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Rationality Postulates for Induction
Peter A. Flach†

Abstract. I study the process of inductive hypothesis formation from two perspectives:
finding general rules that explain given specific evidence, and finding general rules that are
confirmed by the evidence. Both forms of hypothesis formation are axiomatised on the
metalevel of consequence relations, which provides us with a set of rationality postulates
for various forms of induction.

1. Introduction

In this paper I develop a rationality theory of inductive reasoning, applying the
methodology of Kraus, Lehmann & Magidor (1990) to views on philosophy of science
developed by Peirce and Hempel. This introductory section sketches the motivation for
this paper, defines the main concepts and notation, and provides an overview.

1.1 Motivation

Consider a reasoning agent R that, upon observing several black crows, conjectures that
all crows are black. Such an agent is said to reason inductively: from specific
observations about members of a class it tentatively draws general conclusions about
the whole class. Clearly, not any general conclusion will do: for instance, R couldn’t
conclude that all crows are white. Thus, we may draw a distinction between rational and
irrational behaviour of R. This paper studies limits of rational behaviour of inductive
reasoning agents.

In the ideal case, rationality simply prescribes what conclusions are allowed from
what premisses, as in the case of formal deductive reasoning, where rationality is
defined by a fixed notion of (deductive) validity. In the general case, however,
rationality draws a distinction between reasoning behaviours that is more complex than
distinguishing between valid and invalid arguments. For instance, inductive rationality
as studied in this paper does not prescribe the number of black crows one must have
observed before adopting the hypothesis ‘all crows are black’, but it does prescribe that
once one adopts this hypothesis, observation of yet another black crow cannot be a
reason to reject it. This establishes a rationality principle of the form ‘if a reasoning
agent accepts this inductive argument, it should also accept that inductive argument’.
Most of the rationality principles we will consider in this paper are of this form. Other
possible forms we will consider are ‘if a reasoning agent accepts this inductive
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argument, it should not accept that argument’ and ‘if a reasoning agent does not accept
this argument, then it should accept that argument’.

Related to the distinction between rationality and validity is the distinction
between the processes of hypothesis formation and hypothesis selection. Hypothesis
formation is the process that determines, given certain evidence, the set of possible
hypotheses, i.e. conjectures that are not ruled out by the evidence. Hypothesis selection
is the process of selecting, among the possible hypotheses, one or more that meet given
criteria. For instance, the reasoning agent may select only those conclusions that are
sufficiently justified by the premisses, typically by assessing the truth of the conclusion
given the truth of the premisses. Such an assessment procedure, which can be said to
generalise the two-valued function of deductive validity to a continuously-valued
function of inductive validity or confirmation, has for instance been developed by
Carnap (1953). However, in this paper I will concentrate on the purely logical process
of hypothesis formation. That is, an inductive hypothesis is not necessarily the
conclusion adopted by the inductive agent on the basis of the evidence, but merely a
possible conclusion.

1.2 Preliminaries

In formalising the logic of inductive hypothesis formation I assume a propositional
language L, built up from a set of proposition symbols and the usual logical
connectives, a set M of propositional models, and a satisfaction relation =  ⊆  M×L that is
well-behaved with respect to the logical connectives (for all practical purposes, M can
be thought of as a set of truth assignments to propositional variables). = will be
assumed compact. As usual, we write =α  if m=α  for all m∈ M. Note that M may be a
proper subset of all possible propositional models, representing the set of models of an
implicit background theory; thus, =α  can be interpreted as ‘the background theory
allows to conclude α’.

An inductive consequence relation |< ⊆  L×L is a set of pairs of formulae; if α  |< β
we say that β is a possible inductive hypothesis given evidence α . Inductive
consequence relations are intended to model the behaviour of inductive agents — at this
stage we do not fix a particular definition of |<, but study rationality postulates limiting
possible definitions. For instance, given background knowledge including

=crows_are_black→chevy_is_black

and the fact that the reasoner accepts the inductive argument

chad_is_black |< crows_are_black

our rationality postulates should prescribe that the hypothesis ‘all crows are black’ can
still be maintained after observation of Chevy being black, by stipulating that the
inductive argument

chad_is_black∧ chevy_is_black |< crows_are_black
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should likewise be accepted by the inductive agent. This observation gives rise to the
following postulate:

(1.1) If α  |< β and =β→γ, then α∧γ  |< β.

