
PART III

P R A C T I C E

In the third and last part of this thesis I illustrate the practice
of confirmatory induction in the context of relational
databases. The only chapter in this part, Knowledge discovery
in databases, also illustrates my claim that in confirmatory
induction one needs an additional goal which the inductive
hypothesis are meant to fulfil, since ‘being confirmed’ is not
an end in itself.

CHAPTER 8

K N O W L E D G E D I S C O V E R Y I N D A T A B A S E S

— in which an illustration of confirmatory induction is given,
and the ideas underlying the system INDEX, a system for inductive
data engineering, are discussed —

THIS CHAPTER IS intended to provide a practical illustration of a number of theoretical
concepts developed in the previous chapters. In particular, I will discuss how

regularity-based and consistency-based confirmatory induction can be applied in order to
extract implicit structural knowledge in relational databases. This knowledge is then made
explicit by restructuring the database into a knowledge base. This approach, which I call
inductive data engineering, has been implemented in a prototype system called INDEX. This
application of confirmatory induction does not merely serve to illustrate that confirmatory
induction can be useful: the main point is that inductive hypotheses are sought with a
certain goal in mind, viz. to obtain a knowledge base that is better structured. This
explicit goal enables us to assign a heuristic evaluation to inductive hypotheses, which
results in a confirmatory discovery procedure rather than a proof procedure. My objective
in this chapter is to provide sufficient detail for illustrating these points; however, the
emphasis is on conceptual analysis, rather than on a detailed discussion of the applied
methods and algorithms.

§30. INDUCTIVE DATA ENGINEERING

Let me start by giving a concrete example of inductive data engineering. Consider the
train schedule depicted in Table 8.1. There’s a wealth of implicit information in this
schedule: for instance, all stopping trains leave from platform 4, while intercity trains
leave from platform 5 or 6. Furthermore, intercity trains leave every thirty minutes, while
stopping trains leave every thirty minutes before 9:00, and every hour thereafter. Notice
that, since the significance of these regularities may extend to other schedules, they can be
seen as inductive generalisations. Furthermore, they can be utilised for representing the
same information in a more structured format. For instance, the second regularity can be
used to compress the schedule considerably (Table 8.2).

Table 8.2 contains enough information to reconstruct Table 8.1, which can be
demonstrated as follows. One way to formalise the statement about the regularity of
intercity and stopping trains is by adding a second table, listing for each train the start of a
new ‘interval’ (Table 8.3). The difference between intercity and stopping trains is indicated
by the 9:30 entry for intercity trains, which is not included for stopping trains.

8. K now ledge di scov ery i n databases

132

Time Direction Type Platform

8:07 Utrecht/Amsterdam intercity 5
8:09 Tilburg/Den Haag intercity 6
8:12 Utrecht stopping train 4
8:16 Tilburg stopping train 4
8:37 Utrecht/Amsterdam intercity 5
8:39 Tilburg/Den Haag intercity 6
8:42 Utrecht stopping train 4
8:46 Tilburg stopping train 4
9:07 Utrecht/Amsterdam intercity 5
9:09 Tilburg/Den Haag intercity 6
9:37 Utrecht/Amsterdam intercity 5
9:39 Tilburg/Den Haag intercity 6
9:42 Utrecht stopping train 4
9:46 Tilburg stopping train 4

Table 8.1. A train schedule.

Minutes Direction Type Platform

07 Utrecht/Amsterdam intercity 5
09 Tilburg/Den Haag intercity 6
42 Utrecht stopping train 4
46 Tilburg stopping train 4

Note: Intercity trains leave every 30 minutes.
Stopping trains leave every 30 minutes
before 9:00, and every hour after 9:00.

Table 8.2. A restructured train schedule.

Type Interval

intercity 8:00
intercity 8:30
intercity 9:00
intercity 9:30
stopping train 8:00
stopping train 8:30
stopping train 9:00

Table 8.3. A table expressing the
regularity of trains.

Table 8.1 can be reconstructed by the
following procedure: for every pair of entries in
Table 8.2 and Table 8.3 with corresponding
train types, construct an entry in Table 8.1
with a departure time that can be calculated by
increasing the interval from Table 8.2 with the
number of minutes from Table 8.3. In this
way every intercity entry in Table 8.2 results
in four entries in Table 8.1, and every stopping
train entry results in three entries in Table 8.1.
The reader can easily verify that the resulting
table is indeed identical to the original
schedule.

§30. Induct i v e data engineering

133

This demonstrates that, in certain cases, induced regularities can be used to improve
the organisation of structured information. This raises a few questions:

(i) what regularities can lead to restructuring?
(ii) how are these regularities to be induced?
(iii) which of the possible regularities should be selected for restructuring?

The first question is not easy to answer in general: there appear to be many possibly
regularities, each with its own associated notion of restructuring. For instance, suppose
that we know that a certain relation is transitive, then it can be considerably compressed
— however, there are many ways to do that. In this chapter I will restrict attention mostly
to two, relatively simple regularities known from relational database theory: functional
and multivalued dependencies. These concepts will be explained in detail below; to fix the
reader’s thought, the regularity in Table 8.1 corresponds roughly to a multivalued
dependency from train type to departure interval.

As for the second question, we first have to decide what kind of induction we are
talking about. I will first show that such regularities cannot be inferred by explanatory
induction. Taken separately, statements like ‘intercity trains leave every 30 minutes’ are
very weak: they do not explain a single entry in Table 8.1. Only if this statement is
combined with one of the entries in the schedule, say ‘at 8:09 there’s a train leaving for
Tilburg from platform 6’ is it possible to derive other entries like ‘at 8:39, 9:09 and 9:39
there are also trains leaving for Tilburg from platform 6’. Another way to show that
inference of regularities like the above is not explanatory is by noting that, even if
evidence from different sources each endorse a regularity separately, their combination may
refute it. For instance, if we split Table 8.1 in two, one half containing the intercity
trains leaving at 8:07, 8:09, 9:07 and 9:09, the other half containing the remaining
intercity trains (8:37, 8:39, 9:37, 9:39), then in each of these halves separately the
regularity ‘intercity trains leave (only) every hour’ can be observed, while this regularity
is obviously false when the two halves are joined. In other words, the property of
Additivity is invalid for this form of induction, hence it is not explanatory (see Definition
6.13).

I will show in §32 that such regularities are inferred by confirmatory induction. Both
the regularity-based and the consistency-based semantics can be used, but for multivalued
dependencies the latter is more appropriate in an incremental context. Interestingly, both
semantics coincide for functional dependencies. Before this can be demonstrated a number
of concepts from database theory need to be discussed (§31). The third of the above
questions will be discussed in §33, where I will consider a heuristic measure to assess the
utility of induced regularities.

§31. ATTRIBUTE DEPENDENCIES IN DATABASES

I will start with a brief overview of the relational theory of databases, followed by a
discussion how concepts from this relational theory can be translated to logical concepts.
From the logical view it is a relatively small step to the next section, which discusses
inference of attribute dependencies as confirmatory induction.

8. K now ledge di scov ery i n databases

134

A bit of relational database theory

The notational conventions employed here are close to (Maier, 1983).

DEFINITION 8.1. A relation scheme R is an indexed set of attributes
{A1, …, An}. Each attribute Ai has a domain Di, 1≤i≤n, which is a set of
values. A tuple over R is a mapping t: R → ∪ iDi with t(Ai) ∈ Di, 1≤i≤n;
usually, a tuple t is denoted as a sequence 〈 t(A1), …, t(An)〉 , i.e. with
attributes referenced by their position rather than by their name. If
X={Aj, …, Ak} is a set of attributes and t is a tuple, the sequence
〈 t(Aj), …, t(Ak)〉 will be called the X-value of t84. A relation over R is a
finite set of tuples over R.

