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Abstract. A straightforward approach to frequent pairs mining in trans-
actional streams is to generate all pairs occurring in transactions and
apply a frequent items mining algorithm to the resulting stream. The
well-known counter based algorithms Frequent and Space-Saving are
known to achieve a very good approximation when the frequencies of the
items in the stream adhere to a skewed distribution.
Motivated by observations on real datasets, we present a general tech-
nique for applying Frequent and Space-Saving to transactional data
streams for the case when the transactions considerably vary in their
lengths. Despite of its simplicity, we show through extensive experiments
that our approach is considerably more efficient and precise than the
näıve application of Frequent and Space-Saving.

1 Introduction

Mining heavy items from data streams is a fundamental problem in knowledge
discovery. It has been widely studied from both theoretical and practical point of
view, see [10] for an overview of achieved results. Motivated by applications for
finding associations among purchased items in market baskets, many algorithms
have been developed for mining frequent k-itemsets, for k ≥ 2. In the case when
transactions are revealed one at a time in a streaming fashion, a straightfor-
ward approach to mining the frequent k-itemsets is to generate all size-k subsets
in each transaction and then apply a frequent items mining algorithm to the
resulting stream. However, this approach does not make use of the additional
information that for a transaction of length ` we implicitly know the next

(
`
k

)
k-itemsets in the stream. In this paper we show that for many real datasets this
information allows us to design significantly more efficient and robust algorithms
than the näıve application of counter-based frequent items mining algorithm.

Transactional data streams. Classic algorithms like Apriori [1] and FP-Growth [14]
need several passes over the input to find the frequent itemsets. This implies that
we need a persistently stored database and for many applications this is not a
feasible requirement. Historically, Manku and Motwani [25] first recognized the
necessity for frequent itemset mining algorithms over high-speed transactional
data streams. They heuristically generalized their Lossy Counting algorithm



and observed that it provides good estimates for the most frequent itemsets.
Association rule mining from transactional data streams has been recognized a
major research problem due to continuously increasing data volume, see [15] for
an overview of the area.

Assuming that transactions are either generated by a random process or ar-
rive in a random order, researchers have designed randomized algorithms for
frequent itemset mining [8, 30]. The theoretical analysis of the algorithms per-
formance thus utilizes Chernoff bounds in order to show quality estimates with
high probability. However, experiments indicate [8] that such assumptions are
too optimistic for real datasets and the results are not nearly as good as sug-
gested by the theoretical analysis.

Frequent items mining. Algorithms for frequent items mining in data streams
can be roughly divided in two categories: sketch-based and counter-based algo-
rithms. Sketch-based algorithms work by hashing the items to a small sketch
of the data stream processed so far and updating a corresponding counter. The
frequency of individual items can be then estimated by reading a counter in
the sketch. The two well-known algorithms Count-Sketch [9] and Count-
Min [11] are based on this approach. The sketches consist of O(1/ε) counters.

Count-Sketch provides an additive approximation of O((εF2)
1
2 ) and Count-

Min of O(εF1) where Fp is the p-norm of the frequency vector of the stream. In
order to guarantee that the approximation is correct with high probability, one
runs several copies of the algorithm in parallel and returns the median of the
estimates.

Counter based algorithms are deterministic. They maintain a summary of
the items processed so far. The summary consists of a small subset of the items
with associated counters approximating the frequency of the item in the stream.
For a summary maintaining O(1/ε) entries, they provide an additive approxima-
tion εF1. It was experimentally observed that counter based algorithms provide
better guarantees than sketch based algorithms but the reasons have been un-
clear. In a recent work Berinde et al. [4] present an analysis of so called heavy
tolerant counter based algorithms, including Frequent [13, 17, 27] and Space-
Saving [26]. They show that both algorithms are clearly superior to sketch based
algorithms, see the third paragraph of Section 2 for a detailed discussion.

