

From this perspective, links among different social networks assume a fun-
damental role. They typically connect the same user among the social networks
she belongs to, and derive from the explicit user’s declaration (sometimes sup-
ported and encouraged by specific tools) consisting in the insertion of me edges
[1]. Unfortunately, for disparate reasons, not always users make their role of
bridge explicit by specifying the me edge, missing thus a potentially very useful
information. As a consequence, we may view the overall underlying (social in-
ternetworking) graph as a graph where a big number of missed me edges exists,
whose discovery thus represents a very important issue. In other words, an in-
teresting problem of missing link detection arises, which partially overlaps with
a link prediction issue, since we may expect that a portion of missing me edges
will be inserted in a next stage in the graph.

In this paper, we deal with the above problem by proposing an effective
solution experimentally tested in a real-life Social Internetworking Scenario (SIS,
for short). To the best of our knowledge, the problem of detecting me edges has
not been investigated in the literature, but the approach we adopt in this work,
which exploits a recursive notion of common-neighbor similarity, suggested us
to prior verify whether common-neighbor approaches for link prediction [21] can
be directly applied to our problem. The answer to this question was definitely
negative, as intuitively explained in Section 2 and experimentally confirmed in
Section 5, thus motivating our work. Our solution is thus based on a notion
of node similarity, whose exploitation allows us to detect whether a suitable
threshold is exceeded and then a missing me edge between two nodes is detected.
The similarity between two nodes is obtained by combining two contributions: a
string similarity between the associated user names, and a contribution based on
a suitable recursive notion of common-neighbor similarity. The latter is extremely
important because, in the literature, it is well known that string similarity alone
can lead to synonymy and homonymy errors [24,15]; the neighborhood similarity
allows these errors to be detected and avoided. In order to motivate the above
choice it is important to clarify that the problem we are addressing does not deal
with the case in which a user voluntarily keeps two accounts separated in their
respective social networks. In this case, she chooses account names very different
from each other, she does not have common friends and, very probably, one of
the two profiles is fake (i.e., it does not contain real information about her). In



this case any approach to detecting node similarity would presumably fail. This
situation, which is closer to identity-management and security problems, is little
relevant in our context, where we are interested in completing the real profile
of users. For these users we may expect (and this is just what we found for me-
connected accounts) that a user joining two (or more) social networks tends to
have at least partially overlapping sets of friends in them. Therefore, neighbors
are useful information to exploit in order to detect missing me edges.

The plan of this paper is as follows: in the next section, we examine related
literature. In Section 3, we present our recursive notion of similarity. On the
basis of this notion, we design the method we use to detect missing me edges.
This is described in Section 4. In Section 5, we illustrate the experiments we
have carried out to verify the performances of our technique. Finally, in Section
6, we draw our conclusions and sketch possible future evolutions of our research.

2 Related Work

The detection of me edges in a SIS can be seen as a special case of the problem
of identifying users on the Web. As a matter of fact, it allows the features of
bridge users to be detected. Identifying users on the Web has received a great
attention in several application scenarios, such as personalization. A lot of work
is devoted to verify whether user profile information can be sufficient to ad-
dress this problem. In [13] the authors define and implement a framework that
provides a common base for user identification for cross-system personalisation
among Web-based user-adaptive systems. The corresponding user identification
algorithm combines a set of identification properties, such as username, name,
location or email address, and classifies a user as identified if such a combi-
nation exceeds a suitable threshold. In [18], a technique based on user profiles
for identifying users across social systems is proposed. This technique has been
successfully validated on three social tagging networks (Flickr, Delicious and
StumbleUpon). The limit of this technique is that only few users make their
profile available in social tagging platforms. A method to identify users on the
basis of profile matching is proposed in [26]. In this paper data from two popular
social networks are used to evaluate the importance of fields in the Web profile
and to develop a profile comparison tool. The authors of [29] provide evidence on
the existence of mappings among usernames across different communities. Start-
ing from the observation of the data in BlogCatalog, they infer 7 hypotheses on
the relationships among the usernames selected by a single person in different
communities. On the basis of such hypotheses, they propose an approach that,
given a username u in a source community and a target community c, gener-
ates a set of candidate usernames in c corresponding to u. The approach first
generates a set of usernames from u by adding and removing suitable prefixes
and suffixes. Then, it exploits a Web search on Google aimed at checking for the
existence of each candidate username in such a way as to reduce the returned
set of usernames.