In general, attributes are denoted by uppercase letters (possibly subscripted) from the
beginning of the alphabet; sets of attributes are denoted by uppercase letters (possibly
subscripted) from the end of the alphabet; values of (sets of) attributes are denoted by
corresponding lowercase letters. Relations are denoted by lowercase letters (possibly
subscripted) such as n, p, q, r, u; tuples are denoted by t, t1, t2, …. If X and Y are sets of
attributes, their juxtaposition XY means X ∪ Y. We employ the usual notation for
expressions of relational algebra: in particular, πX(r) denotes the projection of the relation
r onto the set of attributes X (i.e. the set of X-values of tuples in r), and σX=x(r) denotes
the selection of those tuples in r whose X-value is x.

A functional dependency from attributes X to attributes Y expresses that the Y-value
of any tuple from a relation satisfying the functional dependency is uniquely determined
by its X-value. In other words, if two tuples in the relation have the same X-value, they
also have the same Y-value.

DEFINITION 8.2. Let R be a relation scheme, and let X and Y be subsets of
attributes from R. A functional dependency (fd for short) is an expression of
the form X→Y. A relation r over R satisfies a functional dependency X→Y
if t1∈ r and t2∈ r and t1(X)=t2(X) imply t1(Y)=t2(Y), and violates it
otherwise.

The following lemma lists the main properties of functional dependencies.

LEMMA 8.3. (1) A relation satisfies a functional dependency X→Y iff it
satisfies X→A for every A∈ Y.
(2) If a relation satisfies a functional dependency X→Y, it also satisfies any
functional dependency Z→Y with Z⊇ X.
(3) If a functional dependency is satisfied by a relation r, it is also satisfied
by any relation r′⊆ r.
Proof. Immediate from Definition 8.2. ≈

84I will usually not distinguish between single attributes and singleton sets of attributes, nor
between single values and singleton sequences of values — e.g., if A is a single attribute, I will
say that t(A) is the A-value of t, rather than ‘〈 t(A)〉 is the {A}-value of t’.

§31. A t t ribut e dependencies i n databases

135

(1) allows us, without loss of generality, to restrict attention to functional dependencies
with single attributes on the right-hand side. (2) demonstrates that some functional
dependencies are stronger than others. Formally, we will say that a dependency D1 is as
strong as another dependency D2, notation D1⇒ D2, if the set of relations that satisfy D1

is a subset of the set of relations that satisfy D2. Clearly, the relation ⇒ is transitive and
reflexive, hence a quasi-order — it will be demonstrated below (Lemma 8.7) that, if
functional dependencies are read as logical statements, this relation is a special case of
logical entailment. (3) follows from the fact that a functional dependency expresses a
connection between each pair of tuples from a relation; it is highlighted because it plays
an important role when fds are induced from tuples, as will be explained in §32.

Multivalued dependencies generalise functional dependencies by stipulating that every
X-value determines a set of possible Y-values. For instance, if a relation describes events
that occur weekly during a given period, this relation satisfies a multivalued dependency
from day of week to date: given the day of week, we can determine the set of dates on
which the event occurs. For instance, if the Computer Science course and the Artificial
Intelligence course are both taught on a Wednesday during the fall semester, and there is a
CS lecture on Wednesday September 7, while there is an AI lecture on Wednesday
December 7, then there is also a CS lecture on the latter date and an AI lecture on
September 7.

DEFINITION 8.4. Let R be a relation scheme, let X and Y be subsets of
attributes from R, and let Z denote R−XY. A multivalued dependency (mvd
for short) is an expression of the form X→→Y. A relation r over R satisfies
a multivalued dependency X→→Y if t1∈ r and t2∈ r and t1(X)=t2(X) imply that
there exists a tuple t3∈ r with t3(X)=t1(X), t3(Y)=t2(Y), and t3(Z)=t1(Z). Note
that by exchanging t1 and t2, there should also a tuple t4∈ r with t4(X)=t2(X),
t4(Y)=t1(Y), and t4(Z)=t2(Z). If t3∉ r or t4∉ r, r violates the mvd.

The following lemma lists the main properties of multivalued dependencies.

LEMMA 8.5. (1) A relation satisfies a multivalued dependency X→→ Y iff it
satisfies X→→ Z with Z=R−XY.
(2) If a relation satisfies a multivalued dependency X→→Y, it also satisfies
any multivalued dependency Z→→Y with Z⊇ X.
(3) If a relation satisfies a functional dependency X→Y, it also satisfies the
multivalued dependency X→→Y.
Proof. Immediate from Definition 8.4. ≈

(1) states that mvds are pairwise equivalent. Furthermore, it indicates that an mvd X→→Y
partitions a relation scheme R into three subsets {X,Y,R−XY}85. (2) demonstrates that,
analogously to fds, multivalued dependencies can be ordered according to their strength; we
will use the symbol ⇒ in both cases. (3) states that functional dependencies are indeed
special cases of multivalued dependencies. Notice that Lemma 8.3 (3) does not extend

85Such a partition is called a dependency basis for X (Maier, 1983).

8. K now ledge di scov ery i n databases

136

multivalued dependencies, since an mvd requires the existence of certain tuples in the
relation. Thus, if r satisfies a certain mvd, some subset of r may not satisfy it.

The following definition introduces some further notation that will prove useful later.

DEFINITION 8.6. Let R be a relation scheme, let r be a set of tuples over R,
let D = X→→Y be a multivalued dependency over R, and let Z=R−XY. The
D-closure of r is defined as

r↑D = {t | t1,t2∈ r and t(X)=t1(X), t(Y)=t2(Y), t(Z)=t1(Z)}

For instance, if R = {A,B,C}, r = {〈a,b1,c1〉 , 〈a,b2,c2〉}, and D = A→→B, then r↑ D =
{〈a,b1,c1〉 , 〈a,b2,c2〉 , 〈a,b2,c1〉 , 〈a,b1,c2〉}. Note that in general r↑D ⊇ r, and that r satisfies
mvd D iff r↑D = r.

Functional and multivalued dependencies are collectively referred to as attribute
dependencies. The attributes found on the left-hand side of an attribute dependency are
called antecedent attributes, those on the right-hand side consequent attributes. I will now
demonstrate that there is a straightforward reformulation of attribute dependencies in terms
of logic.

Reformulation in logical terms

For an overview of the subject of logic and databases, see (Gallaire et al., 1984; Reiter,
1984). The basic idea is to associate with a relation r a predicate r, and to view the
relation as a Herbrand interpretation for r. The statement t∈ r, where t = 〈a1,…,an〉 , is
represented by a ground fact r(a1,…,an) . This allows us to write a functional
dependency X→A as a definite clause86

A1=A2:-r(X,A1,Z1),r(X,A2,Z2)

A relation r satisfies an fd D iff the corresponding set of ground facts, denoted by  r , is a
Herbrand model of the corresponding definite clause, denoted by  D . Since  r is a set of
ground facts, it can also be interpreted as a logic program; since it is definite, it has a
unique truth-minimal model which of course coincides with  r 87. This link with closed-
world reasoning is exploited in §32 below.

Similarly, the multivalued dependency X→→Y corresponds to the definite clause

r(X,Y2,Z1):-r(X,Y1,Z1),r(X,Y2,Z2)

Notice that this clause also represents the mvd X→→Z with R−XY. The relationship
between the relational and logical views is summarised in the following lemma.

86X, Z1, Z2 may actually denote sequences of variables, and the order of the arguments of r
may be different than shown here; this is however not significant.

