CHAPTER 7

RULE SYSTEMS FOR
CONJECTURAL REASONING

— in which various forms of conjectural reasoning will be
axiomatised and semantically characterised —

I N THIS CHAPTER | will develop axiomatic and semantic accounts of various forms of
conjectural reasoning. The main purpose of the resulting logical systemsis to provide
a descriptive taxonomy of conjectural reasoning. This taxonomy will contain two main
families, corresponding to the two forms of conjectural reasoning considered in thisthesis:
explanatory and confirmatory reasoning. Within the family of confirmatory reasoning a
further distinction is made between incremental and non-incremental forms, the former
based on the semantic notion of regular models, the latter based on the notion of
consistency. For each of these three forms of conjectural reasoning a characterisation is
given in the form of a semantics accompanied by a sound and complete rule system. It
should be noted that the representation results are obtained for a propositional language L.

§26. EXPLANATORY REASONING

This section provides a formalisation of the idea that explanatory reasoning preserves
explanatory power. As defined in §19, given some explanation mechanism -, the
explanatory power of aformulaa is defined asits closure Cni.(a) ={yla vy} Using
this definition, we may require of an explanatory argument a K 3 that Cni.(a) O Cni.(B),
i.e. for every y, if a |~y then B - y. If |- satisfies the rules of the system M from the
KLM-framework thisis equivalent with B + o (Lemma 5.2).

In this section | will mostly restrict attention to explanation mechanisms that satisfy
the rules of M. The resulting form of conjectural reasoning is referred to as strong
explanatory reasoning; the adjective ‘strong’ will be often omitted if no confusion can
arise. Weaker explanation mechanismswill be briefly considered at the end of the section.
Strong explanatory reasoning is characterised in two steps. | will first define a system,
M rev, Which embodies a reversed version of the KLM system M. However, Mg, does
not satisfy Consistency, and is therefore, strictly speaking, not a system for explanatory
reasoning. Using rules discussed in the previous chapter, a more restrictive version of
Mrev, called EM, is defined and characterised.
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Rever se deductive consequence relations

This subsection presents a reversed version of the KLM syq
as to facilitate as much as possible the development ¢ - JBbng explanatory
reasoning in the next subsection. Since the latter is self der may want to
skip the present subsection.

Given aset of models representing the implicit bac
consequence relation consists of those arguments of w
same explanatory power as the premissesin each of t
power of a formula a in a model m is the set {
following definition.

DEFINITION 7.1. A reverse deductive str
consequence relation it defines is denoted by Ky
iff for every mOW and for every yOL: if m
conseguence relation is called reverse deductive
deductive structure.

guantifying
over y we obtain the equivalent condition o Ky B iff for every MEW: m @B - a. This
latter condition will be used in the proof of ther tation theorem; M8wever, as a
definition the above formulation is preferred, because] presses the idea of a preservation
semantics more clearly.

The following system provides an axiomatisati
relations; a formal proof of this statement follows t
the system.

f reverse deductive consequence

DEFINITION 7.2. The system M ey CON
schema and inference rules:

« Reflexivity:

e Predictive Incrementality:

o Additivity:

* Right Strengthening:

a Ky

e Conditionalisation: a FBl.
B-afky

M ey can be readily obtained from the KLM system M (with some minor modifications)

by applying the rewriterulea + B O B K a. The first four rules have been discussed in

the previous chapter; the intuitions behind Conditionalisation will be discussed in the next

subsection.
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§26. Explanatory reasoning

LEMMA 7.3. Every conseguence relation satisfying the rules of Mgy is
incremental, convex, digunctively closed, and conjunctively closed.

Proof. Predictive Incrementality implies Incrementality by Lemma 6.5.

By Lemma 6.9, Right Interval follows from Admissible Converse
Entailment (which is an instance of Predictive Incrementality) and Left and
Right Reflexivity (hence from Reflexivity).

In order to derive Right Or we will need the following rule:

a KB

—|B F =Q
Contraposition can be derived as follows. Suppose a K B, then by
Conditionalisation B —~ o Kt r ue, by Incrementaity -a - - Ktrue,
and by Right Strengthening -a - - K -a. Furthermore, since by
Reflexivity -a K -a, we conclude by Additivity and Incrementality.

Now, to derive Right Or, suppose o K B and a K y, then by
Contraposition = K ~a and -y K -~a, by Additivity -y K -a, and
we conclude by Contraposition.

Right Strengthening.

e Contraposition:

e fact that reverse deductive consequence relations are unctively closed may seem
iSi iS.i uence of the fact that an st j

junctively closed (they continue to be disjunctively
ev does not satisfy Consistency, observe that for any u
- -0, but also o K o by Reflexivity.
In order to prove completeness of Mgy With respect
structures we will need the following rule:

, however). To see that
isfiable formula o we have

e Converse Entailment:

To see that Converse Entailment is a JBrived rule of Mgy, put a=yin Inc

reverse deductive structures char

yrorta given
it defines sati
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K be an arbitrary consequence relatiol
sider the following reverse deductive st

it o K B:m
a Ky B. The onl

e th

y-if part fg
e will sho

® K, then by Right Strengthening ¢ K
P K B; thus Y - ¢ o and therefore my

As indicated above, reverse deductive consequence relations are not consistent, since
unsatisfiable formulas do count as explanations. Overcoming this defect leads us to the
notion of strong explanatory reasoning.

Explanatory consequence relations

In this subsection | will define a system EM (explanatory reasoning wrt. a monotonic
explanation mechanism) that satisfies Cojjistency but contains weaker versions of
Reflexivity and Right JBrengthening.JiFhq@8emantic characterisation of explanatory
reasoning demonstratesfiiet EM is strid e restrictive than Mgy

I will start again wi semantic de of explanatory reasoning. Like a reverse
deductive structure, an { an explanatory
structure defines a diffe St the conclusion of
every argument have at Ory power as the premisses, but in addition
the conclusion should bg

St the same €]

. (Ictu =t WOU. The
d by K\ and is defined by: a Ky, B
B, and (ii) for every mOW and for
y. A consequence relation is called
an explanatory structure.

