
CHAPTER 4

T H E  A N A L Y S I S  O F
N O N - D E D U C T I V E  R E A S O N I N G

— in which the logical tool of a consequence relation is
introduced through the work of Kraus, Lehmann & Magidor —

THE GOAL OF the investigations reported in this thesis is to commence a logical
analysis of inductive reasoning. We will therefore need to have a good overview of

what logic has to offer regarding the analysis of other forms of reasoning. This chapter is
meant to provide such an overview.

Traditionally, logicians have concentrated on deductive or mathematical reasoning as
their main object of study. It is certainly no exaggeration when I say that, in a not too
distant past, most logicians were of the opinion that logic is necessarily deductive —
and many of them probably still are37. This means on the one hand that the study of
deductive reasoning has provided us with some rather advanced tools; but it also means
that these tools, being tailor-made for analysing deduction, may be not immediately
applicable to other forms of reasoning. I will try to present the logical theory of deductive
reasoning currently in force with an eye for possible adaptations of that theory towards
modelling such alternative forms of reasoning.

Conceivable alternatives include ‘approximations’ of deductive reasoning, such as
plausible reasoning, as well as forms of reasoning such as induction, which are rather
different from deductive reasoning. The former type of reasoning will be called quasi-
deductive, while the latter will be called a-deductive. Jointly, they will be referred to as
non-deductive reasoning.

The subject of plausible reasoning — or nonmonotonic reasoning, as it is usually
called — started to attract attention from artificial intelligence researchers, and later
logicians, some fifteen years ago. It is the first non-deductive form of reasoning that has
been submitted to a relatively advanced logical analysis. Recently, this analysis has
reached a stage in which it is sufficiently general so as to be applicable, at least in

37In the words of Dov Gabbay: ‘some members of the traditional logic community are still
very conservative in the sense that they have not even accepted non-monotonic reasoning
systems as logics yet. They believe that all this excitement is transient, temporarily generated
by computer science and that it will fizzle out sooner or later. They believe that we will soon be
back to the old research problems, such as how many non-isomorphic models does a theory
have in some inaccessible cardinal or what is the ordinal of yet another subsystem of analysis.
I think this is fine for mathematical logic but not for the logic of human reasoning. There is no
conflict here between the new and the old, just further evolution of the subject.’
(Gabbay, 1994, p.368, note 7)
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principle, to other forms of non-deductive reasoning. The formal framework of
consequence relations, developed by Kraus, Lehmann and Magidor (1990), will form the
backbone of the logical analysis of induction attempted in this thesis, providing ample
justification for the quite comprehensive elaboration of that framework in the present
chapter.

§14.  DEDUCTION: THE LOGIC OF SATISFACTION-PRESERVATION

Logic is the formal study of reasoning: the process of drawing conclusions from
premisses. The unit of reasoning is the argument. In its most simple form, an argument
consists of a set of premisses, and a conclusion:

all human beings are mortal

Socrates is a human being

∴  Socrates is mortal

The conclusion sign ∴  separates the premisses from the conclusion.
This argument is deductive: its distinctive quality is that the truth of the conclusion is

guaranteed by the truth of the premisses. This is formalised by means of a truth-valued
semantics, which determines the exact conditions under which a formula is true or false38.
Such a semantics consists of a set of interpretations, representing the possible states of
affairs, and a satisfaction relation = between interpretations and formulas. If an
interpretation m satisfies a formula ϕ we say that m is a model of the formula, and write
m = ϕ. If all models of a set of formulas Σ are also models of ϕ, we say that Σ logically
entails ϕ or ϕ is a logical consequence of Σ, and write Σ = ϕ. If Σ is empty, ϕ is called a
tautology; instead of ∅  = ϕ , we write =ϕ . A formula ψ is a contradiction if ¬ψ  is a
tautology. I will refer to = as the standard semantics of deduction.

It is often said that deduction is truth-preserving, in the sense that the conclusion of a
deductive argument is true whenever the premisses are. Defining a formula to be true if it
is satisfied by a distinguished intended interpretation, we see that the idea of truth-
preservation is indeed captured by the standard deductive semantics. However, it seems
more accurate to say that deduction is satisfaction-preserving: the conclusion of a
deductive argument is satisfied by any interpretation satisfying the premisses39. Clearly,
satisfaction-preservation implies truth-preservation, but the former generalises the latter
by quantifying over all possible interpretations. Furthermore, deductive arguments are
meaningful even if their premisses are false.