From another point of view, the detection of me edges in a SIS is someway
related to link prediction. Link prediction is a task of link mining aiming at
predicting the (even future) existence of a link between two objects [21,6]. In
the contest of social networks, it focuses on predicting friendships among users.
Often, social networks are represented as graphs [11]. As a consequence, some
link prediction approaches are totally based on the structural properties of these
graphs [20]. A first possibility to perform this task consists in analyzing com-
mon neighbors. In order to decide whether two nodes are related, [5] exploits
a similarity measure derived from the Jaccard coefficient. Based on preferential
attachment [23], [8] experimentally verifies that the probability of a relation-
ship between two nodes is proportional to the product of the number of their
neighbors. Some approaches to link prediction rely on the notion of shortest-
path distance which is computed by means of several similarity measures, like
the Katz coefficient, PageRank and SimRank. Due to the high computational
cost of these measures, some approximations have to be adopted in order to
make them effective. In any case, whenever the number of nodes is consider-
able, the application of these methods may result in a too long running time. In
conjunction with all the above techniques, some strategies may be used to en-
hance the accuracy of predictions. Also the use of unseen bigrams [14] can help
in the link detection task. Here, the similarity between a node A and a node
B is computed by taking into account the similarity between the nodes B and
C, where this last one is the node most similar to A. Furthermore, the quality
of link detection can be improved by means of clustering techniques aiming at
identifying the graph components which introduce noise in the similarity com-
putation [20]. [25] proposes the application of statistical relational learning to
link prediction in the domain of scientific literature citations. In this approach
statistical modeling and feature selection are integrated into a search mechanism
over the space of database queries in such a way as to define feature candidates
involving complex interactions among objects in a given relational database. [27]
analyzes the localization in space and time of a large number of users by means
of their call detail records. This analysis shows that users with similar movement
routines are strongly connected in a social network and have intense direct in-
teractions. This result allows implicit ties in the social network to be predicted
with a significant accuracy starting from the analysis of the correlation between
user movements (i.e., their mobile homophily). Other approaches to link detec-
tion come from the fields of deduplication and disambiguation. In particular, [7]
proposes an algorithm for discovering duplicates in the dimensional tables of a
Data Warehouse.

From the above analysis it emerges that our approach, in the above litera-
ture, can be related only with common-neighbors ones. However, despite their
apparent closeness to ours, we can easily realize that they are not directly appli-
cable to our context. Indeed, the notion of common-neighbors relies, in general,
on the notion of common identity of the friends of a user. But discovering the
common identity of users in different social networks is for us the output of the
problem, leading to a sort of recursive definition of the problem itself. We have



experimentally confirmed the above claim by showing that the application of
the state-of-the-art common-neighbors approaches to our problem returns very
unsatisfying results. The results of these experiments are reported in Section 5.

3 The Notion of Similarity

Our approach operates in a Social Internetworking System (SIS) resulting from
the interconnection of a number of distinct social networks. We start with the
basic notion of underlying graph, which is the layer we deal with.

Definition 1. A t-Social-Internetworking Graph (SIG) is a directed graph G =
⟨N,E⟩, where N is the set of nodes, E is the set of edges (i.e., ordered pairs of
nodes) and N is partitioned into t subsets S1, . . . , St. Given a node a ∈ N we
denote by S(a) the social graph which a belongs to. E is partitioned into two
subsets Ef and Em. Ef is said the set of friendship edges and Em is the set of me
edges. Ef is such that for each (a, b) ∈ Ef , S(a) = S(b), while Em is such that
for each (a, b) ∈ Em, S(a) ̸= S(b)1. Given a node a we denote by Γ (a) the set
of nodes in S(a) such that for each b ∈ Γ (a) (a, b) ∈ Ef . Γ (a) is said the set of
neighbors of a. The graphs corresponding to S1, · · · , St are called social graphs
and in SIG they are linked to each other by means of me edges. 2

A t-Social-Internetworking Graph G = ⟨N,Ef ∪Em⟩ is the graph underlying
a SIS composed of t social networks. Each node a of G is associated with a user,
joining the social network whose underlying graph is S(a). An edge (a, b) ∈ Ef

means that the user b is a friend of the user a in the social network of S(a). An
edge (c, c′) ∈ Em means that the user c in the social network of S(c) has declared
a me edge between herself and the user c′ in the social network of S(c′). In other
words, c is a bridge and this means that c and c′ are associated to the same user.
From now on, throughout this section, consider given a t-Social-Internetwork-ing
Graph G = ⟨N,Ef ∪ Em⟩.