This postulate expresses a principle of verification: if hypothesis β is tentatively
concluded on the basis of evidence α , and prediction γ drawn from β is subsequently
observed, then this counts as a verification of β. In this paper I will investigate a range
of such rationality postulates, as well as some of the ways in which they interact.

1.3 Overview of the paper

As intuition constitutes the primary source of justification for such rationality
postulates, we need to proceed with care — after all, intuitions sometimes turn out to be
incompatible, leading to paradoxical situations. One such a paradox was noted by the
philosopher Carl G. Hempel, when he investigated the logic of confirmation (Hempel,
1945). As I have demonstrated elsewhere this particular paradox can be dissolved by
making a clear distinction between the statements ‘this evidence confirms that
hypothesis’ and ‘this evidence is explained by that hypothesis’ (Flach, 1995). In
general, the search for confirmed hypotheses may lead to different conjectures than the
search for explanatory hypotheses, an observation that is backed up by recent
experimental and theoretical work in inductive logic programming (De Raedt &
Bruynooghe, 1993). In this paper I will therefore consider two different forms of
induction, which I have termed explanatory induction (section 2.1) and confirmatory
induction (section 2.2).

In addition to studying single rationality postulates, I will also study some of the
ways in which they interact. Ultimately, this is done by constructing a semantics, and
establishing the equivalence of a set of postulates and the semantics by means of a
representation theorem. In section 3 two such representation theorems will be given,
one for each form of induction. The significance, limitations and prospects of the
approach will be discussed in section 4.

2. Rationality postulates for induction

We start with a number of general principles for induction. The first two postulates
express the principles of verification and falsification, well-known from philosophy of
science:

(I1) If α  |< β and =α∧β→γ , then α∧γ  |< β.

(I2) If α  |< β and =α∧β→γ , then α∧¬γ  |</  β.

(I1) has been considered above in a slightly less general form. The difference with (1.1)
is that predictions may be deduced from a hypothesis together with the evidence on
which the hypothesis is based — one might say that, in general, the ‘epistemic
outcome’ of accepting an inductive argument α |< β is the belief that α∧β  rather than
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just β. This is relevant in cases, to be discussed later, in which hypotheses are not
required to include all the information presented by the evidence. Of course, such a
prediction may also be added as a further hypothesis:

(I3) If α  |< β and =α∧β→γ , then α |< β∧γ .

The postulate of falsification (I2) can be equivalently stated as follows (the proof
requires the postulate of left logical equivalence stated below as (I7)):

(I2′) If =β→¬α , then α |</  β.

Principle (I2′), obvious as it may be, has a few technical consequences. For instance, we
have reflexivity only for consistent formulae. Clearly, in the light of (I2′) a formula is
consistent if it occurs in an arbitrary inductive argument, so we have the following two
weaker versions of reflexivity:

(I4) If α  |< β, then α  |< α.

(I5) If α  |< β, then β |< β.

Given an inductive consequence relation |<, we call a formula α admissible iff α  |< α.
Any admissible formula is consistent by (I2′); in the presence of postulates to be con-
sidered later the converse of this statement is also true. Hence, whenever a postulate re-
quires consistency of a formula this will be expressed by a condition of the form α |< α.

The next two postulates express that inductive validity depends on the logical
contents of premiss and conclusion, rather than on their syntactic formulation:

(I6) If α  |< β and =β↔γ, then α  |< γ.

(I7) If α  |< γ and =α↔β , then β |< γ.

One may argue that, in some cases, the syntactic form of a hypothesis is relevant: for
instance, in inductive logic programming the hypotheses take the form of logic
programs, and clearly an efficient or at least terminating program is desirable over an
inefficient or non-terminating one. However, we deem such considerations to be extra-
logical. Against (I7) one may raise the objection that many concept learning algorithms
perform differently when the examples are re-ordered. However, such behaviour is
peculiar to a particular algorithm: an algorithm that would be order-independent would
not behave irrationally.

Clearly, postulate (I1–7) are too weak to distinguish induction from other forms of
reasoning. In order to obtain stronger sets of postulates we need to consult our intuitions
regarding explanatory and confirmed hypotheses, respectively.