DEFINITION 7.
consequence rel
iff (i) thereis a
every yOL: if m
strong explanator®

728y a dlight abuse of notation, A denotes both a finite set of formulas, and their
conjunction.
31f =0, we have true k B by Reflexivity and Convergence.
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often omitted if no confusion ¢
elow condition (ii) will be r

As said before, the adjective ‘strong’ will
Furthermore, in the proofs of the lemm
equivalent condition (ii') for every mOW: m B - a.

Asfor an axiomatisation of explanatory c uence relations, we should note
conclusion of an explanatory argument is required to be admissible. As has been ar|
§23, this means that Reflexivity should be weakened in various ways. It turns
only Explanatory Reflexivity will be among the rules defining the system EM: b
and Right Reflexivity are derived rules. The other rUof Mg, that is not valid i
Right Strengthening. It is easy to see why this is if yisinadmissible, then
yet o gy for any a. We therefore add a conditiorgtating that y must be ad
leading to the rule of Admissible Right Strengthenirji Finally, a rule should be added to
ensure the validity of Consistency. In the light of L
Consistency. We thus obtain the following system f

anatory reasoning.
DEFINITION 7.6. The system EM consists of

e Explanatory Reflexivity:
e Predictive Incrementality:

e Additivity:

_'B1u|<B1V|<y
G|<y

a KBy
B-oaKy

a kB
ﬂGFB

The significance of the rules of EM as properties of explanatory reasoning has been
discussed in the previous chapter, with the exception of the rule of Conditionalisation.
This rule can be best understood if one recalls a discussion from 89, where a distinction
was drawn between two different representations of examples. the ‘examples as
implications' approach, and the ‘ examples as classifications’ approach. In the former case,
examples are ground implications with the description of an instance as antecedent, and a
classification as consequent. In the latter case, the description of the instance belongs to
the background theory, while the example comprises only the classification of the
instance. Conditionalisation expresses that the former approach is as powerful as the
latter: anything that can be induced by means of the ‘examples as classifications' approach
can also be induced by means of the ‘examples as implications' approach’. It should be
added that, in the case of strong explanatory reasoning, both approaches are actually

« Admissible Right Strengthening:

« Conditionalisation:

o Left Consistency:

74since the background theory is left implicit in our framework, the description of the
instance (B) is added to the hypothesis rather than the background theory.
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7. Rule systems for conjectural reasoning

equivalent, since the following rule isa derived rule of EM:
« Reverse of Conditionalisation:

The derivation of thisruleis|eft to the reader.
The following lemmalists afew properties of strong explanatory reasoning.

LEMMA 7.7. Every consequence relation satisfying the rules of EM is
consistent, incremental, convex, and disjunctively closed, but not
conjunctively closed.

Proof. By Lemma 6.8, Left Consistency implies Consistency in the
presence of Right Reflexivity and Admissible Converse Entailment (both
instances of Predictive Incrementality).

Predictive Incrementality implies Incrementality.

By Lemma 6.9, Right Interval follows from Admissible Right
Strengthening, Admissible Converse Entailment, and Left and Right
Reflexivity. In order to show that Left Reflexivity is a derived rule of EM,
suppose a kK 3, then by Predictive Incrementality 3 k B. Furthermore, by
Left Consistency ~a { [, and we conclude by Explanatory Reflexivity.
Right Or can be derived by means of the following rule (note that
Contraposition is not valid in EM):

aKB,-aEK-a
—|BF—|Q

To derive Admissible Contraposition, suppose a K [, then by
Conditionalisation B~ a Kt r ue, by Incrementality -a - - Ktrue,
and, since by assumption ~a K -~a, by Admissible Right Strengthening
-0 - -B K -a. We conclude by Additivity and Incrementality.

In order to derive Right Or, first note that o k B implies B K B by Right
Reflexivity (an instance of Predictive Incrementality), hence By K B by
Incrementality and By & By by Left Reflexivity. Suppose o k B and
a Ky. Now, either ~a K ~a or ~a K -a; in the former case we can
apply Admissible Contraposition to obtain -3 K ~a and -y K -a, hence
-B&y K -a by Additivity, and we conclude by Admissible Contra-
position. On the other hand, if ~a § -o then a K By by Explanatory
Reflexivity.

* Admissible Contraposition:

The following derived rules of EM are used in the proof of the representation theorem:
Incrementality, Right Reflexivity and Admissible Converse Entailment (instances of
Predictive Incrementality), Consistent Right Strengthening (Lemma 6.11), and
Consistency (Lemma 6.8).

To seethat EM is not conjunctively closed, let p and g suchthat -p ¢ g and g K q,
then by Consistent Right Strengthening g k gp. However, since g ¥ (qUp)(q=3 p) by
Consistency, Right And would give us g ¥ q[& p, which, together with g k g, results in
p K g by Consistent Right Strengthening. That is, adding Right And to EM would lead
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§26. Explanatory reasoning

to a situation in which every admissible hypothesis would either explain an arbitrary
observation or its negation, which is clearly counterintuitive.

The characterisation of explanatory consequence relations requires a few steps more
than in the case of reverse deductive reasoning. | start by proving that the rules of EM are
sound with respect to the semantics defined by explanatory structures.

LEMMA 7.8 (Soundness of EM). Any explanatory consequence relation
satisfies the rules of EM.

Proof. Let WOU be an explanatory structure; we need to demonstrate that
Kw: as defined in Definition 7.5, satisfies the rules of EM. Since al the
rules of EM, with the exception of Left Consistency, are valid rules of
reverse deductive reasoning, we only need to check condition (i) for those
rules. Thisis trivial for Predictive Incrementality, Additivity, Admissible
Right Strengthening, and Conditionalisation.

For Explanatory Reflexivity, since a K, o means th
satisfies a, - §y a implies that not all models in W
thereisamodel in W satisfying alp and hence 3.

For Left Consistency, suppose that myCW satisfies 3, jihile all models in
W satisfy B - a. It follows that m, satisfies a, hence all_ models.in W
satisfy B - -a.