87We will sometimes freely switch between the interpretation of  r as a Herbrand model, and
its interpretation as a logic program. Wherever this might cause confusion the intended
interpretation is indicated in words. The symbol = is avoided altogether in this context, since
it indicates both satisfaction by a model and logical entailment by a logic program, which
would cause unnecessary confusion.

§31. A t t ribut e dependencies i n databases

137

LEMMA 8.7. Let r be a relation over a relation scheme R, and let D and D′
be attribute dependencies over R.
(1) r satisfies D iff the Herbrand interpretation  r satisfies the clause D .
(2) D⇒ D′ iff the clause  D logically entails the clause  D′ .
Proof. Immediate from the construction of  r and  D . ≈

The logical view allows a closer analysis of the relation ⇒ .

LEMMA 8.8. Let D1 and D2 be two attribute dependencies. D1⇒ D2 iff there
exists a substitution θ unifying variables in the body of  D1 with variables
at the same position in the body of  D2 , such that  D1θ =  D2 .
Proof. For the if part, the existence of such a substitution indicates that
 D1 θ-subsumes88  D2 , therefore  D1 entails  D2 , and the result follows
from Lemma 8.7 (2).
For the only-if part, if D1⇒ D2 then  D1 entails  D2 by Lemma 8.7 (2).
In function-free clausal logic, logical entailment between non-tautological
clauses is equivalent to θ-subsumption, so we obtain:  D1 θ-subsumes
 D2 , i.e. there is a substitution θ such that every literal in  D1θ occurs in
 D2 . But since the clauses  D1 and  D2 have the same number of literals,
this boils down to: there is a substitution θ such that  D1θ =  D2 .
Finally, since (i) the clauses representing attribute dependencies only
contain variables and no constants, (ii) every variable occurring in the head
of  D1 or  D2 also occurs in its body, and (iii) variables at different
positions within a literal represent different attributes89, we may conclude
that every such θ unifies variables in the body of  D1 with variables at the
same position in the body of  D2 . ≈

For instance, let R = {A,B,C,D} and consider the functional dependencies A→D and
AB→D, represented by the clauses

D1=D2:-r(A,B1,C1,D1),r(A,B2,C2,D2) % A->D
D1=D2:-r(A,B, C1,D1),r(A,B, C2,D2) % AB->D

The first clause can be made equal to the second by applying the substitution
{B1→B,B2→B}, so that by Lemma 8.8 we may conclude that A→D ⇒ AB→D, in
agreement with Lemma 8.3 (2). As a second example, consider the multivalued
dependencies A→→D and AC→→D, represented by the clauses

r(A,B1,C1,D2):-r(A,B1,C1,D1),r(A,B2,C2,D2) % A->->D
r(A,B1,C, D2):-r(A,B1,C, D1),r(A,B2,C, D2) % AC->->D

The first clause can be made equal to the second by applying the substitution
{C1→C,C2→C}, so that by Lemma 8.8 we may conclude that A→→D ⇒ AC→→D, in
agreement with Lemma 8.5 (2).

88See §10 for a discussion of θ-subsumption.
89For practical purposes, the variables may be considered typed.

8. K now ledge di scov ery i n databases

138

It may seem that this logical analysis offers little that wasn’t known before. However,
consider the problem of deriving the weaker dependency from the stronger one (this was
called specialisation in chapter 3). From the above examples we may conclude that the
only way to do that is by unifying two distinct variables at the same relative position
within each body literal, corresponding to extending the left-hand side of the dependency.
This result is stated without proof below.

PROPOSITION 8.9. (1) X→A ⇒ Z→A iff Z⊇ X.
(2) X→→Y ⇒ X′→→Y ′ iff X′→→Y′ is equivalent to Z→→Y with Z⊇ X. ≈

(2) is stated this way because according to Lemma 8.5 (1) the mvds X→→Y and
X→→R−XY are equivalent, hence  X→→ Y  =  X→→ R−XY  . For instance, if R =
{A,B,C,D} then A→→D and A→→BC are equivalent, and so are AC→→D and AC→→B.
According to Proposition 8.9 (2) we have A→→D ⇒ AC→→D, but also, for instance,
A→→BC ⇒ AC→→D. This characterisation of ⇒ can be put to work if we want to
induce attribute dependencies from tuples, as will be detailed below.

Using a proof procedure

The logical view also offers something that is beyond the relational view as such, namely
a proof procedure. I will now illustrate how SLD resolution can be used whenever we
want to check whether a given relation satisfies a given dependency. The idea is to use the
set of ground facts  r associated with the relation r as a logic program, and to formulate,
for a given dependency represented by a definite clause H:-B, a query ?-B,not(H)
which, if it succeeds, demonstrates that the dependency is violated by r.

LEMMA 8.10. Let r be a relation and D be an attribute dependency, and let
 D = H:-B. r violates D iff the query ?-B,not(H) has an SLDNF
refutation from the logic program  r .
Proof. For the if part, suppose the query ?-B,not(H) has an SLDNF
refutation from  r , and let θ be the computed answer. By the soundness of
SLDNF resolution90 we have that ∀ ((B∧¬ H)θ) is a logical consequence of
Comp( r). Since the only Herbrand model of Comp( r) is the set of
ground facts  r , it follows that every ground instance of (B∧¬ H)θ is
satisfied by the Herbrand interpretation  r . We conclude that no ground
instance of (H:-B)θ is satisfied by  r , i.e. H:-B is not satisfied by  r ,
hence by Lemma 8.7 (1) r violates D.
For the only-if part, suppose r violates D, hence by Lemma 8.7 (1) H:-B
is not satisfied by the Herbrand interpretation  r . Let θ be a grounding
substitution such that (H:-B)θ is not satisfied by  r , i.e. (B∧¬ H)θ is
satisfied by  r ; since  r is the only model of Comp( r), it follows that
(B∧¬ H)θ is a logical consequence of Comp( r). By the completeness of
SLDNF resolution91 θ is a computed answer for ?-B,not(H). ≈

90See e.g. Lloyd, 1987, p.92, Theorem 15.6.
91Lloyd, op. cit., p.99, Theorem 16.3. This completeness result only holds for hierarchical

§31. A t t ribut e dependencies i n databases

139

Notice that the two literals in B are always grounded by a computed answer θ, since the
program contains only ground facts. Thus, if the query ?-B,not(H) succeeds, every
computed answer represents a pair of contradicting tuples from the relation. Furthermore,
since all the variables in H also occur in B, H is also grounded by a computed answer: in
particular, in the case of an mvd H is instantiated to a tuple missing from the relation.

To illustrate the proof-theoretic view, if R = {A ,B ,C ,D} then the functional
dependency A→D is represented by the clause

D1=D2:-r(A,B1,C1,D1),r(A,B2,C2,D2).