Our approach is based on a recursive notion of “inter-social-network” simi-
larity aimed at detecting missing bridges of G. The similarity between two nodes
a, b (belonging to two different social networks) is obtained by combining two
contributions: a string similarity between the user names associated to a and b,
and a contribution based on a suitable notion of common-neighbors similarity.
The latter component leads to a recursive definition of the overall inter-social-
network similarity since the common-neighbors notion has to necessarily rely on
the same notion, because also neighbors belong to different social networks, and,
thus, common nodes have to be detected too. Observe that this two-component
philosophy has been successfully adopted in several application fields in the past;
among these fields we cite schema matching [24,15], information retrieval [10],
and logic programming [17].

Concerning the string similarity, several functions have been proposed in the
literature, such as Jaro-Winkler, Levenshtein, QGrams, Monge-Elkan, Soundex

1 Observe that the presence of Em makes a t-Social-Internetworking Graph to not be
a forest since, in this last case, the corresponding social networks should be disjoint.



[16]. One of them could be adopted to measure user name similarity in our
approach, so that it can be considered parametric w.r.t. the string-similarity
function. We have evaluated the application of the different functions in Section
5.2.

Before defining our notion of similarity, we have to introduce a preliminary
notion, which the common-neighbors contribution relies on. Indeed, we detect a
missing me edge between a and b if a suitable combination of the string similarity
between the user names associated to them, according to the metric Q, and the
(recursive) similarity of the top-k similar pairs each composed of a friend of a
and a friend of b, is greater than a suitable threshold, for a given k.

Thus, we have preliminarily to define how to select such top-k pairs. This is
related to the next definition.

Definition 2. Given a positive integer k0, a pair of nodes a, b ∈ N such that
S(a) ̸= S(b), a string-similarity metric Q, and a non-negative integer n we
inductively define TopnQ(a, b, k0) as follows:

1. Top0Q(a, b, k0) is any subset of C = {(xa, yb) | xa ∈ Γ (a), yb ∈ Γ (b)} con-
taining the top-k0 elements of C w.r.t. the metric Q.

2. For any 0 < i ≤ n, TopiQ(a, b, k0) is any subset of C = {(xz, yw) | (z, w) ∈
Topi−1

Q (a, b, k0), x ∈ Γ (z), y ∈ Γ (w), (x∗, ∗) ̸∈ TopjQ(a, b, k0), (∗, y∗) ̸∈ TopjQ
(a, b, k0), 0 ≤ j ≤ i−1} containing the top-ki elements of C w.r.t. the metric
Q, where ki = ⌈ k0

(1+i)1+i ⌉ and ∗ denotes any node in N . 2

Concerning the contribution of neighbors, we have to consider a particular
situation which could significantly affect the precision of our technique. Suppose
we have two nodes z and w belonging to different social networks and consider
x ∈ Γ (z) and y ∈ Γ (w). If x and y are power users (i.e., users having a very
high degree in social networks) and z and w are not, it could happen that x
(resp., y) belongs to Γ (z) (resp., Γ (w)) only because it corresponds to a public
figure (e.g., a V.I.P.). In this case, the presence of this node in Γ (z) and Γ (w)
is not significant in defining the real life relationships of z and w. In order to
prevent this effect, we introduce the following reduction coefficient γ(xz, yw),
which assumes a very powerful role in the above situation.

Definition 3. Let x, y, z, w ∈ N be nodes of G such that x ∈ Γ (z), y ∈ Γ (w),
and S(z) ̸= S(w). We define: γ(xz, yw) = min(δ(xz), δ(yw)) where δ(ab) =

max(|Γ (a)|,|Γ (b)|)
max(|Γ (a)|,|Γ (b)|)+||Γ (a)|−|Γ (b)|| for any pair of nodes a, b ∈ N . 2

Now we are ready to define our similarity function. As said above, it is ob-
tained as a combination of two contributions, namely, the string-similarity com-
ponent and the common-neighbors one. The underlying intuition is that if two
accounts, belonging to different social networks, are associated to the same user,
even though there is no me edge between them, they will have user names some-
way related each other and, moreover, they share a (even low) number of friends.
It is worth remarking that this condition, easily verifiable by exploring real-life



social networks, does not mean that the two users have a strong overlap of their
neighbors, coherently to the diversity among the communities included in differ-
ent social networks. However, we argue that it is highly probable that an even
little neighbor overlap will occur2.