In order to prove pleteness, we need to build an expl
given consequence rejiliion k satisfying the rules of EM, such

non-empty con ce relations the construction of W ithe same as for reverse

a K B; we will prove that {
not, then by compactness ther
- =A. Furthermore, since ¢
true forany ¢ - ¢A by C
Additivity, and A K B by Right Re
Strengthening. But then by Consistency

itionalisation, Ak t rue by
ivity and Admissible Right
— -/, acontradiction.

Furthermore, we have that every inadmissible formulais unsatisfiable in W.

LEMMA 7.10. Let k be a non-empty consequence relation satisfying the
rules of EM, and let W be defined as above. If y§ ythen y is unsatisfiable
in W.
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7. Rule reasoning
Proof. Let a K B,
Reflexivity. Further
Rcf|exivity, hence m

ntrue Ktrue by Incrementality and Left
e if yky then -y Ktrue by &planatory
r ue - =y for every mOW.

show that W defines a consequence relation that is includecsili k.

MMARN.11. Let K be elation §

' Ippose that o
JEEedB. or there exists
¥ 9

]

Ernocror e DIeERVe Wil assume that B . Defingll, = {-a
{ that Iy is satisfigle. Supp@ee not, then
o A/ | 2 sive

on-empty consequenc
ined as above. If a kB then o 6.

3, we will show that jlither no @Bdel in W
model myJW that doejibt satisfy 0

Al UICI U
ctness.there.id

(
a UA OO D Al cal P
L) = WovmNel | % Jditivity jhd @iicrementality, we
obta ( 5.7 CO 0 I % ﬂ
B since

Let | @ o; clearly mg
thatin™s&s in W; i.e,
mo W - ¢. Let ¢ K Y
StreM8thening ¢ K YWB ,
Y- ¢ o and therefore my ->¢.0n
Conditionalisation and Inci®entality
Right Strengthening 3 - -~y K 3, and
-~y K B;thus -l , and therefore my

U d (I A O K we ave
if ~B K
d by Co

onsistent Right

0N sAatLon

P Rtru
Additivi
, hence

by Admissible
d Incrementality

= 0.

Armed with the previous three lemmas we can prove the co QeSS O

THEOREM 7.12 (Representation theorem for expl
relations). A consequence relation is explanatory iff iSfies the rules of |
EM.

Proof. The only-if part is Lemma 7.8. For the if par be anarb
non-empty consequence relation satisfying the rules o vand e

W ={mOu |for al a, B such that a K 3: B - a}

Suppose a K 3, then by the construction of W, m |8 — o for all mOW.
Furthermore, by Lemma 7.9 there is a model in W Bisfying 3. We may
conclude that a Ky, B. Conversely, if a K, B then Lemma 7.11 proves that
a K B. We conclude that W defines a consequence relation that is exactly K.
For an empty consequence relation put W=[.

We may note, to round off our discussion of strong explanatory reasoning, that this
semantic characterisation of EM clearly demonstrates that strong explanatory reasoning is
strictly more restrictive than reverse deductive reasoning, in the following sense (recall
also the discussion of comparison criteria for different forms of reasoning in 816). A
reverse deductive reasoner and a strong explanatory reasoner build their respective
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§26. Explanatory reasoning

consequence relation, if they share the same background knowledge, from the same set of
models WOU. The resulting consequence relations differ in the following respect: for
every formula 3 that is unsatisfiable in W, the reverse deductive reasoner will include
arguments a K 3 for arbitrary alJL, while the explanatory reasoner will include none of
these (notice that such an a always exists, viz. f al se). The two reasoners will agree on
all other arguments. So the strong explanatory restriction of a reverse deductive
consequence relation is always a proper subset of the latter.”™

This concludes the investigations into the formal properties of strong explanatory
reasoning. Before developing rule systems for confirmatory reasoning in the next sections,
I will now spend a few words on weaker forms of explanatory reasoning.

Weaker notions of explanation

If + is not transitive, then there exist a, B andy suchthat a B and B t+ v, yet a |,
i.e. Cnr(B) i Cnr(a). As has been proved by Kraus et. al, transitivity and monotonicity
are equivalent in the presence of the rules of C, the weakest rule system for plausible
reasoning. The upshot is that for plausible consequence relations, the nice equivalence
between Cni.(a) O CnI.(B) and B | a, as expressed by Lemma 5.2, breaks down.
However, sometimes we need a plausible explanation mechanism, for instance if we want
to induce default rules with exceptions (cf. Bain & Muggleton, 1991).

It seems that we have two options for formalising induction of such weak
explanations. One option, which is left for future research, is to define a k 3 iff Cni.(a)
a Cnr(B), and to investigate how, if at all, properties of - carry over to K. The other
option, that has been investigated to some extent in (Flach, 1991), isto put a K B iff
B |- o (and B consistent). Again applying the rewrite rulea -3 0 B K a to rules of
KLM, it is easily shown that Incrementality and Additivity of K correspond to Right
Weakening and Right And of {, respectively. Since both latter rules are satisfied in the
weakest KLM system C, it seems safe to assume that even with plausible explanation
mechanisms we have Incrementality and Additivity. However, it can also be shown that
Right Strengthening of K corresponds to Monotonicity of {~. In other words, when
strengthening a given plausible explanation one may reach a ‘hol€e’ in the Version Space:
a hypothesis that is in between the Sand G sets, yet does not explain the examples.
Further research is needed to characterise the implications of this observation.

§27. REGULARITY-BASED CONFIRMATORY REASONING

In this section and the next one | will consider various formalisations of confirmatory
reasoning. The idea underlying the formalisation in this section has essentially been stated
in 819: to consider as possible hypotheses those formulas that are satisfied by every

75As a consequence, no strong explanatory conseguence relation coincides with a reverse
deductive consequence relation. This contrasts with e.g. the relation between monotonic and
preferential reasoning, since every monotonic consequence relation is preferential. This
phenomenon can be traced back to the inclusion of Left Consistency in EM (al other rules of
EM arevalidin M,g,): this rule, like its relatives Consistency and Right Consistency,
expresses that certain arguments should be excluded from the consequence relation.
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7. Rule systems for conjectural reasoning

regular interpretation, where aregular interpretation is one in which the objects behave in
away similar to the observed objects. The resulting form of confirmatory reasoning is
called regularity-based confirmatory reasoning. Various possible notions of regularity
come to mind. For instance, it could be established by a partition on the set of
interpretations, such that an interpretation is regular if it falls in the same equivalence
class as a model of the observations. As has been indicated in §19, such a notion of
regularity would invalidate Hempel’s conditions (C1) and (C2) — since Hempel’s views
formed the starting point for my investigations into confirmatory induction, | have chosen
to develop a notion of regularity that remains more faithful to hisideas.