This fd is satisfied by the relation r if and only if the following query fails:

?-r(A,B1,C1,D1),r(A,B2,C2,D2),not(D1=D2).

where = denotes syntactic equality. This query fails for the following relation:

r(a1,b1,c1,d1). % t1
r(a1,b2,c2,d1). % t2
r(a2,b3,c3,d2). % t3
r(a2,b4,c4,d2). % t4

thereby demonstrating that the fd A→D is satisfied. If however we add the tuple

r(a2,b3,c5,d3). % t5

the fd becomes violated. There are four different proofs of this violation by means of SLD
resolution, corresponding to four ordered pairs of contradicting tuples:

?-r(A,B1,C1,D1),r(A,B2,C2,D2),not(D1=D2).
A=a2, B1=b3, C1=c3, D1=d2, B2=b3, C2=c5, D2=d3 % t3,t5
A=a2, B1=b4, C1=c4, D1=d2, B2=b3, C2=c5, D2=d3 % t4,t5
A=a2, B1=b3, C1=c5, D1=d3, B2=b3, C2=c3, D2=d2 % t5,t3
A=a2, B1=b3, C1=c5, D1=d3, B2=b4, C2=c4, D2=d2 % t5,t4

Clearly, two of these four proofs are redundant.
Suppose we wanted to construct a specialised fd that is satisfied by the relation

{t1,t2,t3,t4,t5}. According to Proposition 8.9, the only two non-trivial candidates are
AB→D and AC→D (AD→D is satisfied by any relation). However, the first contradicting
pair of tuples t3,t5 have identical B-values, from which we may conclude that they violate
the fd AB→D as well. What this illustrates is that the SLD proof of violation of a
functional dependency can be fruitfully exploited if we want to construct a specialisation
that is satisfied.

Similarly, the mvd A→→B over the relation scheme R = {A,B,C,D} is represented by
the following clause:

r(A,B2,C1,D1):-r(A,B1,C1,D1),r(A,B2,C2,D2).

programs, which programs without negated literals in the bodies of clauses trivially are.
Furthermore, the requirements of an allowed query (i.e. every variable that occurs in a negated
literal also occurs in an unnegated literal) and a safe computation rule (delaying negated goals
until all their variables are ground) are satisfied in our case.

8. K now ledge di scov ery i n databases

140

This mvd is satisfied if and only if the following query fails:

?-r(A,B1,C1,D1),r(A,B2,C2,D2),not(r(A,B2,C1,D1)).

where the last call succeeds, by negation as failure, if and only if the corresponding tuple
is not in the relation. This query fails for instance when r consists of the following five
tuples:

r(a1,b1,c1,d1). % t1
r(a1,b2,c2,d2). % t2
r(a1,b1,c2,d2). % t3
r(a1,b2,c1,d1). % t4
r(a2,b3,c3,d3). % t5

If we add the following tuple

r(a2,b4,c3,d4). % t6

the query succeeds in two different ways:

?-r(A,B1,C1,D1),r(A,B2,C2,D2),not(r(A,B2,C1,D1)).
A=a2, B1=b3, C1=c3, D1=d3, B2=b4, C2=c3, D2=d4 % t5,t6
A=a2, B1=b4, C1=c3, D1=d4, B2=b3, C2=c3, D2=d3 % t6,t5

indicating that the mvd A→→B is violated. Notice that the proof of violation of an mvd is
based on a pair of contradicting tuples, as in the case of fds. Furthermore, from these
proofs we can reconstruct the two tuples that are missing from the relation, by
substituting the indicated values in r(A,B2,C1,D1)92:

r(a2,b4,c3,d3). % t7
r(a2,b3,c3,d4). % t8

If we add these two tuples the mvd is satisfied again. This clearly illustrates that mvds
behave differently from fds, since a violated fd can never become satisfied again by
throwing in some new tuples!

Suppose however that t7 and/or t8 are indeed outside the relation r — can we specialise
A→→B to an mvd that is satisfied by r? Inspection of the answers to the above query
reveals that, since t5 and t6 agree in their C-value, the specialisation AC→→B is violated
also. Again we see that a proof of the violation of a dependency contains clues as to what
weaker dependency may be satisfied.

§32. INDUCTION OF ATTRIBUTE DEPENDENCIES

After having dealt with the formalities of attribute dependencies, I will now turn to the
question how such dependencies are to be induced. It has already been indicated that
attribute dependencies are not explanatory, since the explanatory power of one or several
dependencies does not comprehend the explanatory power of the database tuples making up
the evidence. It will be demonstrated below that attribute dependencies are induced from

92This is the head of the clause  Α→→B .

§32. Induct ion of at t ribut e dependencies

141

tuples by confirmatory induction. The distinction made in chapter 7 between regularity-
based and consistency-based confirmatory induction also plays a role in the present
context. One way to look at confirmation of a dependency is to view the evidence as a
completely specified relation, and to define a dependency to be confirmed if it is satisfied
by that relation. An alternative to such closed-world reasoning is to view the evidence as a
partially specified relation, and to define a dependency to be confirmed if it is satisfied by
at least one fully specified extension of that partial relation. Interestingly, both semantics,
while behaving differently in the case of multivalued dependencies, coincide for functional
dependencies, as will be detailed below.

In this section α |< β thus stands for ‘α confirms β’, where α and β denote a set of
tuples and a dependency (or set of dependencies), respectively. I will employ both the
relational and the logical notation: e.g. if R = {A,B,C} the following two statements are
equivalent:

{〈a,b1,c〉 , 〈a,b2,c〉} |< A→C

{r(a,b1,c),r(a,b2,c)} |< C1=C2:-r(A,B1,C1),r(A,B2,C2)

One rather important point needs to be considered here: the theory developed in the
previous chapter does not allow, in its present form, restrictions on the syntactic form of
left- and right-hand side of conjectural arguments, while such syntactic restrictions are
obviously playing a role in the present context. Database relations and attribute
dependencies are expressed in distinct sublanguages, so it does not make sense to refer to
confirmatory arguments, say, of the form α |< α . Clearly, this affects a number of rules
considered in the previous chapters, such as any form of Reflexivity, Cautious
Monotonicity (from α |< β and α |< γ conclude α∧β |< γ; invalid because β cannot refer
both to dependencies and tuples), Left Or (from α |< γ and β |< γ conclude α∨β |< γ;
invalid because the evidence cannot be disjunctive), and Right Consistency (from α |< β
conclude α |</ ¬β ; meaningless because ¬β cannot refer to dependencies).

Among the rules that remain meaningful I mention the following:

• Right Weakening:
β ⇒ γ , α |< β

α |< γ

• Right And:
α |< β , α |< γ

α |< β ∧ γ

• Incrementality:
β ⊆ α , α |< γ

β |< γ

Apart from some new notation (β⇒γ for ‘β and γ are sets of dependencies and =β→γ’,
β⊆α for ‘α and β are sets (conjunctions) of tuples and =α→β’) these rules have exactly
the same meaning as before. Furthermore, the notion of a prediction can be linked to the
notion of the closure α↑β of tuples α with respect to mvd β as defined in Definition 8.6:
a tuple γ is predicted, given a conjectural argument α |< β, if it is included in the closure
of α wrt. β: γ∈α↑β 93. It is now possible to reformulate the rule of Verification:

93Notice that the relation ⇒ and the function ↑ were originally defined for single
dependencies; they can be extended to sets of dependencies in a straightforward way.

8. K now ledge di scov ery i n databases

142

• Verification:
γ ∈α↑β , α |< β

α∪ {γ} |< β

I will now take a closer look at regularity-based and consistency-based confirmatory
induction of attribute dependencies.

Regularity-based confirmatory induction

In this subsection we define a dependency to be confirmed by a relation r if r satisfies the
dependency. In terms of logic this amounts to demanding that r confirms D if the
Herbrand interpretation  r is a model of the clause  D ; since the interpretation  r is also
the truth-minimal model of the set of ground facts  r , this establishes a form of closed-
world reasoning. We thus inherit the relevant rules of the system CP (§27), i.e. Right
Weakening and Right And. Right And states that the set of confirmed dependencies is
itself confirmed, and Right Weakening states that this set is determined by its maximal
elements with respect to ⇒ . This yields a very straightforward algorithm for determining
the set of confirmed dependencies.