2.1 Rationality postulates for explanatory induction

Throughout this section α |< β is interpreted as ‘β is a possible explanation of α’, which
is loosely taken to mean that α  can be derived from hypothesis β by means of some
explanation mechanism. For instance, in inductive concept learning β would be a
concept definition, and α would represent the classification of an instance according to
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that concept definition. The explanation mechanism is assumed to be at least as
powerful as deduction, an assumption that can be formulated as follows:

(2.1) If =γ→α and γ |< γ, then α |< γ.

As explained above, the second condition in (2.1) prevents the consideration of
inconsistent hypotheses.

In this paper we will consider a stronger postulate, which requires monotonicity of
the explanation mechanism:

(E1) If α  |< β, =γ→β and γ |< γ, then α |< γ.

This postulate states that a possible explanatory hypothesis β can be logically
strengthened as long as it remains admissible (i.e. consistent). By putting β=α in (E1)
we obtain (2.1), if in addition we assume that α  |< α  follows from =γ→α and γ |< γ.
Since =γ→α implies ¬α  |</  γ by (I2′), this assumption is assured by the following
postulate:

(E2) If γ |< γ and ¬α  |</  γ, then α |< α.

This postulate represents a third weakening (besides (I4) and (I5) discussed above) of
reflexivity. The underlying intuition is best explained by considering its contrapositive:
if α  |</  α , i.e. α is too strong with respect to the background theory, then its negation ¬α
is so weak that it is explained by arbitrary admissible γ.

The next postulate expresses a principle well-known from algorithmic concept
learning: if α represents the classification of an instance and β its description, then we
may either induce a concept definition from examples of the form β→α, or we may add
β to the background theory and induce from α  alone. Since in our framework
background knowledge is included implicitly, β is added to the hypothesis instead.

(E3) If α  |< β∧γ , then β→α |< γ.

The converse implication will be derivable in the full postulate system.
The last two postulates for explanatory induction establish a principle of

compositionality, namely α∧β  |< γ iff α  |< γ and β |< γ. The first postulate is simply the
statement of one half of this principle, while the second takes a slightly more general
form:

(E4) If α  |< γ and β |< γ, then α∧β  |< γ.

(E5) If α  |< γ and =α→β , then β |< γ.

Both postulates are of considerable importance for computational induction, since they
allow for an incremental approach. (E4) states that pieces of evidence can be dealt with
in isolation. Another way to say the same thing is that the set of evidence explained by a
given hypothesis is conjunctively closed. By the consistency principle (I2′) this set is
consistent, which yields the following principle:

(2.2) If α  |< β, then ¬α  |</  β.
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It is easy to show that, conversely, (2.2) implies (I2′) in the presence of (2.1) and (I5).
(E5) states a monotonicity property of induction, which can again best be

understood by considering its contrapositive: a hypothesis that is rejected on the basis of
evidence β cannot become feasible again when stronger evidence α  is available. In
other words: the process of rejecting a hypothesis is not defeasible (i.e. based on
assumptions), but based on the evidence only. This is the analogue of the monotonicity
property of deduction (which is obtained by reversing the implication in the second
condition). We may further note that the verification postulate (I1) and the monotonicity
postulate (E5) can be jointly expressed as

(E5′) If α  |< β and =α∧β→γ , then γ |< β.

Again, this formulation stresses the fact that the epistemic outcome of accepting an
inductive argument α  |< β is α∧β .

2.2 Rationality postulates for confirmatory induction

Throughout this section α  |< β is interpreted as ‘β is confirmed by α’, which is loosely
taken to mean that β expresses some regularity that is implicitly present in α . For
instance, α  could be a database containing economical data, and β could be the
regularity ‘investments decrease when interests increase’. Note that this hypothesis is
too weak to count as an explanation of the current of investment rate given the interest
rate — it is merely being confirmed.1

The following principle expresses that deductive entailment is a special case of
confirmation:

(2.3) If =α→γ and α |< α, then α  |< γ.

This principle may be generalised to the following postulate, which states that logical
consequences of confirmed hypotheses are also confirmed:

(C1) If α  |< β and =β→γ, then α |< γ.

This principle of right weakening should be contradistinguished from the right
strengthening postulate (E1) obtained for explanatory induction. Upon noting that
combining (C1) and (E1) leads to a situation in which arbitrary evidence confirms any
hypothesis, Hempel dismissed (E1) — however, we don’t feel compelled to do the
same, since (E1) and (C1) are intended to formalise quite different intuitive notions.
Note that (C1) and (I3) can be jointly expressed as

(C1′) If α  |< β and =α∧β→γ , then α |< γ.