In proposing this notion | do not make any claim to originality: it can be directly
traced back to Helft and De Raedt on the one hand, and Kraus et al. on the other. The idea
is to use a partial ordering on interpretations, and to consider as regular interpretations
those models of the observations that are minimal with respect to this ordering. Such a
preference ordering on interpretations seems very natural for plausible reasoning — but is
it also natural for conjectural reasoning? One could raise the following objections:

(i) regularity isaproperty of interpretations, not an ordering relation
between interpretations;
(i) evenif regularity is an ordering between interpretations, this ordering
must depend on the observations.
One possible defence against these objectionsisto point at the truth-ordering employed by
Helft and De Raedt. This ordering selects as regular interpretations those in which no
objects other than the observed ones have the attributed properties, which seems very
reasonable. Nevertheless, each of the two points above makes some sense and deserves
further investigation.

Below | give a characterisation of regularity-based confirmatory reasoning on the basis
of such a preference ordering by means of so-called preferential confirmatory consequence
relations. This system is a variation of the KLM system P, the main difference being the
added requirement of consistency of the observations. After that | will demonstrate how
closed-world reasoning on the basis of the truth-ordering of interpretations fits into the
framework of preferential confirmatory reasoning.

Preferential

| will start
definition est
Definition 4.
confirmatory

rmatory consequence relations

a semantic definition of preferential confirmatory reasoning. This
ishes a close variant of KLM's notion of a preferential structure (see
only satisfiable formulas are allowed in

DEFIN
Bl,<
state
prefer
iff [(s)

onfirmatory structure is atriple W =
1. S- U is afunction that 1abels every
a model, and < is a strict partial order’® on S, called the
ordering, that is smooth’’. A state sOS satisfies a formula aJL
; the set of states satisfying o is denoted by [a], and a minimal

76I.e., < isirreflexive and transitive.
77) . for any SOSand for any sOS, either sisminimal in S, or thereis atOS such that t<s
and tisminimal in S. This condition is satisfied if < does not alow infinite descending chains.
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827. Regularity-based confirmatory reasoning

element of [a] (wrt. <) will be called aregular state for a. The consequence
relation defined by W is denoted by K, and is defined by: a g, B iff
(i) there is a state s[IS satisfying o, and (ii) every regular state for a
satisfies 3. A consequence relation is called preferential confirmatory iff itis
defined by apreferential confirmatory structure.

States are |abelled with models, so the preference ordering between states can be used to
define a relation between models — however, sincefiliie same model can label severa
states, this relation will not, in general, be a partial ojlér. According to Kraus et al., the
additional freedom provided by states ‘is vital for representation theorem to hold’
(p.181), and | will follow them in this respect.

The following set of rules will be proved to
consequence relations.

DEFINITION 7.14. The system CP consists of

e Confirmatory Reflexivity:

e Left Logical Equivalence:

BEyY

« Predictive Right Weakening: m(‘x’\{( ,yu kB
. i icity: aRB,agKy
Cautious Monotonicity: aB Ky
* Ri : aRkB,akKy
Right And: o KB
. : aRy.BEKrYy
Left Or: BEY

« Right Consistency: aipt%

In comparison with Hempelian consequence relations (Definition 6.12) two rules are
added: Left Or and Cautious Monotonicity, both of which are valid principles of
preferential reasoning. As argued in 824, Cautious Monotonicity can be seen as a
strengthening of Verification, which states that if a confirmsy, then any predicted
observation 3 provides further confirming evidence — Cautious Monatonicity extends this
to any B that is also confirmed by a. The rule of Left Or states that if both a and 3
provide confirming evidence for y, the knowledge that at least one of them is true should
not refute y. As will be demonstrated below (Lemma 7.16), both of these rules make use
of the fact that regular states are minimal elements of the preference ordering — in other
words, choosing another mechanism to select regular states would most probably violate
both Cautious Monotonicity and Left Or. Note also that without these two rule the
system would be rather weak: the other rules (with the exception of Left Logical
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7. Rule systems for conjectural reasoning

Equivalence) only say something about the right-hand side of confirmatory argumen
The following lemma gathers some further properties of CP.

LEMMA 7.15. Every consequence relation satisfying the rulg
consistent, convex, disjunctively and conjunctively closed.
Proof. By Lemma 6.7, Right Consistency implies Consiste
presence of Admssible Entailment and Left Reflexivity (whig
instances of Predictive Right Weakening).
Right Interval and Right Or are implied by Right Weakening
Predictive Right Weakening.
Right And isarule of CP.

To seethat CP is not incremental, let p and g be such that p K g and @@ - g. Cautious
Monotonicity yields plg k ¢, and Predictive Right Weakening 8%es plqg K p.
Incrementality would give g K p, which means that p and g have the same * confirmatory
power’, which defies our intuitions. Alternatively, it is easy to show that Incrementality
isinvalid by constructing an appropriate preferential confirmatory structure. For instance,
two states s and t with s<t, and let [p]={t} and [q]={st}, then pCq k p but

| wiEnow prove the validity of the rules of CP.

of CP). Any preferential confirmatory
sequence relation satisfies the rules of CP.

oof. For Confirmatory Reflexivity, suppose [a] is non-empty, and not all
i ; it follows that some state in S satisfies 3.

, notice that logically equivalent formulas are
isfied by the same states.

r Predictive Right Weakening, if all regular states for a satisfy 8 and
B -y, then (since al regular states for a satisfy a) all regular states
o satisfy .