Mining frequent k-itemsets. In this paper we consider frequent pairs mining in
transactional data streams. Our algorithm can be extended in a straightforward
way to k-itemsets mining but for the ease of presentation we concentrate on
results for frequent pairs mining. Note that the generation of the frequent pairs
is considered to be the most time consuming phase in Apriori [1]. As noted by
Park et al. [28] “...the initial candidate set generation, especially for the large
2-itemsets, is the key issue to improve the performance of data mining”.

Our contribution. The straightforward application of frequent items mining al-
gorithms is the only known approach to mining frequent itemsets from trans-
actional data streams with rigorously understood behaviour. The focus in our
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work is on improving the approach for counter based frequent items algorithms.
Our main contributions can be summarized as follows:

– We make the observation that for many real-life datasets the length of the
transactions considerably vary and most of the pairs in the transactional
stream are generated by a fraction of the transactions.

– Utilizing the main idea behind the Frequent algorithm, we present a simple
technique for adjusting Frequent and Space-Saving to mining frequent
pairs in transactional data streams.

– We prove that our modified approach yields an additive approximation er-
ror at least as good as the original algorithms. However, through extensive
experiments on real datasets, we obtain considerable improvements in both
running time and accuracy of the estimates.

Building upon Frequent, Jin and Agrawal [16] presented a method for
improving the space requirements of Apriori. Thus, our algorithm automatically
yields an improved version of Apriori for the considered class of datasets.

2 Preliminaries

Notation. Let I be a set of n items. We assume a total order on I and for the
ease of presentation we set I = {0, 1, 2, . . . , n− 1}. A weighted stream S over I
is a sequence of m entries (i, v) for an item i ∈ I and weight v ∈ R+. When for
all entries (i, v) in S, v = 1 holds, we will refer to S as an unweighted stream. A
transaction T is a subset of items of I. The length of a transaction T , denoted
as |T |, is the number of items occurring in it. A transactional stream T consists
of m transactions revealed one at a time, p = (i, j) ⊂ I for i < j is a pair.

The frequency or weight of an item i is defined as fi =
∑

(i,v)∈S v and fS =

(f0, . . . , fn−1) is the frequency vector of the stream S. For unweighted streams
the frequency is simply the number of occurrences of i in S. For transactional
streams the frequency of a pair p is the number of transactions containing p,
|{Tj : p ⊆ Tj}|, 1 ≤ j ≤ m. The `-norm of a weighted stream S over a set I is

denoted as F`(S) = (
∑
i∈I f

`
i )

1
` for ` ≥ 0. For an unweighted stream S, F1(S)

is simply the length, i.e. the number of entries, in S. Without loss of generality,
we assume that the items i ∈ I are ordered by decreasing frequency such that
f1 ≥ f2 ≥ . . . ≥ fn. The kth item in this sequence is the item of rank k. The

k-residual `-norm of a stream S is then defined as F
res(k)
` (S) = (

∑n
i=k+1 f

`
i )

1
` .

Clearly, F
res(0)
` (S) = F`(S). Items with weight above εF1, for a user-defined

0 < ε < 1, will be called ε-heavy hitters or just heavy hitters when ε is clear from
the context.

Heavy tolerant counter based algorithms. Let us first briefly recall how the algo-
rithms Frequent and Space-Saving work for an unweighted stream of items.
Both algorithms maintain a summary B of b entries. The summary consists of
items i ∈ I with associated counter ci serving as an estimate of the frequency of
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i in the stream processed so far. We will refer to the size of the summary as the
number of entries that can be recorded in the summary. When a new item j ar-
rives, we check whether j is recorded in B. If so, we increment cj by 1. If not, we
check whether all b slots are occupied by an entry and if not, we insert the entry
(j, 1) to B. The algorithms proceed differently when j is not recorded in B. In
this case Frequent decrements by 1 the counters of all entries in the summary
and then removes entries with a counter equal to 0. Space-Saving replaces an
entry (k, ck) with the smallest counter by the new entry (j, ck + 1). After pro-
cessing the stream one estimates the frequency of a given item i by checking
the corresponding entry in the summary. If i is not recorded in the summary,
Frequent returns 0 as an estimate of i’s frequency and Space-Saving returns
minimum counter in the summary. A simple analysis shows that after process-
ing the whole stream, Frequent guarantees that the frequency of each item is
underestimated by at most F1/b, and Space-Saving provides an upper bound
of the overestimation of each item by F1/b. This leads to the following

Definition 1 For a stream S, a counter based algorithm A with a summary of
size b = d1/εe provides an ε-heavy hitter guarantee if δi ≤ dεF1e for all items
i ∈ I where δi is the absolute additive approximation error. A provides then an
ε-approximation of the weight of each item and it is called an ε-heavy tolerant
counter based algorithm.