Definition 4. Given a pair of nodes a, b ∈ N such that S(a) ̸= S(b), a string-
similarity metric Q, two integers n ≥ 0 and k0 > 0, we inductively define the
similarity operator Tn

Q(a, b, k0) as follows:

1. T 0
Q(a, b, k0) = Q(a, b).

2. For any 0 < i ≤ n,

T i
Q(a, b, k0) = (1− βi) · T i−1

Q (a, b, k0)+ βi ·
∑

(xz,yw)∈Topi
Q̃

(a,b,k0)
Q̃(xz,yw)

|Topi
Q̃
(a,b,k0)|

where βi =
1

(i+1)i+1 and Q̃(xz, yw) = γ(xz, yw) · Q(x, y), for any x, y, z, w ∈ N

nodes of G such that x ∈ Γ (z), y ∈ Γ (w), and S(z) ̸= S(w). 2

The definition of similarity is recursive. At the basic step, only the direct
string-similarity value concurs to define the similarity between two nodes a and
b. At step i, the similarity is obtained as a linear combination of the similarity of
the step i− 1, and the new common-neighbors contribution. This is obtained as
the average of the reduced (by γ – see Definition 3) string similarity between the
top-ki pairs w.r.t. the same metric. ki is derived, at each step, as an exponential
reduction of k0, which is an input parameter allowing us to modulate the size
of the neighbors overlapping considered relevant for the similarity computation.
Observe that the above linear combination depends on the βi parameter, which
is exponentially decreasing as i increases, making quickly less important the
common-neighbors contribution when leaving from the root nodes a and b.

Now we are ready to define the effective tool we provide to detect me edges,
obviously based on the above notion of similarity. Indeed, Definition 4 would
lead to an ineffective computation covering, in the worst case, the whole graph
G. Anyway, we can observe that when, during the computation, we reach a step
h whose contribution to the overall similarity is under a given small ϵ, we expect
that from now on involved neighbors do not give us any meaningful information.
Thus, we can stop here the iteration. This is encoded into the next definition.

Definition 5. Given a pair of nodes a, b ∈ N such that S(a) ̸= S(b), a string-
similarity metric Q, an integer number k0 > 0, and a real number ϵ > 0, we define
the ϵ-similarity Sϵ

Q(a, b, k0) between a and b w.r.t. Q as Th
Q(a, b, k0), where h > 0

is the least number (if any) such that |Th
Q(a, b, k0)− Th−1

Q (a, b, k0)| < ϵ. 2

Clearly, our approach is really effective if the ϵ-similarity Sϵ
Q(a, b, k0) between

two nodes a and b always exists. This is ensured by the following theorem.

2 Recall that we are not interested in cases of users who voluntarily keep two accounts
separated in their respective social networks, where the above conditions are not
verified, as explained in the Introduction.



Theorem 1. Given a pair of nodes a, b ∈ N such that S(a) ̸= S(b), a string-
similarity metric Q, an integer number k0 > 0, and a real number ϵ > 0, then
the ϵ-similarity Sϵ

Q(a, b, k0) between a and b w.r.t. Q exists. 2

Finally, in the next theorem we give a result related the complexity of our
technique, showing that it is feasible.

Theorem 2. Given a pair of nodes a, b ∈ N such that S(a) ̸= S(b), a string-
similarity metric Q, and an integer number k0 > 0, then the number of visited
nodes in G for the computation of Th

Q(a, b, k0) is O(d2 · k0), where d is the
maximum node degree. 2

The consequence of Theorem 2 is that, despite the potentially exponential
explosion of visited nodes for the computation of the ϵ-similarity Sϵ

Q(a, b, k0)
between two nodes a and b, due to the h-step iterative navigation of neighbors
in G, the number of visited nodes is independent of the number of iterations h
and is bounded by the number of visited nodes at the first two steps. As it can
be easily verified by reading the proof of the theorem, this fact clearly depends
on how ki is defined in Definition 2. The above result ensures the feasibility of
our method.

4 Me-Edge Detection

In this section, we present our method able to discover missing me edges, and,
thus, new links among different social networks. Clearly, these links complement
the me edges explicitly declared by users. Our technique is based on the notion
of similarity presented in Section 3. In particular, the similarity function allows
us to detect a missing me edge between two nodes, whether a suitable threshold
is exceeded. We consider given a Social Internetworking System (SIS) composed
of t social networks, as well as the underlying Social Internetworking Graph
G = ⟨N,Ef ∪ Em⟩.