For Cautious Monotonicity, we need the fact that < is a smooth partial
order. Suppose that [a] is non-empty, and all regular states for o satisfy 3
and y — clearly, [aB ] is non-empty. Now, let s be regular for a , then
s[a]; | will prove that s is regular for a. Suppose not, then there is a
tO[a] such that t<sand t is regular for a. Now, every state regular for a
satisfies 3, hence tO[aB ]. But this contradicts the minimality of sin
[aB ], hence sisregular for a and thus satisfies y.

For Right And, if all regular states for a satisfy 3 and y, then clearly they
satisfy By .

For Left Or, notethat [a@ ] =[a] O [B]; thus, if [a] and [B] are non-empty
then sois [alB ]. Furthermore, the set of regular states for al} is a subset
of the union of the regular states for a and 3, since a state cannot be
minimal in [aB ] without being minimal in at least one of [a] and [B].

For Right Consistency, suppose [a] is hon-empty, and all regular states for
o satisfy B; it follows that no regular state for a satisfies —f3.
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827. Regularity-based confirmatory reasoning

In order to prove completeness, we need to build a preferential confirm
W from a given consequence relation K satisfying the rules of CP, such
a Ky B. Asin the case of explanatory structures, such a confirmatory str
from a specific set of models. These models are selected relative to a giv
follows.

DEFINITION 7.17. Let K be a conjectural consegquence relation. The
mOU is said to be normal for o iff for al B in L such that a k 3, m

So, a model is normal for a formula if it satisfies every confirmed hypothesis. Thus,
given certain evidence the set of normal models decreases when the set of confirmed
hypotheses increases. Notice that every model in U is normal for an inadmissible formula,
which is therefore not satisfied by some of its normal models. An admissible formula is
satisfied by every normal model, however. Notice also that if a is admissible and y is
inadmissible, then by Confirmatory Reflexivity a K —y, hence no normal model for a
satisfies y.

The set of models normal for admissible form
confirmatory structure. The following lemma statg
they can characterise arbitrary Hempelian conseque

to build a prefd
about norma

LEMMA 7.18. Suppose a consequence relatid
and Right And, and let a be an admissible
a satisfy Biff a g B.

Proof. The if part follows from Definition 7
For the only-if part, suppose a kK o and a #
normal model for a that does not satisf
suffices to show that 'y is satisfiable.
there is a finite AL{d | a Kk &} such
Right Weakening a K A - 3. But by
and Right Weakening we obtain a K

Dy compactness

- (A-B); by
Sing Right And

Notice from the proof of Lemma 7.18 that
Given an arbitrary preferential confirm
proof is based on a preferential confirmator
(1) S={0nadaisanadmissible
2 (Inad=m;
(3 [n,al< ,BOff a ko and
Thus, states are pairs of admissible formul
simply maps a state to the model it contains
between states: note that B K a is a special
fact that a is admissible. The condition m is added to make the ordering irreflexive;
note that as a consequence any [in,a0 Sis Mimal in [a].

The main difference between the preferential consegquence relations of Kraus et al. and
my preferential confirmatory conseguence relations is the way unsatisfiable formulas are
treated. In the KLM framework unsatisfiable formulas are characterised by the fact that
they have every formulain L as a plausible consequence, which means that they don’t

models exist for any admissible a.

j completeness
asfollows:
a, and misanormal model for a};

. elling function
ondition (3) defines the preference ordering
of alB K a by means of Left Or, and the
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7. Rule systems for conjectural rgasoning

have normal models. In my framework, unsatisfiable formul
have al models in U as norma models. In both cases,
prove completeness contains only satisfiable formulas i
can replicate most of KLM'’ s results about the structure

confirm no hypotheses, and
structure W that is used to
states. This means that we

PROPOSITION 7.19. (1) (KLM 5.13) Therelation
(2) (KLM 5.15) Therelation < is smooth: for an
minimal in[a] or there exists a state t<s mini
(3) (KLM 5.11) If al k a and misa normal
then misa normal model for S.

(4) (KLM 5.14) [th,alfis minimal in [G] iff m

remaining two are used in the proof of the following lemma.

LEMMA 7.20. Let K be a consequence relation satisfying the r
and let W be defined as above. If a k B then a Ky B.

Proof. Suppose that a k [3; we will show that (i) there is a
satisfying a, and (ii) every minimal state in [a] satisfies (3.

(i) By Left Reflexivity a is admissible; furthermore, by Right
a k-B, so by Lemma 7.18 there exists a model m normal
conclude that [in,a[a].

(ii) Suppose [m,yCds minimal in [a], theny is an admissible fo
anormal model for y that satisfies a, and yld Ky by Propog
(4). By Proposition 7.19 (3) nis anorma model for a, hence n

The following lemma proves the converse of Lemma 7.20, and compl etes the proof
representation theorem.

LEMMA 7.21. Let K be a consequence relation satisfying the rules of CP,
and let W be defined as above. If a Ky, B then a k .

Proof. Suppose a Ky, B, then a must be admissible (since no state in S
satisfies an inadmissible formula). Furthermore, given any model m normal
for a, n,adis minimal in [a], hence m satisfies 3, and the conclusion
follows by Lemma 7.18.

We may now summarise.

THEOREM 7.22 (Representation theorem for preferential confirmatory
consequence relations). A consequence relation is preferential confirmatory
iff it satisfies the rules of CP.

Proof. The only-if part is Lemma 7.16. For the if part, let K be a
consequence relation satisfying the rules of CP and let W be defined as
above. Lemmas 7.20 and 7.21 prove that a K B iff a gy B, i.e. K is
preferential confirmatory.

The rule system CP demonstrates that Hempel’ s adequacy conditions for confirmation
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827. Regularity-based confirmatory reasoning

can be extended to a complete axiomatisation; the semantics of preferential confirmatory
structures provide an operationalisation of the relation of confirmation. | will now show
that closed-world reasoning a la Helft and De Raedt fits nicely into this framework.