The above implies that after processing a stream S, a counter based algo-
rithm providing an ε-heavy hitter guarantee will correctly detect all ε-heavy
hitters. The algorithms can be generalized in a straightforward way to handle
weighted updates such that the approximation guarantee is maintained. The
generalization poses a challenge only for the processing time of each incoming
item, see the discussion on the running time of our algorithm in Section 3 for
more on this.

Counter based vs. sketch based frequent items mining algorithms. Skewness in
the frequency distribution of items in data streams is ubiquitous, see for exam-
ple [10, 12]. Therefore, an algorithm providing an approximation guarantee in
terms of the residual norm of a stream can be considered superior to algorithms
with approximation error depending on the norm of the whole stream. The anal-
ysis of randomized sketch based algorithms naturally applies to obtaining strong

k-tail approximation guarantees, i.e. depending on F
res(k)
1 , for the frequency dis-

tribution of individual items. For data streams adhering to a skewed distribution
such guarantees are much stronger than the heavy hitter guarantees provided
by the näıve analysis of counter based analysis. Building upon work by Bose et
al. [5], Berinde et al. [4] recently presented a deeper analysis of the behaviour of
heavy tolerant counter-based algorithms. In particular, their results show that

Frequent and Space-Saving yield a k-tail guarantee of (ε/k)F
res(k)
1 using a

summary with O(k/ε) entries as opposed to sketch based algorithms requiring
O((k/ε) log n) counters. This result closed the discrepancy between the better
results yielded by counter based algorithms on real and synthetic data sets as
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compared to counter based algorithms, clearly indicating that counter based
algorithms are superior.

Approximation guarantees of Frequent and Space-Saving. In the following
we list several results about the approximation guarantees provided by counter
based algorithms. The first one is a generalization of the correctness argument
of Frequent.

Lemma 1 After decreasing d times the weight of at least s > b = 1
ε distinct

items in a stream S, such that no item has negative weight, all ε-heavy hitters
are guaranteed to have positive weight.

Proof. Since no item can have negative weight, d ≤ F1(S)/s holds. This implies
fi − d > 0 for all i : fi ≥ εF1(S).

Lemma 2 [4, 26] After processing a weighted stream S by either Frequent or
Space-Saving the following hold

– The sum of all counters in the summary of Space-Saving is exactly F1(S).
– For a summary of size b = O(k/ε), the underestimation of the approxi-

mation returned by Frequent of the weight of each entry is bounded by

(ε/k)F
res(k)
1 .

– For a summary of size b = O(k/ε) , the overestimation of the approxima-
tion returned by Space-Saving of the weight of each entry is bounded by

(ε/k)F
res(k)
1 .

From the above we derive the following

Definition 2 A counter based algorithm with a summary of size O(k/ε) provides
a (k, ε)-tail guarantee if the additive approximation of the weight of each item is

bounded by (ε/k)F
res(k)
1 .

3 Our approach

Motivation. Before presenting our improved algorithm, let us give some infor-
mal motivation. Figure 1 presents the distribution of transaction lengths for
the Kosarak dataset and the number of pairs generated from transactions with
the given length. It turns out that more than 90% of the pairs are generated
by less than 10% of the transactions. Thus, by efficiently processing the long
transactions we can achieve considerable improvement in the running time of a
counter based algorithm applied to a stream of pairs occurring in transactions. A
näıve solution would be to simply not consider long transactions. This approach
would yield incomplete results since it is often the case the long transactions
contain more specific but still important information. In Section 4 we show that
for datasets from various real-life domains the pairs per transaction distribution
follows this pattern.
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Fig. 1. The number of pairs in the Kosarak dataset generated by transactions with the
given length.