Since, in a SIS, the number of node pairs to consider for the possible presence
of a me edge is enormous, we have identified a mechanism leading our approach
to consider only a reasonable number of very promising pairs. In particular, from
the examination of the explicitly declared me edges, we have found that, with
a high probability, some of the nodes belonging to the neighbors of two nodes
linked by a me edge are, in their turn, linked by a me edge. As a consequence,
our approach starts from a set of already known me edges and examines only the
neighbors of the nodes involved in these edges. Clearly, if this set of me edges is
not available, our approach can work all the same by starting from any pair of
nodes in G. Thus, our algorithm receives a set M ⊆ Em of existing me edges and
returns a set M ′ of discovered me edges, such that, clearly M ′ ∩ (Ef ∪Em) = ∅.
The function detectMe implementing our approach is reported in Algorithm 1.
It receives as arguments: the set M of starting me edges, two [0,1] real vari-
ables thc and thd, an integer k0 > 0, and (a small) real ϵ > 0. Recall that the



similarity between two nodes a, b defined in Section 3 is obtained by combin-
ing two contributions: a string similarity between the user names associated to
a and b, and a contribution based on a suitable notion of common-neighbors
similarity. Concerning the first contribution, as pointed out in Section 3, there
exist several already defined functions for computing the similarity between two
strings, each characterized by specific features (e.g., Jaro-Winkler, Levenshtein,
QGrams, Monge-Elkan, Soundex, etc. [16]). The function Q(a, b) (receiving two
nodes a and b) in Algorithm 1 can be considered parametric w.r.t. the string-
similarity function. We can choose one of the above functions on the basis of
the desired target. For instance, QGrams is very severe and assigns quite low
similarity degrees, Jaro-Winkler is more permissive whereas Soundex is very per-
missive. In Section 5.2 the application of the different functions in our technique
is experimentally evaluated.

Synthetically, Algorithm 1 proceeds as follows. For each edge (a, b) in M ,
we take all pairs (a′, b′) such that a′ ∈ Γ (a) and b′ ∈ Γ (b). These pairs are
candidate me edges. A pair (a′, b′) is discarded if the value of Q(a′, b′) is lower
than a suitable threshold thc or if (a

′, b′) ∈ Em. Otherwise, a function S is called,
which implements the computation of Sϵ

Q(a
′, b′, k0) (see Definitions 4 and 5). If

the value returned by this function is greater than a suitable threshold thd, then
(a′, b′) is detected as me edge and is inserted inM ′. Otherwise, it is discarded. The
function S is reported in Algorithm 2. It is recursive since it implements also the
operator Tn

Q(a, b, k0) of Definition 5. It receives as arguments: an integer k0 > 0,
a (small) real ϵ > 0, a list L of triplets ⟨a, b, s⟩, where a and b are nodes and s is
a [0, 1] real value, the value of S at the previous step (at the initial step of the
recursion this value coincides with Q(a, b)), and an integer i > 0 representing the
step of the recursion. To explain what is s, observe that, in order to implement
Tn
Q(a, b, k0), we need as argument the list L which stores, at the step i > 1 of

the recursion, the top-ki node pairs w.r.t. the metric Q̃i(a, b, k0). Thus, in this

case, s represents just Q̃i(a, b, k0). At the initial step of the recursion (i = 1), s
is just the string similarity value Q(a, b).

The correspondence between Algorithm 2 and Definitions 4 and 5 is quite
clear. We just have to highlight that the result of the computation of the operator
Topi

Q̃
(a, b, k0) (see Definitions 2 and 5) is embedded in the list L, as described

above.
The computation of Topi

Q̃
(a, b, k0) is implemented by Algorithm 3. The func-

tion Top receives two nodes a and b and a positive integer ki. It returns a list
L of ki triplets ⟨a′, b′, Q̃i(a′, b′, k0)⟩, where a′ ∈ Γ (a), b′ ∈ Γ (b) and (a′, b′) is

one of the top-ki pairs w.r.t. the metric Q̃. We remark that the metric here used
includes the reduction factor γ of Definition 3.