Closed-world reasoning as preferential confirmatory reasoning

The concept of closed-world reasoning is borrowed from logic programming, where alogic
program consisting of definite clauses can only have positive literals among its ground
atomic consequences: it can't say that some ground atom is false. Consequently, the
Herbrand base of ground atoms is divided into two subsets: those that are logical
consequences of the program (these are true), and those that are not (the truthval
these are unknown). The well-known Closed-World Assumption (CWA) now prop
interpret the latter as being actually false. In the lattice of Herbrand models
program, this amounts to taking the bottom element of this lattice as the intended

The ordering in this lattice is the ordering of truth-content: one Herbrand m
smaller than another if the set of ground atoms considered true in the first mo
subset of those considered true in the second model 78. This truth-ordering provid
with the preferential confirmatory structures discussed above.

LEMMA 7.23. The consequence relation established by the truth-minimal
model semanticsis preferential confirmatory.
Proof. Such a consequence relation is defined by the following preferential
confirmatory structure: take the set of Herbrand interpretations for S, the
identity function for |, and the proper subset ordering for <79,

This means that the truth-minimal model semantics inherits all the property
preferential confirmatory consequence relations. Note that in the case of an ind
program this semantics would require truth in all minimal models of the program
is no sophisticated treatment of negation in the body of clauses.

When restricted to definite programs, the truth-minimal model semantics also
some properties not shared with every form of preferential confirmatory reasoning.

LEMMA 7.24. The consequence relation established by the truth-minimal
model semantics for definite clauses satisfies the following property:
afF-B,akKa

a kKB
Proof. If a isadmissible it is satisfied by some state, hence it has a unique
minimal state labelled by a single Herbrand model, in which every formula
is either true or false.

 Admissible Completeness:

Notice that Admissible Completeness is satisfied by every preferential confirmatory
structure in which the set of states satisfying a formula forms a downward semilattice
under the preference ordering.

8| we identify a (two-valued) Herbrand interpretation with the set of ground atoms it assigns
the truthvalue t r ue, then this ordering coincides with the subset ordering.

79Thus, the distinction between states and models is not needed for modelling minimal
Herbrand model semantics as a preferential structure.
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ain feature of the truth-minim
minimises the assignment of truth to ground atoms, we

odel semantics, namely
th uld try something like
lure:

ich a is a definite program and p is a positive literal. However, note that also
p, since definite programs only have positive ground atomic conseguences,
o f p by Right Consistency — in other words, the rule of Negation as Failure is
invalid if p is a negative literal. A complete axiomatisation of the truth-minimal model
semantics thus calls for a more fine-grained tool than consequence relations, that operate
on the complete language. The interested reader is referred to (Dix, 1994ab) for a possible
approach.

§28. CONSISTENCY-BASED CONFIRMATORY REASONING

The preference ordering in preferential confirmatory structures picks out certain models of
the premisses, and draws conclusions justified by those models. When the evidence is
incomplete, as is usually the case, the intended model may be not among those deemed
most regular by the preference ordering. If this becomes evident by further observations,
previously refuted hypotheses will have to be reconsidered. In this section | will
demonstrate that it is possible to avoid such non-incremental behaviour. The main ideais
to keep track of all models of the premisses a, and to consider a hypothesis 3 to be refuted
(a kB) only if B is satisfied by none of the models of a. Thus, we switch from
entailment over preferred models of the observations to consistency relative to all models
of a. The resulting form of confirmatory reasoning is therefore termed consi stency-based.

The form of reasoning just described is characterised below by the system CW, for
weak confirmatory reasoning. It defines ‘a confirms 3’ as ‘3 is compatible with a’, which
is clearly the weakest possible definition of confirmation. Moreover, the system is aso
related to the rule systems EM and CP considered previously, since each of these is
strictly more restrictive than CW: every explanatory or preferential confirmatory argument
is also weak confirmatory, but not vice versa (with fixed background knowledge). Thus,
the system CW represents the root of our hierarchy of rule systems for conjectural
reasoning.

An alternative characterisation of consistency-based confirmatory reasoning is also
(partly) worked out in this section. Here the idea is to represent the indeterminacy of the
observations not by a large set of models, but instead by a few well-chosen partial or
three-valued models, namely those partial models that are minimal with respect to the
information they contain. We thus see that the concept of a minimal model again plays a
role, but here its connotation is quite different from the preferential setting, where the
minimal models represent educated guesses for the intended model. In contrast, the set of
information-minimal models implies that the intended model is at least as informed as one
of them. This approach has been inspired by the Version Space model of concept learning
(89), where the S-set of most specific concepts plays a similar role in delineating the set
of all concepts consistent with the examples.
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§28. Consistency-bgled confirmatory reasoning

Weak confirmatory reasoning

As mentioned above, in weak confirma
compatible with the observations.

y reasoning a hypothesis is confirmed if it is

ctureisaset WOU. The
and is defined by: o Ky, B
sequence relation is called

DEFINITION 7.25. A weak col
consequence relation it definesis g
iff there is an mOW such that m
weak confirmatory iff it is defined

From this definition it is clear that weak confirmatofieonsequence relations satisfy both
Right Weakening and Left Weakening (i.e. Increme y. One
additional rule is needed.

DEFINITION 7.26. The system CW consists 0

* Predictive Incrementality:

* Predictive Right Weakening:
* Disjunctive Rationality:

» Consistency:

Digjunctive Rationality has not been considered before. The name has been borrow:
Kraus et al., who identify it as avalid principle of plausible reasoning (although i
a derived rule of their system P, nor of my system CP). In the context of confir
reasoning, Digunctive Rationality is a rather strong rule, which states that if a hyp
is confirmed by digjunctive observationsit is confirmed by at least one of the digu

Every consequence relation satisfying the rules of CW is confirmatory,
Hempelian.

LEMMA 7.27. Every conseguence relation satisfying the rules of CW is
consistent, incremental, convex, and disunctively closed.

Proof. Consistency isarule of CW.

Predictive Incrementality implies Incrementality by Lemma 6.5.
Right Interval and Right Or are implied by Right Weakening, hence by
Predictive Right Weakening.

To see that CW is not conjunctively closed, suppose a K B, then (since o k BFB by
Consistency) Right And would imply o ¢ =(3. However, it is easy to find formulas a and
[ such that both alp and al#p are consistent.