The basic idea. At the heart of our improved counter based algorithms is the
following simple observation. Assume we want to find an ε-approximation of
the frequencies of the items in a given unweighted stream. If we repeatedly
remove s ≥ 1/ε distinct items from the stream, and then apply a counter based
frequent items mining algorithm to the updated stream, we will again achieve an
ε-approximation for all items in the stream. An informal correctness argument is
that each item removal is witnessed by the removal of s− 1 other distinct items
and thus the total decrease in the item frequency is bounded by F1/s ≤ εF1,
thus the heavy hitter guarantee is maintained. Essentially, this is a reformulation
of the main idea of the Frequent algorithm.

For mining frequent pairs in transactional streams the above idea may be
useful because we know that a transaction of length ` contains

(
`
2

)
distinct pairs.

This suggests a more efficient way for processing the long transactions.

The algorithm.

A high-level pseudocode description of our algorithm FrequentPairsMiner
is presented in Figure 2. The input consists of a counter based algorithm A
providing an (ε, k)-approximation, a stream of transactions T and a user-defined
parameter t. We will distinguish between the cases when A is either Frequent
or Space-Saving. A maintains a summary B consisting of b entries. We assume
that A is capable of handling weighted updates. We proceed a transaction T ∈ T
as follows: If |T | ≤ t we generate all

(
t
2

)
pairs occurring in T and feed them into

A. Otherwise if |T | > t we add T to a batch of long transactions L and check
whether the number of distinct pairs in L is bigger than `/ε for ` ≥ 1. If so, we
find the number of occurrences of all pairs occurring more than ` times in L,
decrease their weight by `, and feed the resulting weighted stream into A.
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function FrequentPairsMiner

Input: stream of transactions T , a counter based algorithm A, a threshold t
1: for each transaction T ∈ T do
2: if |T | ≤ t then
3: Generate the set PT of all pairs in T
4: for each pair p ∈ PT do
5: call A.update(B, p, 1)
6: else
7: add T to a batch L
8: if there are ` groups of at least b distinct pairs in L then
9: Compute the set PL of weighted pairs occurring in L more than `

times
10: for each (p, wp) ∈ PL do
11: call A.update(B, p,wp − `)
12: Report all pairs in the summary B and their estimated frequency.

Fig. 2. A high-level pseudocode description of the algorithm.

Theorem 1. Let T be a transactional stream and A = {Frequent, Space-
Saving} with a summary of size O(k/ε). Then for the stream of pairs in T
FrequentPairsMiner provides a (k, ε)-tail guarantee.

Proof. We first show that FrequentPairsMiner provides an ε-approximation.
Assume that d times we eliminate at least 1/ε distinct pairs in lines 8-11 and
decrease the weight of a pair by at most d. Then, we feed A with a stream with
F1 − d/ε pairs. A provides an ε-approximation, thus we have that the absolute
additive approximation for each pair is bounded by ε(F1 − d/ε) + d = εF1.

Next we prove that if δ is an upper bound on the absolute additive approx-

imation, then
δk+F

res(k)
1

b is also an upper bound on the additive approximation
of each pair for any 0 ≤ k ≤ P where P is the total number of distinct pairs in
the stream. We consider two cases:

1. A =Frequent. In this case we can charge the underestimation only from
pairs occurrences that have been deleted from the stream. Clearly, their

number is upper-bounded by kδ+F
res(k)
1 and since each deletion is witnessed

by the deletion of at least b+ 1 distinct pairs, the bound follows.
2. A =Space-Saving. In the following we denote by S the stream of pairs

generated from T . Let Pk be the set of the k most frequent pairs in the
transactional data stream. The frequency of each pair p ∈ Pk is approxi-
mated within absolute additive error of δ. Denote by SA the stream fed into
A and by SL the stream of the remaining pairs in the transactional stream S.
By Lemma 2 the total sum of counters in the summary of A is then F1(SA).
Now consider the k counters in the summary of A with the largest value.
Each of them approximates a pair with an additive error at most δ. Also, the
ith such counter, i ≤ k, has a value of at least the weight of the ith heaviest
pair in SA, which in turn implies that its value is at least the weight of the
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ith heaviest pair in S restricted to SA. Therefore, together with Lemma 2
we obtain that the total sum of the counters in the summary, different from

the largest k counters, is bounded by F
res(k)
1 (SA). Also, we have deleted

F1(SL) pairs occurrences from S. Therefore, the total approximation error

for all pairs amounts to kδ + F
res(k)
1 (SA) + F

res(k)
1 (SL). By Lemma 2 the

overestimation of each pair in the stream SA is bounded by
kδ+F

res(k)
1 (SA)
b .

In the stream SL we delete d times at least b distinct pairs, thus together
with Lemma 1 we obtain that we can charge to each pair an approximation

error of at most
kδ+F

res(k)
1 (SA)+F

res(k)
1 (SL)

b ≤ kδ+F
res(k)
1

b .

Once we have the recursive form for the upper bound, we can continue iterating

in this way setting δi =
kδi−1+F

res(k)
1 (S)
b while δi ≤ δi−1 for the approximation

error in the ith step holds. We either reach a state where no progress is made or,

since the approximation error is lower bounded by F
res(k)
1 (S), we have δi → δ

as i → ∞. In either case the claim follows. Setting b = O(k/ε) concludes the
proof. ut

Running time. We present efficient algorithms for the steps in Frequent-
PairsMiner. We assume that the summary can be updated in constant time.
For Frequent a hashtable implementation guarantees a constant amortized
processing time per pair. More sophisticated data structures [13, 17] improve
this to constant time in the worst case. For Space-Saving a linked list imple-
mentation of the summary [26] guarantees constant worst case processing time
per pair. Using the modification from [7] one can achieve constant processing
time for weighted pairs such that the approximation error is increased by at
most a factor of 2. Using similar techniques one can obtain constant time for
weighted updates for Frequent.

The running time crucially depends on how we process a batch of long trans-
actions and mine the frequent pairs in the batch. Under the assumption that
many items will occur only once in the batch a suitable choice would be a classic
frequent itemset mining algorithm like Apriori [1] or FP-growth [14]. However,
in this case we have a relatively small number of long transactions. Under the
assumption that most pairs will occur at most once in the batch, we present
another approach aimed at minimizing the running time:

For each combination of two transactions in the batch L we compute their
intersection, generate the pairs occurring in the intersection and store them
in a hashtable associating a set of transactions IDs with each pair. Assuming
transactions are given in sorted order we can compute the intersection of two
transactions in linear time. Therefore, for a batch of q transactions, such that
the total number of items in the transactions in the batch is r, the running time
is upper bounded by O(qr): for each transactions we compute in time O(r) the
intersections with the other transactions. Let PL be the pairs occurring in L and
fL be the frequency vector of PL. Assuming a given pair p occurs fL(p) times in

the batch L, it will occur in
(
fL(p)

2

)
transaction intersections. Then the number

of pairs generated from all transactions is bounded by
∑
p∈PL:fL(p)≥2 f

L(p)2.
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We can efficiently estimate whether there exist ` groups in L, each of them
containing at least b distinct pairs, by a simple modification of the approach
presented in [2]. Building upon work by Bar-Yossef et al. [3], in [2] the authors
present an efficient algorithm for estimating the number of distinct pairs in
transactional data streams. Essentially, the algorithm hashes each pair in the
stream to a random number in (0,1], keeps track of the k smallest hash values
and returns as an unbiased estimate of the number of distinct pairs dk/rke where
rk is the kth smallest hash value. Using a pairwise independent hash function one
shows that we obtain with constant error probability an (1 ± ε)-approximation
of the number of distinct pairs for k = O(1/ε2). Running O(1/δ) copies of the
algorithm in parallel and returning the median of the results guarantees an error
probability of at most δ. A clever construction of the hash function allows each
transaction to be processed in expected linear time.