ALGORITHM 8.11. Closed-world confirmatory induction of attribute dependencies.
Input: a relation scheme R, and a relation r over R;
Output: the set Dep(r) of strongest attribute dependencies over R satisfied by r.
1. initialise DEP to the set of strongest dependencies over R;
2. while some dependency in DEP is violated by r, replace it by its minimal
specialisations;
3. remove from DEP every dependency that is weaker than some other
dependency, and output DEP.

In step 2, specialisations of violated dependencies are constructed according to the method
outlined in Proposition 8.9; as indicated in the previous section the pair of contradicting
tuples indicates which of the specialisations are possibly satisfied by the relations, and
which of them are contradicted by the same pair of tuples. For further details the reader is
referred to (Flach, 1990).

One may note that the algorithm outlined above bears a strong similarity to Shapiro’s
Model Inference System discussed in chapter 3, which also applied a top-down
specialisation approach. Algorithm 8.11 is essentially a special case of De Raedt’s
CLAUDIEN system, which also induces a theory by closed-world confirmatory induction,
but without the strong restrictions on the hypothesis language imposed here.

What should interest us here is that, if we restrict attention to functional dependencies,
the property of Incrementality holds:

• Incrementality:
β ⊆ α , α |< γ

β |< γ

The validity of this rule in the fd case has already been proved in Lemma 8.3 (3). The
point is that this rule is not a derived rule in the system CP, nor is it valid for closed-
world reasoning in general; its validity is a special property of functional dependencies,
which only check whether a certain condition holds for every pair of tuples from the

§32. Induct ion of at t ribut e dependencies

143

relation94. This means that Algorithm 8.11 can be adapted to an incremental setting in
which tuples are processed one by one.

ALGORITHM 8.12. Incremental confirmatory induction of functional
dependencies.
Input: a relation scheme R, a relation r over R, the set Dep(r) of strongest
functional dependencies satisfied by r, and a tuple t over R;
Output: the set Dep(r∪ {t}) of strongest functional dependencies over R
satisfied by r∪ {t}.
1. initialise DEP to Dep(r);
2. while some fd in DEP is violated by r∪ {t}, replace it by its minimal
specialisations;
3. remove from DEP every fd that is weaker than some other fd, and output
DEP.

This algorithm works because, by Incrementality, the set of fds satisfied by r∪ {t} is a
subset of the set of fds satisfied by r; combined with the convexity of this set, as
expressed by Right Weakening, we never need to consider replacements of violated fds that
are not specialisations (step 2).

In contrast, Algorithm 8.12 would be incorrect when applied to multivalued
dependencies. For instance, let r be given by Table 8.4. One can easily check that this
relation satisfies only trivial mvds95 such as A→→BC. However, by adding the tuple t =
〈a1,b1,c2〉 the mvd A→→B becomes satisfied. Algorithm 8.12 would erroneously output
Dep(r∪ {t}) = ∅ , since Dep(r) = ∅ . Below I will develop an incremental induction
algorithm for mvds performing consistency-based confirmatory induction.

A B C

a1 b1 c1

a1 b2 c2

a1 b2 c1

a2 b2 c1

Table 8.4. A database relation satisfying no non-trivial dependencies.

Consistency-based confirmatory induction

One of the ideas considered in §28 was to define a hypothesis to be confirmed if it is not
falsified by the information-minimal partial model of the evidence96. The information-
minimal model of a set of ground facts differs from its truth-minimal model in that it

94In database parlance, functional dependencies are equality-testing, as opposed to
multivalued dependencies, which are tuple-generating (Beeri & Vardi, 1981).

95Trivial dependencies are satisfied by every relation (i.e. their logical formulations are
tautologies).

96The presentation can be simplified because in the present case the evidence is always
definite, and the hypothesis always has a verifying model.

8. K now ledge di scov ery i n databases

144

assigns the truth-value unknown to all other facts, rather than false. In terms of
proof procedures, this amounts to replacing negation as failure in the query
?-B,not(H) by logical negation. It is easily seen that this does not change anything
for functional dependencies, since in that case H is of the form A1=A2, and the variables
A1 and A2 also occur in B ; thus, by the time the call not(H) is evaluated it is
completely instantiated, and the outcome is the same regardless whether not is interpreted
as negation as failure, or as logical negation. We conclude that for functional dependencies
the consistency-based semantics coincides with the closed-world semantics.

For multivalued dependencies the situation is different, since in that case H refers to a
tuple, and the behaviour of the call not(H) depends on the interpretation of not: under
negation as failure not(H) succeeds if the tuple is not known to be in the relation, while
under logical negation it succeeds if the tuple is known to be outside the relation. This
calls for the inclusion of negative information in the induction process.

DEFINITION 8.13. Let R be a relation scheme. A partial relation over R is a
pair 〈p,n〉 of positive tuples p over R and negative tuples n over R, such
that p∩n=∅ . A partial relation 〈p,n〉 satisfies a multivalued dependency
D = X→→Y if t1∈ p and t2∈ p and t1(X)=t2(X) imply that there exists a
tuple t3∈ p with t3(X)=t1(X), t3(Y)=t2(Y), and t3(Z)=t1(Z), and violates it if
t3∈ n. The D-closure of a partial relation 〈p,n〉 is defined as 〈p,n〉↑ D = p↑D.

Logically speaking a partial relation 〈p,n〉 is represented by a set 〈 p,n〉 of positive and
negative ground facts, i.e. a negative tuple t∈ n corresponds to a negated observation ¬ n.
Notice that the operation of D-closure transforms a partial relation into a non-partial one
satisfying D.

If we define α |< β as ‘partial relation α does not violate the set of multivalued
dependencies β’ we have the following properties:

• Right Weakening:
β ⇒ γ , α |< β

α |< γ

• Right And:
α |< β , α |< γ

α |< β ∧ γ

• Verification:
γ ∈α↑β , α |< β

α∪ {γ} |< β

• Falsification:
γ ∈α↑β , α |< β

α∪ {¬γ} |</ β

• Incrementality:
β ⊆ α , α |< γ

β |< γ

As usual (Lemma 6.5) the combination of Verification and Incrementality is equivalent to
Predictive Incrementality:

• Predictive Incrementality:
β ⊆α↑γ , α |< γ

β |< γ

§32. Induct ion of at t ribut e dependencies

145

The validity of Incrementality guarantees that the following incremental algorithm is
correct.

ALGORITHM 8.14. Incremental confirmatory induction of multivalued
dependencies.
Input: a relation scheme R, a partial relation 〈p,n〉 over R, the set
Dep(〈p,n〉) of strongest multivalued dependencies not violated by 〈p,n〉 , and
a tuple t over R;
Output: the set Dep(〈p∪ {t},n〉) of strongest multivalued dependencies over
R not violated by 〈p∪ {t},n〉 .
1. initialise DEP to Dep(〈p,n〉);
2. while some mvd in DEP is violated by 〈p∪ {t},n〉 , replace it by its
minimal specialisations;
3. remove from DEP every mvd that is weaker than some other mvd, and
output DEP.

The reader may have noticed that if n=∅ no mvd is violated by the partial relation 〈p,n〉 ,
so the output of Algorithm 8.14 will be meaningless. One possible approach is to
assume the availability of an oracle, and to replace step 2 in the algorithm by the
following:

2. while some mvd D in DEP is not satisfied by 〈p∪ {t},n〉 do one of the
following:
2a. if D is violated by 〈p∪ {t},n〉 , replace it by its minimal specialisations;
2b. if D is not violated by 〈p∪ {t},n〉 , query the user about those tuples in

the D-closure of p∪ {t} but not in p∪ {t};

This approach has been implemented in Prolog; below follows an example session.
The example is taken from (Maier, 1983, p.123). The relation scheme is {Flight, Day,
Plane}, and a tuple service(F,D,P) means that flight number F flies on day D and
can use plane type P on that day. User input is in bold.