The following theorem proves the equivalence of weak confirmatory structures and the
system CW.
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THEOREM 7.28 (Representation theorem for weak
relations). A consegquence relation K is weak confir
rules of CW.

Prod if i i , as defined in
es the rules of CW, which i
e an arbitrary consequencer

on satisfying the rules
structure:

o Ky B- The if part follows directl the
RalnguisBaueduill show that the

0 and, since by Consistency BT o, lBB. It
W, i.e, that for al ¢, Y such that m, b ™ we
O , then = (¢ ) o, hence ¢LH™R B; by
ng ¢l kK YB , by Imerementality ¢ k Q[P , and

%9 prove that
have ¢ K . Let mg
Predictive Right Weak
by Right Weakening ¢ k

definej@ preferqmial variant of weak confir

ding a prefererfi® orderifi&on Mot o S
atisfied by at | 5 of the observationd
t below for tHgsp i

oning i I

30 A - |

- >
VTR K own, e },
dw a set of partial mod@erepresentiilllg the background knowledge.
B stands for OmOU: if m o then m .

ow three truth-val ues, th®Eruth-tabl &¥¥or the logical connectives need

confirmatory re

own,f al se

to be extended. The enlarged truth-tables can be derived from the intended interpretation of
the third truth-value unknown, which represents lack of information as to whether a
formulais true or false — we might say that the ‘information-content’ of unknown is
less than either t rue or f al se. A compound formula is assigned the truth-value

800r equivalently, a partial function from L to{t r ue.f al se}.
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<m, iff for every formula
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' imbing.the

is smooth, at least in the
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, Where [a]

LEMMA 7.31. For any forr@lla aJL and any mJuU, if m
exists an nJU such that n , hsmand nisminimal in |
denotes the set of models véying a.81
Proof. Let m be a model of a, and let m" be the interpretation obtained
from m by changing the truthvalue of any propositional atom not occurring

in o tounknown. It is easy to prove, by induction on the structure of a,

81This is a translation of Kraus et al.’s definition of smoothness to a non-strict partial order.
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7. Rule systems for conjectural reasoning

that m' isamodel of a if mis; furthermore, by the definition of <, m'sm.
If m' is minimal in [a], we're done; if it is not, we can change the
truthvalue of some propositional atom from true or f al se into
unknown without changing the truthvalue of a. We can repeat this
process until a minimal model has been found; since m' assignst r ue or
f al se to only finitely many proposition symbols (i.e. a subset of those
occurring in a) the process only takes a finite number of steps.

It is clear, then, that an information-minimal model will assign unknown to as
many propositional atoms as possible. For instance, the formula p[# p has two
information-minimal models, one assigning t r ue to p, the other assigning f al se
(and unknown to every other atom). Furthermore, the intended model (which is total,
i.e. assigning truth or falsity to every formula) will be at least as informed as one of the
information-minimal models of the observations — in other words, a hypothesis that is
falsified by every information-minimal model of the observations is necessarily false in
the intended model. This justifies the use of the information ordering as a preference
ordering for consistency-based confirmatory reasoning, and to definea k B if B is not
falsified in at least one information-minimal model of a82. However, due to the intricacies
of partial logic this condition is too weak in one respect: suppose that for every minimal
model m verifying a we have m(B)=unknown; it follows that not only both o k 3 and
a K-, but also o K BEFB . This can be handled by adding a second condition for a k 3
to hold, to the effect that 3 should be verified by at least one model of a. Notice that this
is not necessarily a minimal model: we may still have m(B)=unknown for every
minimal model m verifying a, and thus both o k B and o K -3 Such a situation simply
means that a does not contain enough information to discriminate between the hypotheses
3 and -f.

I will now proceed as follows: | will first define partial preferential consistency-based
confirmatory consequence relations (ppcc consequence relations for short) in the general
case, where the preference ordering can be any partial order on U. After listing some of the
properties of ppcc consequence relations in the general case, | will study the special case
where the preference ordering is the information ordering.

DEFINITION 7.32. A partial preferential consisten
structure (ppcc structure for short) isapair W= [V,
of partial models, and < is a smooth partial order on
lation defined by Wis denoted by kyy, and is defined
isamodel mOV verifying a and 3, and (ii) there is
del my[a] not falsifying B, where [a] denotes the
a. A consequence relation is called ppcc iff it is defin

ased confirmatory
where VOU is a set
he consequence re-

f models veFifyi ng

It has been noted above that Right And and Right Consi
isreplaced by apartial variant of Consistency:

e Partial Consistency:

82A more appropriate intuitive reading would be ‘o does not disconfirm f'.
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Other rules that are valid when reformulated in partial term
and Predictive Right Weakening:

e Partial Left Logical Equivalence:

e Partial Predictive Right Weakening:

As instances of Partial Predictive Right Weakening we obtain Left Reflexivity and
(Partial) Admissible Erjililment, as usual.

One may note that Jliese rules are
remaining rules of Cj are invalid ‘

tial variants of rules from CP. However, the
ppcc consequence relations, most notably
Confirmatory Reflexivi igill/. Confirmatory Reflexivity (from o
K a and a - congide jilon a ¥ -3 is not
necessarily caused by € m Al SIT gt g —[3, the other possible reason
being that no model v E in theflrst case, but not in the
second, can we concl . as required by the
conclusion of the rule. W i

The failure of CautijgiSMonoto ' " can
be traced back to the fo ing observal@n. o' < 3 Meq al the n|ma| models of a
do not falsify B (i.e. m =B ); but this liés not imply, ase,
that these models also Merify B (i.e. m [liB), hence the@inimal models of alf may be
completely different from those of o. F@®¥nstance, we B, but
clearly we don't have alp k -f. A partial variant of ehts a
weaker form of Cautious Monotonicity, is however vali

Vv have a k. [ .and o K

o P Y .,

i ™3
As indicated in 8§24, this rule weakens Cautious Monota

hypotheses 3 and y are based on the same assumptions.
Therulesfound valid so far are collected in the followin

e Partial Verification:

LEMMA 7.33. Any ppcc conseguence relation sati fig

* Right Reflexivity:

e Partial Left Logical Equivalence:
» Partial Predictive Right Weakening: a
» Partial Verification:

* Partial Consistency:
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The reader may want to check that the first two conditions vanish when a3 is substituted
for y. However, my main concern at this stage is conceptua analysis rather than logical
rigour, and | leave the issue of axiomatising ppcc consequence relations as an open
problem.
I will now demonstrate that the information ordering can be used to build a ppcc

structure defining consequence relations that are closely related to weak confirmatory
consequence relations.