The next postulate represents a confirmatory variant of reflexivity, analogous to
(E2).

(C2) If α  |< α and α |</  ¬β , then β |< β.

1Stricly speaking, it would be better to say that the hypothesis is not disconfirmed by the evidence.
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Taken contrapositively, (C2) states that if some β does not confirm itself, it must be too
strong a statement — hence, its negation is so weak that it is confirmed by arbitrary
admissible α.

The remaining postulates for confirmatory induction we will consider are
considerably stronger. The following postulate states that the conjunction of confirmed
hypotheses is itself confirmed:

(C3) If α  |< β and α |< γ, then α |< β∧γ .

This postulate can be viewed as a completeness assumption with regard to the evidence,
in the sense that α  contains all the possible states of affairs that are relevant for the
domain. For instance, when talking about ravens and their colours such complete
evidence would contain some black ravens, but also a few non-ravens, some of which
are black and some of which are not. Only under such a completeness assumption one
can safely assume that ‘what you are not told looks like what you are told’ (Helft, 1989,
p.149). Hempel considered (C3) a valid principle of confirmation. On the other hand, it
is clear that (C3) does not necessarily follow from our intuitions about confirmation —
indeed, Schlechta (1995) rejects it. Notice that in the presence of (C3) the consistency
principle (I2′) is equivalent with

(2.4) If α  |< β, then α  |</  ¬β .

Notice also that (C3) contradicts an incrementality principle like (E5): weakening
the evidence typically disconfirms some hypotheses. A considerably weaker ‘left
weakening’ principle that is compatible with (C3) is expressed by the following
postulate:

(C4) If α  |< γ and β |< γ, then α∨β  |< γ.

This postulate states that if both α  and β confirm γ, then the knowledge that at least one
of them is true should not disconfirm γ.

The final postulate for confirmatory induction we will consider reinvokes the
principle of verification (I1), but in a much stronger sense. Recall that verification
expresses that if α  confirms β, and γ is a prediction drawn from α  and β, then
subsequent observation that γ is indeed the case does not disconfirm β. The following
postulates extends this to arbitrary γ that are also confirmed by α:

(C5) If α  |< β and α |< γ, then α∧γ  |< β.

In other words: the assumptions necessary to induce β from α  do not contradict the
assumptions needed to obtain γ from α  — thus (C5) expresses another aspect of the
‘completeness’ of the evidence.

3. Representation theorems

In this section I present some initial representation results regarding the postulates
discussed above.
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3.1 Strong explanatory structures

The first result is that postulates (E1–5) are strong enough, together with (I1–7), to
characterise explanatory induction as a variant of reversed deduction. Since one can
also envisage weaker (nonmonotonic) notions of explanation, this form of induction is
called strong explanatory. The corresponding semantic structure is characterised by a
subset of M (the set of models under consideration).

DEFINITION 3.1. A strong explanatory structure is a set W ⊆ M. The
consequence relation it defines is denoted by |<W and is defined by: α  |<W β
iff (i) there is a m0∈ W such that m0 = β, and (ii) for every m∈ W, m = β→α.
A consequence relation is called strong explanatory iff it is defined by a
strong explanatory structure.

LEMMA 3.2 (Soundness). Any strong explanatory consequence relation
satisfies (I1–7, E1–5).
Proof. Let W⊆ U be a strong explanatory structure; we need to demonstrate
that |<W, as defined in Definition 3.1, satisfies (I1–7, E1–5).
(I1–2): if m =  β→α and =α∧β→γ , then m =  β→α∧γ  and m =/   β→α∧¬γ .
(I3): if m = β→α and =α∧β→γ , then m =  β∧γ→α . Furthermore, if m0 = β,
m0 = β→α and =α∧β→γ , then m0 = β∧γ . (I4): If m0 = β and m0 = β→α,
then m0 = α . (I5–7): trivial.
(E1): If γ |<W γ, then some model in W satisfies γ. Furthermore, if m = β→α
and =γ→β, then m =  γ→α. (E2): we have that some model in W satisfies γ,
while not all models in W  satisfy γ→¬α, i.e. there is a model in W
satisfying γ∧α  and hence α. (E3–5): trivial. ≈

In fact, (I3–7) can be derived from (I1–2, E1–5), but we won’t prove that here. Below,
we will also make use of the derived rules (I2′) and (2.1).