?-mvd_induce.
Relation: service(flight,day,plane).
Dependencies:
 service:[]->->[plane]
 service:[]->->[flight]
 service:[]->->[day]
New tuple: service(106,monday,747).
New tuple: service(106,thursday,1011).
Is service(106,thursday,747) in the relation? yes.
Is service(106,monday,1011) in the relation? yes.

The user specifies the relation scheme, and the system shows the initial set of strongest
mvds. The user types in the first two tuples, which concern flight number 106. The
system checks the mvds ∅→ →Plane and ∅→ →Day by asking for a classification for two

8. K now ledge di scov ery i n databases

146

other tuples. Both of these tuples are classified as positive, so none of the mvds is
violated (note that ∅→ →Flight cannot be violated, because all tuples have the same flight
number).

New tuple: service(204,wednesday,707).
Is service(106,monday,707) in the relation? no.
Specialise []->->[plane]
 service(204,wednesday,707)
 service(106,monday,1011)
 not service(106,monday,707)
Is service(204,monday,1011) in the relation? no.
Specialise []->->[flight]
 service(204,wednesday,707)
 service(106,monday,1011)
 not service(204,monday,1011)
Is service(106,wednesday,1011) in the relation? no.
Specialise []->->[day]
 service(204,wednesday,707)
 service(106,monday,1011)
 not service(106,wednesday,1011)

The next positive tuple introduces new values for all three attributes. The system tests
each of the three initial mvds by posing appropriate queries to the user. None of the three
tuples thus constructed is in the relation, so each of the initial mvds is violated and
replaced by specialisations, constructed by adding one antecedent attribute, according to
Proposition 8.9 (2). This would result in 6 non-trivial specialisations, but note that these
are pairwise equivalent: for instance, Day→→Flight is a specialisation of ∅→ →Flight, but
it is equivalent to Day→→ Plane, which is a specialisation of ∅ → →Plane. These
specialisations are checked in turn: each of them is satisfied by the set of positive tuples.

New tuple: service(204,wednesday,727).
New tuple: stop.
Dependencies:
 service:[day]->->[flight]
 service:[flight]->->[day]
 service:[plane]->->[day]
Yes

Adding a sixth tuple does not change the set of mvds; as the system doesn’t pose further
queries, we may conclude that the closure of the partial relation relative to this set of
mvds is equal to the positive tuples, i.e. every dependency is satisfied by the relation
consisting of the positive tuples (and not just not violated by the partial relation
consisting of positive and negative tuples). Consequently, this set of dependencies is the
same as would be found by the non-incremental closed-world approach on the basis of the
six positive tuples (Algorithm 8.11).

It should be noted that this querying approach can quickly become impracticable when
the number of attributes is large, since the number of possible dependencies, and thus the

§32. Induct ion of at t ribut e dependencies

147

number of queries, is exponential in the number of attributes. In such a case the non-
incremental approach is preferred. A second remark is that the non-incremental approach
tests every dependency against the complete relation, which is costly if the number of
tuples is large (the SLDNF method for testing satisfaction of an attribute dependency, as
outlined by Lemma 8.10, takes O(n2) steps in the fd case, where n is the number of
tuples, and O(n3) steps in the mvd case; there exist slightly more efficient algorithms).
An alternative approach is first to construct the set of violated dependencies by inspecting
the relation once, and to construct the strongest satisfied dependencies from the set of
violated dependencies without reference to the relation; for the fd case, several algorithms
based on this idea have been developed (Kantola et al., 1992; Mannila & Räihä, 1992;
Savnik & Flach, 1993).

§33. A CONFIRMATORY DISCOVERY PROCEDURE

The methods for constructing a set of strongest attribute dependencies confirmed by a
given set of tuples as outlined above embody (confirmatory) proof procedures, in the sense
that they are able to derive any confirmed dependency97. There is no indication as to which
of these dependencies is actually useful in the domain under consideration. The addition of
a heuristic utility measure to a proof procedure results in a discovery procedure (see §18).
In this section I will discuss such a discovery procedure for attribute dependencies, based
on a heuristic evaluation function estimating the utility of the dependency for
restructuring the knowledge base. This confirmatory discovery procedure has been
implemented in Prolog, and given the name INDEX.

It should be noted that, although it has hitherto not been discussed, the subject of
evaluating confirmed hypotheses is an important and largely unexplored subject. Unlike
explanatory reasoning, where the main goal is to find a hypothesis that best accounts for
the facts, confirmatory reasoning does not carry with it a goal that the hypothesis is to
fulfil. Indeed, if ‘being confirmed’ would be the goal to be optimised, then confirmatory
reasoning would be reduced to deductive reasoning98. Neither Helft nor De Raedt address
this issue: they simply generate the set of most general formulas that are confirmed,
according to their definition of confirmation. However, this set can become rather large if
the language is complex99.

The basic idea underlying this section is that a confirmed hypothesis indicates a certain
regularity implicit in the evidence, which can be exploited to make the evidence less
redundant and more structured. The connection between inducing regularities and
restructuring is especially apparent in the case of attribute dependencies, which give rise to
so-called decompositions of the given relation into smaller and less redundant relations.
The original relation can be composed out of these new relations by means of a
composition rule, representing a more meaningful definition of the original relation in
terms of the new ones. Such a composite relation is called an intensional relation, to

97That is, in combination with Right Weakening.
98This was noticed by Popper, as discussed in §7.
99The complexity of a first-order language is mainly determined by the number and the arity

of the predicates.

8. K now ledge di scov ery i n databases

148

distinguish it from an extensional relation defined by a set of tuples. Logically speaking,
an intensional relation is defined by a set of clauses called a predicate definition. A
knowledge base, also called a deductive database (Minker, 1988), is a set of extensional
and intensional relations, or equivalently, sets of ground facts and predicate definitions.

The goal of attribute dependencies: decompositions

Fds and mvds both describe the same phenomenon: that the consequent attribute(s) can be
removed from the relation, and stored in a separate relation containing only the attributes
in the dependency. The only difference is, that in the case of fds the antecedent attributes
form a key in the second relation. For instance, the following relation satisfies the mvd
A→→B:

r(a1,b1,c1,d1).
r(a1,b2,c2,d2).
r(a1,b1,c2,d2).
r(a1,b2,c1,d1).
r(a2,b3,c3,d3).

The way B depends on A can be described separately, resulting in two new relations:

r1(a1,c1,d1). r2(a1,b1).
r1(a1,c2,d2). r2(a1,b2).
r1(a1,c2,d2). r2(a2,b3).
r1(a1,c1,d1).
r1(a2,c3,d3).

The original relation can be reconstructed from r1 and r2 by means of the following clause:

r(A,B,C,D):-r1(A,C,D),r2(A,B).

That is, r is now an intensional relation, and this clause serves as its predicate definition.
In database terminology, r is the join of r1 and r2 over the attribute A.

DEFINITION 8.15. Let R be a relation scheme, let r be a relation over R, let
D be an attribute dependency over R with antecedent attributes X and
consequent attributes Y , and let Z denote R −X Y . The ver t ica l
decomposition of r imposed by D consists of the two projections πXY(r)
and πXZ(r).

This decomposition is lossless whenever r satisfies D, i.e. r can be reconstructed by
performing a join of πXY(r) and πXZ(r) over the attributes X. The join operation is called
the composition function associated with the decomposition. It should be noted that both
the vertical decomposition and the join operation are uniquely determined by the
dependency.