5 Experiments

In this section we present our experimental campaign aimed at determining the
performances of our approach. Since it operates on a SIS, we had to extract not



Algorithm 1 detectMe
Input M : the starting set of me edges
Input thc: A candidate threshold
Input thd: A detection threshold
Input k0: an integer
Input ϵ: a real
Output M ′: the set of detected me edges
Variable L: a list of triplets of the form ⟨a, b, s⟩
1: L := ∅; M ′ := ∅
2: for each edge (a,b) ∈ M do
3: for each node pair (a’,b’) ∈ Γ (a) × Γ (b) do
4: if (Q(a′, b′)> thc and the edge (a’,b’) /∈ Em) then
5: insert the triplet ⟨a′, b′, Q(a′, b′)⟩ into L
6: if (S(k0, ϵ, L,Q(a′, b′), 1) > thd) then
7: insert the me edge (a′, b′) in M ′

8: end if
9: L := ∅
10: end if
11: end for
12: end for
13: return M ′

Algorithm 2 S
Input k0: an integer
Input ϵ: a real
Input Li: a list of triplets ⟨a, b, s⟩
Input Si−1: the similarity value of a′ and b′ at step i − 1
Input i: an integer
Output Si: the similarity value of a′ and b′ at step i
Variable β: a [0,1] real
Variable ki: an integer
Variable avgS: a real
Variable Li+1: a list of triplets ⟨a, b, s⟩
1: Li+1 := ∅; β := 1

ii
; ki := ⌈k0 · β⌉

2: if (k=1) then
3: Si := Si−1

4: else
5: assign to avgS the average value of the similarities of the node pairs of Li

6: Si := (1 − β) · Si−1 + β · avgS
7: end if
8: if (|Si − Si−1| ≥ ϵ) then
9: for each ⟨a, b, s⟩ in Li do
10: add the list returned by Top(a, b, ki) to Li+1

11: end for
12: return S(i + 1, Li+1, Si)
13: else
14: return Si

15: end if

only the connections among the accounts of different users in the same social
network but also the connections among the accounts of the same user in differ-
ent social networks. In order to handle these connections, two standards encod-
ing human relationships are generally exploited. The former is XFN (XHTML
Friends Network) [3]. It simply uses an attribute, called rel, to specify the kind
of relationship between two users. Some possible values of rel are me, friend,
contact, co-worker, parent, and so on. A (presumably) more complex alter-
native to XFN is FOAF (Friend-Of-A-Friend) [2]. In both of them information
about me edges is the one explicitly declared by users. In our experiments, we



Algorithm 3 Top
Input a, b: a node
Input ki: an integer
Output L: a list of triplets ⟨a, b, s⟩
Variable t: a triplet ⟨a, b, s⟩
Variable c: an integer

Variable δa, δb, Q̃(a,b): a real

1: L := ∅; c := 0
2: for each a′ in Γ (a) do
3: for each b′ in Γ (b) do

4: δa :=
max(|Γ (a′)|,|Γ (a)|)

max(|Γ (a′)|,|Γ (a)|)+||Γ (a′)|−|Γ (a)||

5: δb :=
max(|Γ (b′)|,|Γ (b)|)

max(|Γ (b′)|,|Γ (b)|)+||Γ (b′)|−|Γ (b)||

6: Q̃(a,b) := min(δa, δb) ∗ Q(a′, b′)

7: if (c < ki) then

8: insert the triplet ⟨a′, b′, Q̃(a,b)⟩ into L

9: sort L in a descending order
10: c := c + 1
11: else
12: t := L.get(ki − 1)

13: if (Q̃(a,b) > t.s)) then

14: replace the triplet in the position (ki − 1) of L with the triplet ⟨a′, b′, Q̃(a,b)⟩
15: sort L in a descending order
16: end if
17: end if
18: end for
19: end for
20: return L

considered a SIS consisting of four social networks, namely Twitter, LiveJournal,
YouTube and Flickr. Therefore, from now on we refer to a (real-life) t-Social In-
ternetworking Graph such that t = 4. We argue that the relatively small number
of involved social networks, as a first investigation, is adequate for our purpose,
expecting that the results we obtain in this setting are still valid in a more com-
plex environment. Anyway, the above social networks are highly representative
(they are among the top-10 social networks in terms of population). As a matter
of fact, they are largely analyzed in the past in Social Network Analysis [22,28].

For our experiments, we used a server equipped with a 2 Quad-Core E5440
processor and 16 GB of RAM with the CentOS 6.0 Server operating system. We
performed our experiments from January 30, 2012 to April 5, 2012.