The above approach admits a natural generalization for estimating the num-
ber of pairs occurring exactly i times in L. As shown in [2] the hash function is
injective with high probability and thus instead the hash value we can also store
the pair with the corresponding hash value. At the end we obtain a sample of
pairs with their exact frequency in L and using standard approaches we estimate
the desired quantities.

4 Observations on datasets

Table 1 summarizes the results for several real datasets. Assuming the transac-
tions are sorted by their length in decreasing order, each row stands for a dataset
and the columns give the fraction of pairs generated by the first k percent of the
transactions, 1 ≤ k ≤ 10. As can be clearly seen from the values in the table, a
small ratio of the transactions contributes the majority of pairs. We argue that
this is a ubiquitous pattern for many real-life domains.

The first datasets are taken from the FIMI repository. Kosarak contains
anonymized click-stream data of a Hungarian on-line news portal, provided by
Ferenc Bodon. Webdocs [24] is built from a spidered collection of web html
documents. BMS-Web-View1 [18] is built from purchase data of a legwear and
legcare web retailer. MovieActors was built from the IMDB database and lists
the actors acting in a given movie [7].

The next datasets were built from graphs available at the Stanford Large
Network Dataset Collection (http://snap.stanford.edu/data/). For a (directed
or undirected) graph given as a set of edges we created a transaction from the
neighbors of each vertex. Arxiv COND-MAT [23] (Condense Matter Physics) col-
laboration network is from the e-print arXiv and covers scientific collaborations
between authors papers submitted to Condense Matter category. If an author i
co-authored a paper with author j, the graph contains a undirected edge from i
to j. Therefore for each author there exists a transaction representing the set of
her coauthors. The next two datasets, WikiTalk and WikiVote, are built from
the online encyclopedia Wikipedia. For WikiTalk for each Wikipedia user i a
transaction records the set of other users j whose talk page was edited at least
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once by i. WikiVote represents popularity of users. For a user i a transaction lists
all users j who voted on user i [20, 21]. In Web-BerkStan for a page i from the
berkely.edu and stanford.edu domains a transaction contains all pages j linked to
by i [22]. Email-EU-All is built from email data from a large European research
institution. For an email address i a transaction records all email addresses j if
i sent at least one message to j [23]. The last dataset, soc-Epinions1, uses data
from the general consumer review site Epinions.com. This is a who-trust-whom
online social network and members of the site can decide whether to ”trust”
each other. For a member i a transaction contains all the users trusted by i [29].

Dataset 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Kosarak 0.7834 0.8634 0.9012 0.9237 0.9386 0.9493 0.9572 0.9633 0.9681 0.9719

Webdocs 0.7741 0.8189 0.8467 0.8663 0.8811 0.8930 0.9027 0.9111 0.9182 0.9244

BMS-Web-View1 0.7434 0.8009 0.8347 0.8582 0.8766 0.8920 0.9035 0.9144 0.9224 0.9296

MovieActors 0.8555 0.8991 0.9163 0.9271 0.9351 0.9414 0.9467 0.9512 0.9551 0.9586

CA-CondMat 0.3917 0.5011 0.5709 0.6225 0.6633 0.6965 0.7246 0.7487 0.7695 0.7879

WikiTalk 0.9817 0.9950 0.9979 0.9989 0.9994 0.9996 0.9997 0.9998 0.9998 0.9999

WikiVote 0.5797 0.7179 0.7933 0.8412 0.8749 0.9004 0.9203 0.9352 0.9465 0.9556

web-BerkStan 0.3734 0.5234 0.6005 0.6551 0.6886 0.7179 0.7470 0.7761 0.7997 0.8213

Email-EU-All 0.9895 0.9944 0.9962 0.9973 0.9978 0.9983 0.9986 0.9987 0.9989 0.9991

soc-Epinions1 0.7432 0.8462 0.8977 0.9289 0.9488 0.9619 0.9711 0.9777 0.9825 0.9859

Table 1. The ratio of pairs from the top-k percent longest transactions to the total
number of pairs for several datasets.