The notion of a decomposition can be generalised: for instance, a partition of a relation
in different subrelations can be called a horizontal decomposition100. As an example, we

100This terminology is in accordance with (Paredaens et al., 1989), and corresponds to the
direction of an imaginary line separating parts of the original relation. In previous

§33. A conf i rm atory di scov ery procedure

149

might partition the train schedule of Table 8.1 into two schedules, one for intercity trains
and one for stopping trains. Note that the resulting schedules both satisfy the functional
dependency ∅→ Type (i.e. the value of the attribute Type is constant in each of them).
Clearly, the original relation did not satisfy this fd, so we might say that the horizontal
decomposition serves the goal of creating subrelations that are guaranteed to satisfy the
dependency — like in the vertical case, we will say that this horizontal decomposition is
imposed by the dependency. In general, however, if a relation does not satisfy a
dependency there are many different horizontal decompositions such that the subrelations
satisfy the dependency.

DEFINITION 8.16. Let R be a relation scheme, let r be a relation over R,
and let D be an attribute dependency over R. A horizontal decomposition of
r imposed by D is a partition {r1,…,rn} of r into subrelations r1,…,rn each
satisfying D. Such a decomposition is minimal if none of its subrelations
can be put together without violating D.101

The composition function associated with a horizontal decomposition operates by set-
union of the blocks in the partition.

The algorithm for computing minimal horizontal decompositions imposed by a
violated dependency is best understood by considering a few examples. Consider the train
schedule in Table 8.5, in which every stopping train leaves from platform 4, while all
intercity trains for Utrecht, except one, leave from platform 5, and all intercity trains for
Tilburg leave from platform 6. The first step is to partition the relation into
subrelations with equal values for the antecedent attributes102, indicated by the double
lines in Table 8.6; this partition is called the antecedent partition, and the sets of tuples
with equal antecedent values are referred to as antecedent blocks. In the second step of
the algorithm a further division is made within each antecedent block between tuples with
different values for the consequent attribute, indicated by the single line in Table 8.6 (only
in the first antecedent block). Clearly, this second division into non-contradicting blocks
has separated all the pairs of tuples contradicting the fd, so this second partition results in
a (non-minimal) horizontal decomposition induced by Direction,Type→Platform. The
third step of the algorithm consists in putting together non-contradicting blocks from
different antecedent blocks. One obvious way to do this is to keep the 8:57 train separate,
and to combine all the other blocks. It should be noted, however, that this is not the only

publications (Flach, 1990; 1993) I employed the orthogonal terminology, corresponding to
the direction in which parts of the original relation are pulled apart.

101Paredaens et al. use a different definition of horizontal decomposition (1989, pp.132–
134): the relation is separated into two parts, one part satisfying the dependency, one part
violating it. The first part is not the largest subrelation satisfying the dependency, since the
tuples causing violation are kept together in the second part. While their construction has the
distinct advantage that it defines a unique horizontal decomposition in the case of fds (the only
case they consider), it does not really capture the idea of an exception: if 100 intercity trains in
the direction Utrecht leave from platform 5, while one doesn’t, their second relation will
contain 101 tuples.

102In this example I assume that the value of the Direction attribute is the first station
mentioned in the schedule.

8. K now ledge di scov ery i n databases

150

H M Direction Type Platform

8 07 Utrecht/Amsterdam intercity 5
8 09 Tilburg/Den Haag intercity 6
8 12 Utrecht stopping train 4
8 16 Tilburg stopping train 4
8 5 7 Utrecht/Zwolle intercity 6
9 07 Utrecht/Amsterdam intercity 5
9 09 Tilburg/Den Haag intercity 6
9 12 Utrecht stopping train 4
9 16 Tilburg stopping train 4
10 07 Utrecht/Amsterdam intercity 5
10 09 Tilburg/Den Haag intercity 6
10 12 Utrecht stopping train 4
10 16 Tilburg stopping train 4

Table 8.5. A train schedule with an irregular train.

H M Direction Type Platform

8 07 Utrecht/Amsterdam intercity 5
9 07 Utrecht/Amsterdam intercity 5
10 07 Utrecht/Amsterdam intercity 5
8 5 7 Utrecht/Zwolle intercity 6

8 12 Utrecht stopping train 4
9 12 Utrecht stopping train 4
10 12 Utrecht stopping train 4

8 09 Tilburg/Den Haag intercity 6
9 09 Tilburg/Den Haag intercity 6
10 09 Tilburg/Den Haag intercity 6

8 16 Tilburg stopping train 4
9 16 Tilburg stopping train 4
10 16 Tilburg stopping train 4

Table 8.6. A horizontal decomposition of the schedule in Table 8.5, imposed by the
functional dependency Direction,Type→Platform.

minimal decomposition: for instance, another minimal horizontal decomposition is
obtained by combining the trains leaving from platform 4 and 5 on the one hand, and the
trains leaving from platform 6 on the other. Step 3 of the algorithm is thus non-
deterministic; I will shortly describe a satisfaction measure that can be used to select an
appropriate minimal horizontal decomposition.

With multivalued dependencies not only the third step of the algorithm is non-
deterministic, but also the second. Consider again the train schedule in Table 8.5: all
trains leave every hour except the 8:57 intercity train to Zwolle. If this train is taken out

§33. A conf i rm atory di scov ery procedure

151

of the schedule the multivalued dependency ∅→ →Hour is satisfied; thus, the 8:57 train
can be seen as an exception to this dependency, and separating it from the other trains
represents a minimal horizontal decomposition imposed by the mvd ∅ → →Hour.
However, another minimal horizontal decomposition imposed by ∅→ →Hour consists of
the eight o’clock trains on the one hand, and the nine and ten o’clock trains on the other
hand. This indeterminacy becomes apparent in the second step of the algorithm (the first
step results in a trivial partition, since there are no antecedent attributes).

ALGORITHM 8.17. Construction of a minimal horizontal decomposition103.
Input: a relation scheme R, a relation r over R, and a dependency D over R
with antecedent attributes X;
Output: a minimal horizontal decomposition induced by D.
1. partition r into the set of subrelations {a1,…,an} such that the tuples in
ai have the same X-value;
2. partition each ai into a set of subrelations {ai1,…,aimi} as follows:

2a. find a pair of tuples in ai contradicting D;
2b. remove one of those tuples from ai and go to 2a;
2c. if ai does not violate D, repeat step 2. for the removed tuples;

3. combine blocks aij for different i into a minimal decomposition.

In the INDEX system the indeterminacy in step 3 of this algorithm is handled with help of
an oracle, while the indeterminacy in step 2 (only for mvds) is handled heuristically.

Evaluating dependencies and decompositions

The basic idea is to measure the minimum number of tuples that must be removed from
the relation in order for a dependency to be satisfied; such tuples are called exceptions. The
satisfaction degree of a dependency is then given by

Sat = 1 – weighted fraction of exceptions

The number of exceptions is determined as follows. Suppose for ease of notation that each
partition {ai1,…,aimi} constructed in step 2 is ordered in decreasing size, then each biggest
subrelation we can construct has the same number of tuples as a11∪ … ∪ an1; let this
number be denoted by Nn. The number of exceptions is then NR–Nn. If mi≤2 for 1≤i≤n,
then all these exceptions can be collected in one subrelation; if some mi is larger than 2
the exceptions need to be distributed over different subrelations. For instance, if we add a
9:27 train to Utrecht/Zwolle that is leaving from platform 6 to Table 8.5, then it can be
combined with the 8:57 train without violating the fd Direction,Type→Platform; if
however this added train is leaving from platform 4 it should be stored in a separate
relation. In general, if m is the maximum of {mi | 1≤i≤n}, then the number of exception
relations is m–1 (note that if m=1 the dependency is satisfied). To indicate that ‘similar’
exceptions are preferred over ‘non-similar’ exceptions, the fraction of exceptions is

103This algorithm assumes that all tuples in the relation r are completely defined, i.e. there
are no null-values. When null-values are present it may be possible, depending on the interpre-
tation of the null-value, to instantiate some of them such that the dependency becomes satis-
fied. For an overview of null-values and their interpretation see (De Troyer, 1993, pp.18–22).