DEFINITION 7.34. A partial weak confirmatory structure is a ppcc structure
W = [V,<[J where < is the information ordering on U, restricted to V. A
consequence relation is called partial weak confirmatory iff it is defined by a
partial weak confirmatory structure.

The following lemma demonstrates the close relation with weak confirmatory consequence
relations.

LEMMA 7.35. Let W be a partial weak confirmatory structure. a K, B iff
there exists a model in [ a] verifying S.

83Another option is to assign to — the Lukasiewicz interpretation, which differs from
Kleene's strong interpretation by putting m(a - )=t r ue if m(a)=m()=unknown. However,
as a result the language is no longer persistent: increasing the truth-value of o or  may
decrease the truth-value of a - 3 wrt. the information ordering.
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is minimal in [a]. Furthermore, m =3, and therefore
Wi at o Ky M
That is, for any partial confirmatory structure W = [V,<[lwe have a Ky B iff thereis
an mOV such that m [ — in other words, partial weak confirmatory reasoning
corresponds to verifia®¥ity of premisses and conclusion with respect to a set of partial
models, and the information ordering does not affect the set of arguments but only serves
as a computational tool. We may further note that if a8 has a partial model, it has a
total model (construct a total model m' from a partial model m by putting m'(p)=m(p) if
m(p)#zunknown, and by arbitrarily putting m'(p)totrue or f al se otherwise).
This means that for any partial weak confirmatory consequence relation there exists an
equivalent weak confirmatory consequence relation. Since thaconverse is trivially true
(any set of total models is also a set of partial models), thisjlifoves the equivalence of
weak and partial weak confirmatory reasoning.

The rules satisfied by partial weak confirmatory consequerfi relations are thus partial
versions of the rules in CW. The validity of Partial Predic]
Partial Consistency has been proved above, in the general
relations — for completeness sake | prgye the validity of the
which has become very easy in the ligh

COROLLARY 7.36. Any partial
satisfies the following rules:

e Partial Predictive Ing

e Disjunctive Rational

Proof. For Partial Predictive |rjifementality, suppose that there exists a
model in [a] verifying y, and a - [3; it follows that this model verifies
B3, hence there exists amodel in [MFverifying y.

For Digunctive Rationality, first note that [a[B} ] = [a] O [B]. Furthermore,
if B £y then no model in [B] verifies y, and thus the model in [a[B ]
verifying y must be in [a].

In this section | have defined weak confirmatory reasoning, which is also the weakest
form of conjectural reasoning since it only requires consistency between evidence and
hypothesis. This form of reasoning is axiomatised by the system CW. | have further
defined a partial, preferential variant of weak confirmatory reasoning (the axiomatisation of
which remains, as yet, incomplete), and proved the equivalence with weak confirmatory
reasoning if the information ordering on partial models is taken as the preference ordering.
This form of confirmatory reasoning will be put to work in the next chapter, because it
has a distinct advantage over preferential confirmatory reasoning: it isincremental.
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7. Rule systems for conjectural reasoning

| should add that consistency-based confirmatory reasoning, as defined in this section,
does not, in the general case, establish a preservation semantics (818). If we definea k
if there is a model satisfying both a and B, this cannot be reduced to a preservation
function f constructing, from the models of a, a set of interpretations satisfying B, since
this preservation function should operate independently from . Even if we use the
information ordering to select minimal models of a this does not establish a preservation
function, since a may have severa information-minimal models, and if both o k 3 and a
K y the minimal model a has in common with B may be different from the minimal
model it has in common with y. Only in the case that premisses always have a single
information-minimal model (i.e. they are definite) does consistency-based confirmatory
reasoning correspond to a preservation semantics. This indicates that the concept of a
preservation semantics needs to be extended, or complemented by an alternative concept.

§29. SUMMARY AND CONCLUSIONS

In this chapter | presented the main formal results of this thesis, in the form of axiomatic
characterisations of three different kinds of conjectural reasoning. The three rule systems
EM (explanatory reasoning with a monotonic explanation mechanism), CP (preferential
confirmatory reasoning), and CW (weak confirmatory reasoning) light parts of the map of
conjectural reasoning, and thus provide a starting point for a descriptive theory of
conjectural reasoning. In addition | have provided an alternative characterisation of weak
confirmatory reasoning in terms of information-minimal partial models. Open problems
include: characterising explanatory reasoning based on non-monotonic explanation
mechanisms, characterising preferential consistency-based confirmatory reasoning, and
extending the concept of a preservation semantics to cover consistency-based reasoning.

Each of the semantic structures characterising these rule systems has been designed to
reflect current practice in the field of machine learning (chapter 3). Explanatory semantics
models preservation of explanatory power, where an explanation is identified with a
deductive proof, as in classification-oriented machine learning approaches. Preferential
confirmatory structures generalise closed-world reasoning, as applied in Helft's and De
Raedt’ s approaches to induction of integrity constraints. Weak confirmatory structures are
based on compatibility between evidence and hypothesis, an idea that has been applied to
incremental induction of integrity constraints in databases (see the next chapter).

However, neither of these semanticsis claimed to fully capture the essence of inductive
reasoning as performed by humans. For instance, identifying an explanation with a
deductive proof seems to be quite crude, even if it is not uncommon in philosophy of
science, since explanations often indicate a causal relation between observations and
explanans. Also, formalising regular interpretations as minima with respect to a fixed
ordering does not seem to be appropriate in all cases, since the ordering may depend on the
observations. Even if further work is needed on these and related points, | believe that such
future refinements can be incorporated in the formal framework set up in thisthesis.