In order to prove completeness, we need to build a strong explanatory structure W
from a given consequence relation |< satisfying (I1–7, E1–5), such that α |< β iff α  |<W β.
This structure is defined as follows:

W = {m∈ U | for all α, β such that α |< β: m = β→α}

The following lemma states that every strong explanatory hypothesis is satisfiable in W.

LEMMA 3.3. Let |< be a consequence relation satisfying (I1–7, E1–5), and
let W be defined as above. If α  |< β then there is a model m∈ W such that
m = β.
Proof. Let α  |< β; we will prove that {β} ∪  {δ→γ | γ |< δ} is satisfiable.
Suppose not, then by compactness there is a finite ∆⊆ {δ→γ | γ |< δ} such
that =β→¬∆ . Furthermore, since ϕ |< ψ for any ψ→ϕ∈∆ , we have ψ→ϕ  |<
true for any ψ→ϕ∈∆  by (E3), ∆ |< true by (E4), and ∆ |< β by (I5) and
(E1). But then by (I2′) =/ β→¬∆ , a contradiction. ≈

Furthermore, we have that every inadmissible formula is unsatisfiable in W.
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LEMMA 3.4. Let |< be a non-empty consequence relation satisfying (I1–7,
E1–5), and let W be defined as above. If γ |</  γ then γ is unsatisfiable in W.
Proof. Let α |< β, then true |< true by (E5) and (I4). Furthermore, if γ |</  γ
then ¬γ |< true by (E2), hence m =true→¬γ for every m∈ W. ≈

I will now show that W defines a consequence relation that is included in |<.

LEMMA 3.5. Let |< be a non-empty consequence relation satisfying (I1–7,
E1–5), and let W be defined as above. If α |<W β then α |< β.
Proof. Suppose that α |</  β, we will show that either no model in W satisfies
β, or there exists a model m0∈ W that does not satisfy β→α.
First of all, if β |</  β then β is unsatisfiable in W according to Lemma 3.4. In
the remainder of the proof we will assume that β |< β. Define Γ0 = {¬α } ∪
{δ | δ |< β}; we will first show that Γ0 is satisfiable. Suppose not, then by
compactness there is a finite ∆ ⊆ {δ | δ  |< β } such that =∆ → α, i.e.
=β→(∆→α); by (2.1) ∆→α |< β (recall that β |< β). But by (E4) ∆ |< β; using
(E4) and (E5), we obtain α  |< β. Contradiction, so Γ0 is satisfiable.
Let m0 =  Γ 0; clearly m0 =/  α  and, since β∈Γ 0, m0 =  β . It remains to prove
that m0 is in W; i.e., that for all ϕ , ψ such that ϕ  |< ψ we have m0 = ψ→ϕ.
Let ϕ  |< ψ; if ¬β  |</  ψ, then by (E1) ϕ  |< ψ∧β , and by (E3) ψ→ϕ |< β; thus
ψ→ϕ∈Γ 0 and therefore m0 =  ψ→ϕ. On the other hand, if ¬β  |< ψ then by
(E3) and (E5) β→¬ψ  |< true, by (E1) β→¬ψ  |< β, and by (E4) and (E5)
¬ψ  |< β; thus ¬ψ∈Γ 0 and therefore m0 =/  ψ, hence m0 = ψ→ϕ. ≈

Armed with the previous three lemmas we can prove the completeness of (I1–7, E1–5).

THEOREM 3.6 (Representation theorem for strong explanatory consequence
relations). A consequence relation is strong explanatory iff it satisfies (I1–7,
E1–5).
Proof. The only-if part is Lemma 3.2. For the if part, let |< be an arbitrary
non-empty consequence relation satisfying (I1–7, E1–5), and let

W = {m∈ U | for all α, β such that α |< β: m = β→α}

Suppose α  |< β , then by the construction of W, m  =β→α for all m∈ W.
Furthermore, by Lemma 3.3 there is a model in W satisfying β. We may
conclude that α  |<W β. Conversely, if α |<W β then Lemma 3.5 proves that
α  |< β. We conclude that W defines a consequence relation that is exactly |<.
For an empty consequence relation put W=∅ . ≈

3.2 Preferential confirmatory structures

The second result is the characterisation of (C1–5), which is an adaptation of a result by
Kraus, Lehmann & Magidor (1990). The main idea is to construct, from the evidence, a
set of regular interpretations, which exhibit the same regularities as the evidence, and to
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define a hypothesis to be confirmed if it is true in every regular interpretation. Notice
that such regular interpretations are not necessarily models of the evidence. For
instance, in the ravens example we may interchange the names of ravens and non-
ravens without invalidating the inductive conclusion.