5.1 Application of the state-of-the-art common-neighbors
approaches

As described in Section 2, we have to prior verify whether common-neighbor
approaches for link prediction [21] can be directly applied to our problem. How-
ever, a first aspect has to be considered. In our scenario the notion of common
neighbors cannot be the classical one, because the neighbors of examined pairs
belong to different social networks. As a consequence, we cannot expect that
two examined neighbors have some common nodes in strict sense. To overcome
this drawback we have just to re-define the notion of node identity. Coherently
with our setting, it simply suffices to consider as identical two nodes linked by



Index Name Definition Sensitivity

Salton Index (SAI) sSAI
ab =

|Γ (a)
∩

Γ (b)|√
|Γ (a)|×|Γ (b)|

0.01

Jaccard Index (JAI) sJAI
ab =

|Γ (a)
∩

Γ (b)|
|Γ (a)

∩
Γ (b)| 0.01

Sorensen Index (SOI) sSOI
ab =

2|Γ (a)
∩

Γ (b)|
|Γ (a)|+|Γ (b)| 0.01

Hub Promoted Index (HPI) sHPI
ab =

|Γ (a)
∩

Γ (b)|
min(|Γ (a)|,|Γ (b)|) 0.00

Hub Depressed Index (HDI) sHDI
ab =

|Γ (a)
∩

Γ (b)|
max(|Γ (a)|,|Γ (b)|) 0.01

Leicht-Holme-Newman Index (LHNI) sLHNI
ab =

|Γ (a)
∩

Γ (b)|
|Γ (a)|×|Γ (b)| 0.01

Resource Allocation Index (RA) sRA
ab =

∑
z∈Γ (a)

∩
Γ (b)

1
|Γ (z)| 0.01

Local Path Index (LPI) sLPI
ab = A2 + ϵA3 0.03

( A is G’s adjacency matrix)

Table 1. The tested common-neighbors approaches

a me edge. At this point, classical common-neighbor techniques can be directly
applied.

Given two nodes a and b in G (such that S(a) ̸= S(b)), the considered (state-
of-the-art) techniques are those reported in Table 1, where we include, in the
first and second columns, the definition of the similarity index which they rely
on [21].

We tested all the above techniques in our SIS by preliminarily constructing
a set M of 100 node pairs linked by a me edge and then by running them on
M . For each technique, we obtained a set M ′ of detected me edges. Clearly, M ′

represents a set of true positives. Finally, we measured the sensitivity of the

techniques as the ratio |M ′|
|M | , obtaining the results reported in the third column

of Table 1.

The analysis of such values clearly shows that no effective result can be
obtained whether common-neighbors techniques are adopted. This has in fact
motivated our further study, whose experimental validation is reported in the
next sections.

5.2 Sample-driven method validation

A first experiment aims at determining the performance of our approach as
well as at choosing the best function for computing the string similarity in our
context. We started from the set M introduced in the previous section (i.e., a
set of 100 real me-edge-connected pairs). Then, we find another set, denoted by
¬M , of 100 node pairs not connected by a me edge. To find two elements, say
(c1, d1) and (c2, d2), of ¬M , we started from a me-edge-connected pair (a, b) and
then we required that c1 = a, d1 ∈ Γ (b), c2 = b, d2 ∈ Γ (a). This way, both
(c1, d1) and (c2, d2) are not linked by a me-edge, since d1 is a friend of a user
(i.e., b) who is identical to c1. The dual situation occurs for (c2, d2).

Then, we applied our approach on the pairs of M and ¬M and we obtained
the sets TP , FP , and FN , which are true positives, false positives, and false
negatives, resp. For clarity, an element in TP is a pair of M detected as me-edge-
connected pair by our technique, an element in FP is a pair of ¬M detected as



Function Precision Recall F-measure

Jaro-Winkler 0.558 0.920 0.694
QGrams 0.908 0.690 0.784

Levenshtein 0.877 0.710 0.785
Smith-Waterman 0.840 0.790 0.814

Smith-Waterman-Gotoh 0.779 0.810 0.794
Monge-Elkan 0.779 0.810 0.794

Needleman-Wunch 0.500 1.000 0.667
Jaro 0.555 0.910 0.689

Soundex 0.500 0.990 0.664

Table 2. Precision, recall and F-Measure of our approach for each user name similarity
function

me-edge-connected pair by our technique, and an element of FN is a pair of M
not detected as me-edge-connected pair by our technique.

To compute the performance of our approach we adopted three classical
measures [4], namely precision (as measure of correctness), recall (as measure
of completeness) and F-measure (as the harmonic mean of precision and re-

call). They are defined as: precision = |TP |
|TP |+|FP | , recall =

|TP |
|TP |+|FN | , and F -

measure = 2 · precision·recall
precision+recall .