5 Experiments

We choose the two datasets Kosarak and Webdocs for our experiments. Kosarak
consists of 990,002 transactions over 41,270 items. The total number of pairs is
more than 108 and the number of distinct pairs is more than 107. We took a prefix
of Webdocs consisting of the first 100,000 transactions. There are over 5,267,656
items, almost 1010 pairs in total and the number of distinct pairs is slightly more
than 109. Clearly, an exact solution using a hashtable to compute the support
of all pairs is infeasible since it will require several Gigabytes of memory. As
reported in [6], the distribution of pairs frequencies in both datasets adheres to
a power law, therefore an approximation guarantee depending on the residual
norm of the frequency vector will yield high quality estimates.

Implementation details. FrequentPairsMiner has been implemented in Java.
Experiments have been run on a Mac Pro desktop equipped with Quad-Core In-
tel 2.8GHz and 8 GB RAM. For Space-Saving we implemented the algorithm as
described in [26]. For Frequent we observed that the simpler solution guaran-
teeing constant amortized cost per update is more efficient than the the linked
list data structure presented in [13, 17]. We worked with standard Java data
structures which required the use of objects. A cache optimized implementation
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can achieve better space complexity by using only primitive data types. How-
ever, the goal of the present paper is to compare our approach with the näıve
application of Frequent and Space-Saving to the transactional data stream.
Therefore, we don’t employ optimization tricks that will equally benefit both
approaches.

Parameters. Of crucial importance for the achieved results, both in terms of
complexity and accuracy, are the various parameters we set. In particular, how
many pairs will the summary record, which transactions will be considered long
and how many transactions are we going to keep in the batch. Frequent and
Space-Saving need a summary of size O(k/ε) to provide an (ε, k)-guarantee.
However, a frequent pair is defined in terms of the number of transactions con-
taining it. Therefore, without prior knowledge on the distribution of transaction
lengths it is impossible to predict how long will be the stream of pairs and thus
how many pairs we need to record in the summary in order to guarantee that
frequent pairs will be in the summary after processing the transactional stream.
Jin and Agrawal [16] claim that by adjusting the size of the summary of Fre-
quent for each incoming transactions we can guarantee that ε-heavy hitters
will be reported but this is erroneous. As a counter example consider a stream
of m transactions such that all transactions have length 2. Assume each pair
occurs exactly d times in the stream and we have a summary of size d− 1, such
that after processing of the m transactions no pair is recorded in the summary.
Since transactions have the same length length we will not update the size of the
summary. Then for fixed m, ε and d it is easy to construct a stream of f(m, ε, d)
longer transactions such that some of the pairs become ε-heavy hitters but have
exactly the same frequency as pairs that have not appeared among the first m
transactions. Thus, the algorithm has no way to distinguish between those pairs.
Therefore in the following we assume that the summary size is a user-defined
parameter which is to be chosen depending on the available memory. (Note that
the parameters k and ε in the theoretical analysis of the algorithm are not user
defined but simply used to obtain the best possible bounds on the approximation
error.)

From the discussion about the complexity of the algorithm it is clear that a
large batch of long transactions will dominate the running time since we need to
compute the intersection of each two transactions. Therefore, we implemented
the following heuristic: Let b be the size of the summary. In order to achieve
good running time, we will keep q long transactions in the batch L, each of them
of length at least t, such that q < t and qt2 ≥ cb for some small constant c > 1.
This will ensure that the running time for finding the intersections of the long
transactions is of the order q2

∑
ti opposed to q

∑
t2i for the explicit generation

of all pairs in the long transactions. Assuming there are not many intersections
among the long transactions, the factor c guarantees that we will (implicitly)
find at least b distinct pairs in the batch. If this fails, i.e. it turns out that we
have less than b distinct pairs in the batch, we explicitly generate all pairs in the
transactions and update the summary with each of them.