However, in my first investigations I have followed the more traditional approach
of assuming a preference ordering on interpretations, and to define the regular
interpretations as the most preferred models of the evidence. This idea is motivated by
the approaches of Helft (1989) and De Raedt & Bruynooghe (1993), who implement the
completeness assumption regarding the evidence by the Closed World Assumption. As
a result, the characterisation of confirmatory induction stated below as Theorem 3.14 is
a close variant of Kraus et al.’s characterisation of preferential reasoning; readers
familiar with the latter paper may want to skip the present section, which is included for
completeness’ sake. The implications of this correspondence between a form of
induction and nonmonotonic reasoning will be discussed in section 4 below.

DEFINITION 3.7. A preferential confirmatory structure is a triple W =
〈S,l,<〉 , where S is a set of states, l: S→M is a function that labels every state
with a model, and < is a strict partial order on S, called the preference
ordering, that is smooth2. A state s∈ S satisfies a formula α∈ L iff l(s) = α ;
the set of states satisfying α is denoted by [α], and a minimal element of [α]
(wrt. <) will be called a regular state for α . The consequence relation
defined by W is denoted by |<W and is defined by: α  |<W β iff (i) there is a
state s∈ S satisfying α , and (ii) every regular state for α  satisfies β. A
consequence relation is called preferential confirmatory iff it is defined by a
preferential confirmatory structure.

In comparison with the preferential models of (Kraus et al., 1990), the only difference is
that in a confirmatory argument the evidence is required to be satisfiable, in order to
guarantee the validity of (I2). The intermediate semantic level of states is mainly
needed for technical reasons, and can be interpreted as the models the reasoning agent
considers possible in that epistemic state.

LEMMA 3.8 (Soundness). Any preferential confirmatory consequence
relation satisfies (I1–7, C1–5).
Proof. The proof is easy and will only be carried out for (C1–5).
(C1): if all regular states for α  satisfy β and =β→γ, then all regular states
for α  satisfy γ. (C2): suppose [α] is non-empty, and not all regular states for
α  satisfy ¬β ; it follows that some state in S satisfies β. (C3): if all regular
states for α satisfy β and γ, then clearly they satisfy β∧γ .
(C4): note that [α∨β ] = [α] ∪  [β]; thus, if [α] and [β] are non-empty then so
is [α∨β ]. Furthermore, the set of regular states for α∨β  is a subset of the

2I.e. for any S′⊆ S and for any s∈ S′, either s is minimal in S′, or there is a t∈ S′ such that t<s and t is
minimal in S′ . This condition is satisfied if < does not allow infinite descending chains.
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union of the regular states for α  and β, since a state cannot be minimal in
[α∨β ] without being minimal in at least one of [α] and [β].
(C5): we need the fact that < is a smooth partial order. Suppose that [α] is
non-empty, and all regular states for α satisfy β and γ — clearly, [α∧β ] is
non-empty. Now, let s be regular for α∧β , then s∈ [α]; I will prove that s is
regular for α . Suppose not, then there is a t∈ [α] such that t<s and t is
regular for α . Now, every state regular for α satisfies β, hence t∈ [α∧β ]. But
this contradicts the minimality of s in [α∧β ], hence s is regular for α  and
thus satisfies γ. ≈

As a matter of fact, (I1) and (I4–6) can be derived from (I2–3, I7, C1–5). Another
derived rule that will be used below is (2.4).

In order to prove completeness, we need to build a preferential confirmatory
structure W from a given consequence relation |< satisfying (I1–7, C1–5), such that
α  |< β iff α  |<W β. As in the case of explanatory structures, such a confirmatory structure
is built from a specific set of models. These models are selected relative to a given
formula, as follows.

DEFINITION 3.9. Let |< be a conjectural consequence relation. The model
m∈ U is said to be normal for α iff for all β in L such that α  |< β, m = β .