Since the behavior of our approach (and, consequently, the values of precision
and recall) depends on the function adopted for computing string similarity,
we considered the most common of these functions and, for each of them, we
computed the precision and the recall of our technique. This way, we were able
to determine the function(s) maximizing these measures. Obtained results are
shown in Table 2.

The main conclusion we can draw from the analysis of this table is that our
approach presents in general a very satisfying performance both in correctness
and in completeness. Moreover, we observe that we are free to choose the string-
similarity function in a rich set. Indeed, 5 functions led our approach to obtain
a precision higher than 0.77 and 6 functions led it to obtain a recall higher
than 0.81. However, among the considered functions, QGrams (resp., Needleman-
Wunch) proved to be the one capable of assuring the best precision (resp., recall).
The high performance level of our approach is even more evident if we compare
Tables 1 and 2 and if we consider that, in this testbed, the definitions of recall
and sensitivity coincide and, consequently, the corresponding columns can be
compared3.

5.3 Expert-based method validation

This experiment aims at computing the accuracy of our approach in a way dif-
ferent from the previous experiment. In this case, we want to benefit from the
support of a human expert. We first applied a crawling technique to derive a
sample of the SIS. This sample was necessary to have a starting set of me edges at

3 Observe that, owing to the extremely low values of sensitivity, the computation of
precision in Table 1 makes no sense.



disposal. In order to maximize the number of me edges occurring in the sample we
applied BDS, a crawling technique specifically conceived to operate on a SIS, in-
stead of on a single social network, which is highly capable of finding and return-
ing explicitly declared me edges [12] (note that, to the best of our knowledge, no
other technique with this feature is available in literature). Our sample consisted
of 93,169 nodes and 146,325 edges. 745 out of 146,325 were me edges. This sam-
ple can be found at the URL http://www.ursino.unirc.it/pkdd-12.html.
We randomly selected 160 me edges and put them in a set M . We gave this set
as input to our technique. The adopted string-similarity function was QGrams,
because it proved to assure the best precision. Our approach returned a set M ′

of 22 me edges and a set of 133 non-me edges, from which we randomly selected
a set ¬M ′ of 22 non-me edges in such a way that me edges and non-me edges
had the same weight. After this, we asked the human expert to verify whether
the elements of M ′ are actually me edges and the elements of ¬M ′ are actually
non-me edges. For each edge her possible answers were true, false and unknown.
Observe that the value unknown reflects both uncertain cases and unreachable-
page ones. At the end of the experiment we obtained that, as forM ′, she returned
tp = 16 true, fp = 4 false and 2 unknown. As for ¬M ′, she returned tn = 18
true, fn = 2 false and 2 unknown. Finally, we computed the accuracy as the ratio

tp+tn
tp+tf+tn+fn

, obtaining the value 0.85, which denotes a very good performance

of our method.

6 Conclusion and Future Work

In this paper, we have studied the problem of discovering missing me edges in
a Social Internetworking Scenario. The most evident information we can use to
detect missing me edges, besides user names, concerns neighbors. This might lead
us to conclude that we are in front of a classical problem of link prediction where
one of the state-of-the-art common-neighbors techniques can be applied in order
to solve it. The first conclusion we have drawn in this work, on the basis of a
number of experiments, is that this is definitely not true, showing the need of
studying the problem as new and finding a specific solution. To do this, we have
defined a suitable notion of “inter-social-network” similarity, which is recursive
since the common-neighbors notion has to necessarily rely on the same notion,
because also neighbors belong to different social networks. On the basis of this
notion, we have defined an algorithm able to detect whether there is a missing
me edge between two given nodes. The experimental analysis of this method on
a real-life data set has shown its correctness and completeness, thus validating
it. In the future, this analysis could be further empowered in several directions.
Some of them could be: (i) the analysis of our approach running time; (ii) the
analysis of the mutual role of the two components of our similarity definition;
(iii) the analysis of the stability and sensitivity of our approach.

The results obtained in this paper can be useful for further investigations in
the direction of social internetworking. Indeed, the role of me edges is relevant
for any phenomenon of information crossing through different social networks,



so that discovering new me edges may strongly enrich the analysis capabilities of
social data, also strengthening multi-context analyses of people profile. We thus
believe that a number of future directions of our research can be undertaken,
especially in the context of behavioral analysis, but also at the “lower” level of
graph analysis, where the discovery of new me edges may improve the capability
of crawlers to explore a Social Internetworking Scenario.
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