8. K now ledge di scov ery i n databases

152

% train(Hour,Minutes,Direction,Type,Platform)
train(8,07,utrecht,intercity,5).
train(8,09,tilburg,intercity,6).
train(8,12,utrecht,stopping_train,4).
train(8,16,tilburg,stopping_train,4).
train(8,37,utrecht,intercity,5).
train(8,39,tilburg,intercity,6).
train(8,42,utrecht,stopping_train,4).
train(8,46,tilburg,stopping_train,4).
train(8,57,utrecht,intercity,6).
train(9,07,utrecht,intercity,5).
train(9,09,tilburg,intercity,6).
train(9,37,utrecht,intercity,5).
train(9,39,tilburg,intercity,6).
train(9,42,utrecht,stopping_train,4).
train(9,46,tilburg,stopping_train,4).

Table 8.7. An extensionally specified train schedule.

weighted with the number of exception relations. This yields the following formula:

Sat = 1 – (m–1) *
NR – Nn

NR

As an illustration, for the fd Direction,Type→Platform we have Sat=12/13=0.92 in Table
8.5; if we add a 9:27 train to Utrecht/Zwolle leaving from platform 6 we get
Sat=12/14=0.86, but if this train is leaving from platform 4 we get Sat=10/14=0.71.

A second heuristic employed in the INDEX system measures the average size of blocks
in the antecedent partition, to prevent the generation of dependencies that are very weak
(i.e. have many antecedent attributes).

The INDEX system

The main algorithm implemented in the INDEX system can now be described as follows.

ALGORITHM 8.18. The INDEX algorithm.
Input: an extensional relation r;
Output: an intensional definition of r in terms of a number of subrelations.
1. determine the strongest attribute dependencies that are (almost) satisfied
by a given relation r, and select a dependency D;
2. construct a minimal horizontal decomposition {r1,…,rn} induced by D;
3. construct the vertical decomposition induced by D for each of r1,…,rn.

Step 1 is implemented by performing a top-down search for dependencies in the spirit of

§33. A conf i rm atory di scov ery procedure

153

train(H,M,D,T,P):-
hourlytrain(H,M,D,T,P).

train(H,M,D,T,P):-
irregtrain(H,M,D,T,P)

hourlytrain(H,M,D,T,P):-
hour(H),
hourlytrain1(M,D,T,P).

hourlytrain1(07,utrecht,intercity,5). hour(8).
hourlytrain1(09,tilburg,intercity,6). hour(9).
hourlytrain1(37,utrecht,intercity,5).
hourlytrain1(39,tilburg,intercity,6).
hourlytrain1(42,utrecht,stopping_train,4).
hourlytrain1(46,tilburg,stopping_train,4).

irregtrain(8,12,utrecht,stopping_train,4).
irregtrain(8,16,tilburg,stopping_train,4).
irregtrain(8,57,utrecht,intercity,6).

Table 8.8. The same train schedule as in Table 8.7, represented as a knowledge
base with explicit indication of hourly trains.

the algorithms discussed earlier; the user can select between a non-incremental approach as
in Algorithm 8.11, or an incremental approach in which queries are asked (Algorithm
8.14). The difference with these algorithms is that in the INDEX system search also stops at
dependencies that are almost satisfied, with a user-definable threshold for the satisfaction
measure Sat (typically ≥0.75). The user can also choose the consequent attributes in
which she is interested. INDEX presents the dependencies it found to the user, who should
make the final selection.

Step 2, construction of a minimal horizontal decomposition, has been discussed above
(Algorithm 8.17). A certain amount of user interaction is required here also, in order to
put the non-conflicting blocks from different antecedent blocks together in a meaningful
way. After completion of this step, the user can indicate for each subrelation whether she
wants the imposed vertical decomposition to be constructed, which is typically the case
for the normal tuples but not for the exceptions. Note that the construction of such
vertical decompositions is deterministic and straightforward (see Definition 8.15).

For a complete and annotated session with the INDEX system the reader is referred to the
appendix; I will confine myself here to presenting the results. The input to the system is
given in Table 8.7; this train schedule is the same as the one at the beginning of the
chapter (Table 8.1), with an extra irregular train at 8:57. The selected dependency is
∅→ →Hour, which has 3 exceptions (Sat=12/15=0.8). After horizontal and vertical
decomposition the resulting restructured knowledge base is as in Table 8.8. The first two
clauses indicate that the original train relation is the union of the new relations
hourlytrain and irregtrain; the third clause expresses that hourlytrain has

8. K now ledge di scov ery i n databases

154

been vertically decomposed104 into hourlytrain1 and hour (the names of the new
relations have of course been supplied by the user).

§34. SUMMARY AND CONCLUSIONS

Unlike explanatory induction, which has the explicit aim of inferring explanations of
observations, confirmatory induction does not have a predefined goal. In this chapter I
have explored the idea of using confirmatory hypotheses to restructure a given database
relation. The resulting knowledge base explicates the implicit structure indicated by
attribute dependencies. This approach has been implemented in a prototype system called
INDEX, and can be classified under the heading knowledge discovery in databases, a rapidly
growing research field (Piatetsky-Shapiro & Frawley, 1991).

Work on this subject has only just started, and much remains to be done. Attention
needs to be devoted, in particular, to the development of better heuristics; to a model for
evaluating the performance of systems such as INDEX; to decrease the amount of user
interaction by making use of domain knowledge; and to study other classes of integrity
constraints that can give rise to restructuring of extensional information. As for the last
point, a possible direction is to study properties like transitivity of binary relations: if we
know that an extensionally specified relation is transitive, it can be compressed into a
smaller relation of which the original relation is the transitive closure. Like a horizontal
decomposition, such a ‘transitive decomposition’105 can be achieved in many ways — if,
in addition, we would know that the relation is irreflexive, the minimal transitive
decomposition is however unique106. One can envision a catalogue of such integrity
constraints, with associated decomposition operations and confirmatory induction
strategies.

A related point is that such decomposition approaches may provide the key to a better
understanding of the relation between confirmatory and explanatory induction. Consider
again the knowledge base in Table 8.8, which consists of a few extensionally specified
subrelations B, and a few intensional definitions H by means of which the original
extensional relation E can be derived: B∧ H = E. Another way to view this relation
between B, H and E is by noting that H forms an explanation of E given B. In other
words, an explanatory induction system should be able to induce H from E given
background knowledge B. This observation hints at a certain relationship between
explanatory and confirmatory induction: investigating this relationship is, in my opinion,
a major research topic in the logical theory of inductive reasoning.

* * * * * * * *

104That is, this clause expresses that hourlytrain is the join of hourlytrain1 and hour
over the empty set of attributes — i.e. the cartesian product.

105Here I use the term ‘decomposition’ informally as the inverse of an integrity constraint,
i.e. ‘transitive decomposition’ is a restructuring operation imposed by the integrity constraint
of transitivity.

106In this respect one can think of the ancestor relation, which is transitive and irreflexive,
the minimal transitive decomposition of which is the parent relation. For (strict) partial orders
this relation corresponds to the set of vertices in the Hasse diagram.