So, a model is normal for a formula if it satisfies every confirmed hypothesis. Thus,
given certain evidence the set of normal models decreases when the set of confirmed
hypotheses increases. Notice that every model in U is normal for an inadmissible
formula, which is therefore not satisfied by some of its normal models. An admissible
formula is satisfied by every normal model, however. Notice also that if α is admissible
and γ is inadmissible, then by (C2) α |< ¬γ, hence no normal model for α  satisfies γ.

The set of models normal for admissible formulas will be used to build a
preferential confirmatory structure. The following lemma states the key result about
normal models.

LEMMA 3.10. Suppose a consequence relation |< satisfies (C1) and (C3),
and let α  be an admissible formula. All normal models for α satisfy β iff
α  |< β.
Proof. The if part follows from Definition 3.9.
For the only-if part, suppose α  |< α  and α  |</  β; I will show that there is a
normal model for α that does not satisfy β. Let Γ0 = {¬β } ∪  {δ | α  |< δ}; it
suffices to show that Γ 0 is satisfiable. Suppose not, then by compactness
there is a finite ∆⊆ {δ | α  |< δ} such that =∆→β, i.e. =α→(∆→β); by (C1)
α  |< ∆→β. But by (C3) α  |< ∆; using (C3) and (C1) we obtain α  |< β, a
contradiction. ≈

Notice from the proof of Lemma 3.10 that normal models exist for any admissible α.
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Given a consequence relation |< satisfying (I1–7, C1–5), the completeness proof is
based on a preferential confirmatory structure W = 〈S,l,<〉 constructed as follows:

(1) S = {〈m,α〉  | α is an admissible formula, and m is a normal model for α};
(2) l(〈m,α〉 ) = m;
(3) 〈m,α〉  < 〈n,β〉 iff α∨β  |< α and m =/  β.

Thus, states are pairs of admissible formulas and normal models. The labelling function
simply maps a state to the model it contains. Condition (3) defines the preference
ordering between states: note that β |< α  is a special case of α∨β  |< α  by means of (C4),
and the fact that α  is admissible. The condition m =/  β is added to make the ordering
irreflexive; note that as a consequence any 〈m,α〉∈ S is minimal in [α].

The main difference between the preferential consequence relations of Kraus et al.
and my preferential confirmatory consequence relations is the way unsatisfiable
formulas are treated. In Kraus et al.’s framework unsatisfiable formulas are
characterised by the fact that they have every formula in L as a plausible consequence,
which means that they don’t have normal models. In my framework, unsatisfiable
formulas confirm no hypotheses, and have all models in U as normal models. In both
cases, the structure W that is used to prove completeness contains only satisfiable
formulas in its states. This means that we can replicate most of Kraus et al.’s results
about the structure W (KLM 5.13 refers to (Kraus et al., 1990, Lemma 5.13)).

PROPOSITION 3.11. (1) (KLM 5.13) The relation < is a strict partial order.
(2) (KLM 5.15) The relation < is smooth: for any s∈ [α], either s is minimal
in [α] or there exists a state t<s minimal in [α].
(3) (KLM 5.11) If α∨β  |< α and m is a normal model for α  that satisfies β,
then m is a normal model for β.
(4) (KLM 5.14) 〈m,α〉  is minimal in [β] iff m = β  and α∨β  |< α.

The first two propositions express that W is a preferential confirmatory structure. The
remaining two are used in the proof of the following lemma.

LEMMA 3.12. Let |< be a consequence relation satisfying (I1–7, C1–5), and
let W be defined as above. If α |< β then α  |<W β.
Proof. Suppose that α  |< β; we will show that (i) there is a state in S
satisfying α, and (ii) every minimal state in [α] satisfies β.
(i) By (I4) α  is admissible; furthermore, by (2.4) α |</  ¬β , so by Lemma 3.10
there exists a model m normal for α . We conclude that 〈m,α〉∈ [α].
(ii) Suppose 〈n,γ〉 is minimal in [α], then γ is an admissible formula, n is a
normal model for γ that satisfies α, and γ∨α  |< γ by Proposition 3.11 (4). By
Proposition 3.11 (3) n is a normal model for α, hence n = β . ≈

The following lemma proves the converse of Lemma 3.12, and completes the proof of
the representation theorem.
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LEMMA 3.13. Let  |< be a consequence relation satisfying (I1–7, C1–5), and
let W be defined as above. If α |<W β then α |< β.
Proof. Suppose α  |<W β , then α  must be admissible (since no state in S
satisfies an inadmissible formula). Furthermore, given any model m normal
for α , 〈m,α〉  is minimal in [α], hence m satisfies β, and the conclusion
follows by Lemma 3.10. ≈

We may now summarise.