11



Further we observed that the frequent pairs in the batch rarely occur more
than a few times. Thus, we simply kept track of a few summary entries with the
lowest estimates and when needed, replaced one of them with a heavy entry not
recorded in the summary.

Overview of experiments We compared the straightforward application of Fre-
quent and Space-Saving to the stream of pairs to FrequentPairsMining
with respect to the following criteria:

1. Running time: For different summary sizes we measured the running time.

2. Precision: How many of the reported pairs in the summary are among the
top-k pairs for various k.

3. Recall: The ratio of the top-k pairs reported in the summary for various k.

4. Average relative error: Following [10], for the most frequent k pairs we plot

δrel = |f(p)−f̂(p)|
f(p) , i.e. the absolute difference of the estimate f̂(p) and the

exact count f(p) scaled by f(p).

In all experiments for 2)–4) we set the size of the summary to be 50,000 for
kosarak and 100,000 for webdocs. In general, we observe better running times
and more precise estimates. The former is a result of the fast processing of long
transaction. The latter is due to the fact that in many cases we find a number
of distinct pairs which is much bigger than the size of the summary. In order to
concentrate on the approximation guarantees achieved by the näıve application
of Space-Saving and our optimized approach, we did not implement the book-
keeping extension proposed in the original work [26] providing a lower bound on
the estimates.

5.1 Experiments for A =Frequent

Running time. As can be seen from Figure 3 we achieve considerably better
running time for summary sizes that are not too big. Note that all summary
sizes guarantee reasonably good estimates. For larger summaries the advantages
of our modified approach become less pronounced since less transactions are
considered long.

Precision and recall. In Figures 4 and 5 we plot the precision and recall for the
top-k pairs for growing k. Note that the number of pairs explicitly recorded in the
summary varies, as we do not explicitly record pairs with a counter set to 0, and
for the näıve implementation of Frequent it is usually smaller. Nevertheless,
FrequentPairsMiner achieves better precision.

Relative approximation error. The approximation achieved by FrequentPairsMiner
is also considerably better which can be explained with the smaller number of
pair weights decrements.

12
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Fig. 3. Running times for Frequent for kosarak(left) and webdocs(right) for growing
summary size.
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Fig. 4. Precision top-k pairs, k varied from 100 to 20000, for kosarak(left) and web-
docs(right).

5.2 Experiments for A =Space-Saving

Running time. The running time measurements are presented in Figure 7. The
larger difference compared to Frequent seems to be due to the fact that the
summary size for Space-Saving remains constant.

Recall. The number of returned pairs in Space-Saving always equals the size of
the summary, thus results on precision will be redundant from results on recall.
Figure 8 shows the recall for the two considered datasets.

Relative approximation error. Figure 9 presents results for the relative approxi-
mation error. The straight line parallel to the x-axis is from pairs that have not
been reported.

6 Further directions

We presented evidence that meanwhile classic frequent items mining streaming
algorithms can be considerably improved when applied to transactional streams
when the transactions lengths are skewed. A more thorough research is needed
to fully employ the benefits of our approach. In particular, other approaches
for counting exactly frequent pairs in a few long transaction should be possible.
Note that the current approach relies on the observation on real datasets that
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Fig. 5. Recall for Frequent for top-k pairs, k varied from 100 to 20000, for
kosarak(left) and webdocs(right).
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Fig. 6. Average relative error for Frequent for kosarak(left) and webdocs(right).

the overlap in the long transactions in the batch is small. However, for other
datasets this assumption might not be feasible and the intersections approach
will produce poor results. In such a case applying a standard approach like
Apriori to the transactions in the batch might be more suitable.

Another direction is to apply our technique to mining frequent items from
transactional data streams over sliding windows. In the sliding window model,
we are interested in pairs occurring a certain number of times in the last t trans-
actions for a user-defined t. A natural candidate to apply (a modification of)
our approach is the algorithm by Lee and Ting [19]. This algorithm builds upon
Frequent and detects frequent items among the most recently seen t items.

Acknowledgements. I would like to thank my supervisor Rasmus Pagh for
helpful discussions.
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