THEOREM 3.14 (Representation theorem for preferential confirmatory
consequence relations). A consequence relation is preferential confirmatory
iff it satisfies (I1–7, C1–5).
Proof.  The only-if part is Lemma 3.8. For the if part, let  |< be a
consequence relation satisfying (I1–7, C1–5) and let W be defined as above.
Lemmas 3.12 and 3.13 prove that α  |< β iff α  |<W β, i.e. |< is preferential
confirmatory. ≈

4. Discussion

In the last part of this paper I will discuss the significance of the approach and results
presented above and make a comparison with related work.

Although the proof-theoretic approach of section 2 is nicely balanced by a
semantic analysis in section 3, I think the former — analysing the logical characteristics
of induction on the level of consequence relations — constitutes the main contribution
of the paper. This approach has of course been heavily influenced by work of Gabbay
(1985), Makinson (1989) and Kraus et al. (1990) on nonmonotonic consequence
relations and operations. If anything, my approach demonstrates that their method is in
fact a methodology. In this respect I should also mention Gärdenfors’ work on
rationality postulates for belief revision operators (1988).

The representation theorems have been stated mainly as a starting point for further
research in this area. Theorem 3.6 links strong explanatory induction to reversed
deduction. An equivalent but more interesting perspective is obtained by defining

α  |< β   ⇔   Cn=(α) ⊆  Cn=(β) ⊂  L

where Cn=(α) = {γ | α  = γ} denotes the set of consequence or the explanatory power of
α . In words: given evidence α, β is an explanatory hypothesis of the explanatory power
of β exceeds that of α  (without reaching inconsistency). This view of induction as
explanation-preserving reasoning can be subsequently generalised by considering
weaker (nonmonotonic) explanation mechanisms |~.3

3As Daniel Lehmann observed, any inductive consequeynce relation thus defined will satisfy transitivity
(Lehmann, personal communication). We are currently studying cumulative, preferential and rational
explanation mechanisms (Kraus et al., 1990; Lehmann & Magidor, 1992).
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The preferential semantics for modelling the form of confirmatory induction
considered by Hempel, Helft and De Raedt has of course been borrowed from work in
nonmonotonic reasoning. Readers familiar with that field will have recognised some of
the postulates — for instance, our stronger verification principle (C5) is known as
cautious monotonicity. On one hand, the correspondence is not so surprising: both
forms of reasoning rely on some form of completeness of the premisses, be it ‘what you
don’t know is false’ or ‘what you don’t know resembles what you know’. A pragmatic
difference is that in nonmonotonic reasoning conclusions are usually specific (‘it flies’),
while in induction conclusions are typically general (‘all crows are black’). On the other
hand, induction often proceeds from incomplete evidence. A formalisation of weaker
forms of confirmatory induction requires to relax the completeness assumption
regarding the evidence, and thus to drop (C3) — but (C3) will be sound for any
semantics that selects a subset of the models of the evidence, all of which should satisfy
the hypothesis. A semantics that constructs a set of regular interpretations from the
evidence, some of which do not satisfy the evidence (for instance because names have
been permuted) seems a promising research direction.

Philosophically speaking, the view of induction as inference of explanations owes
much to the ideas of Peirce. In fact, Peirce identified the formation of explanatory
hypotheses with reversed deduction (Hartshorne et al., 1931–58, Vol.1, p.117). The
framework of rationality postulates provides a finer-grained perspective on the matter.
Hempel was the first to analyse the logical relation of confirmation, and even proposed
a number of rationality postulates or adequacy conditions, among which (variants of)
I2′, I6, I7, C1, C3, 2.3 and 2.4 (see Hempel, 1943). He then proceeded to develop a
definition of confirmation, which comes surprisingly close to minimal Herbrand model
semantics. However, Hempel never gave a complete axiomatisation of his definition.

In summary, we have proposed a new framework for thinking about the logic of
induction, a problem that has been bothering philosophers for over twenty centuries, by
bringing together old and recent work in philosophy, logic, and artificial intelligence.
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