38A precise definition of this semantics is given in section 1.2.
39What I call ‘satisfaction’ some others may prefer to call ‘truth in a model’. However, the

main point is that there is a distinction between absolute definitions of truth, and relative or
model-theoretic definitions of truth (Haack, 1978, p.108). By using the more neutral term
‘satisfaction’ I hope to avoid confusion. What I want to stress here is that, whenever we reason
about the ‘real world’ (which we often do), we would be satisfied with mere truth-preservation.
Deduction offers us something much stronger!
See also (Etchemendy, 1990), especially Ch.2 and p.49.
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Although logical entailment is a well-defined notion, the question whether a certain Σ
logically entails a certain ϕ can be quite hard to answer. This is especially true when the
domain of interpretation is infinite (as in the case of the integers), since in that case Σ
may have an infinite number of models. Proof theory is a computationally oriented
method for calculating the relation of logical entailment. The basic idea is to set apart a
set of axioms, and a set of inference rules that transform one or more given formulas into
a new formula; axioms and inference rules are jointly called a proof procedure. Given a
proof procedure P, we say that ϕ is provable from Σ and write Σ |P ϕ if there exists a
finite sequence of formulas ϕ1, ϕ2, …, ϕn which is obtained by successive applications of
inference rules to axioms, premisses in Σ, or previous formulas in the sequence, or
combinations of these, while ϕn is the conclusion ϕ. Such a sequence of formulas, if it
exists, is called a proof of ϕ from Σ. I will often write |, without explicit reference to a
particular proof procedure.

The question whether | is actually the same relation as = takes us to the metatheory
of deductive logic. We say that a proof procedure is sound if Σ = ϕ whenever Σ | ϕ; it is
complete if Σ | ϕ whenever Σ = ϕ. If a proof procedure can be shown to be both sound
and complete, this is called a representation theorem. Representation theorems have been
obtained for a variety of logical languages and proof theories, including first-order
predicate logic. Further metatheoretical notions include decidability and compactness. A
logic is decidable if there exists an effective procedure for deciding whether Σ | ϕ .
Propositional logic is decidable (since the number of models of a formula, i.e. truthvalue
assignments to propositional atoms, is always finite), whereas first-order predicate logic
turns out to be semi-decidable: there are procedures that produce a proof whenever one
exists, but no procedure is guaranteed to halt and terminate with failure if no proof exists.
A logic is compact if a set of formulas Σ is consistent iff every finite subset of Σ is (a set
of formulas is consistent if for no formula ϕ it is the case that Σ | ϕ and Σ | ¬ϕ ). First-
order predicate logic is compact, a property that will be used to prove several
completeness results in chapter 7.

Clearly, | is a relation on 2L×L, which (if it is sound and complete, i.e. equivalent
to =) enjoys a wealth of special properties:

inclusion: if ϕ∈Σ , then Σ | ϕ;
transitivity: if Σ | ϕ for all ϕ∈Φ  and Φ | ψ, then Σ | ψ;
monotonicity: if Σ | ϕ, then Σ∪ {ψ} | ϕ for all ψ;
deduction theorem: Σ∪ {ψ} | ϕ iff Σ | ψ→ϕ;
proof by refutation: Σ | ϕ iff Σ∪ {¬ϕ } is inconsistent.

I will refer to such properties as metalevel properties, since they can be used to reason
about deduction as a form of reasoning. Clearly, some of these properties belong to the
tool kit of every mathematician.

To wrap up the foregoing discussion: deductive reasoning can be analysed on three
distinct levels. The semantic level is the most basic but the least practical, and formalises
the idea that deduction is truth-preserving: the conclusion of a deductive argument is true
whenever the premisses are. On the proof-theoretical level, one is concerned with the
question how to actually derive the conclusion from the premisses. Finally, on the meta-
theoretical level one can reason about deductive reasoning as such, establishing e.g. the
completeness of a particular proof procedure, or the fact that deductive conclusions drawn
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on the basis of partial knowledge remain valid when the whole of available knowledge is
taken into account.

Non-deductive logics

Clearly, a non-deductive logic is not truth-preserving. This means that every once in a
while one draws a conclusion that turns out to be false. If a conclusion is refuted by fur-
ther observations, we say that the conclusion is defeated; non-deductive logics are likewise
called defeasible. Clearly, in a defeasible logic one must use all the information available
to derive a conclusion, and one must always be prepared to give up earlier conclusions.

A better understanding of all these issues is obtained when non-deductive logics are
analysed on the metalevel. Thus, whereas for deductive logic semantics and proof theory
are the pillars upon which the metatheory is built, for non-deductive logics it seems to be
just the other way around: we start by investigating which properties a certain non-
deductive logic has or does not have, and only then we devise a semantics which precisely
matches that specific set of properties. The process of devising a semantics matching a set
of properties is called a characterisation.

The remainder of the present chapter will be devoted to the development of a
metatheory of plausible reasoning, and a semantic characterisation of that metatheory, as
put forward in a seminal paper by Sarit Kraus, Daniel Lehmann and Menachem Magidor,
published in 1990 in the Artificial Intelligence journal. In that paper, the authors set out
to “study general patterns of nonmonotonic reasoning and try to isolate properties that
could help us map the field of nonmonotonic reasoning by reference to positive
properties”. Their approach will form a model for much of the foundational work on
induction presented in this thesis.

§15.  THE KLM FRAMEWORK FOR PLAUSIBLE REASONING

The need for a framework such as that developed by Kraus et al. (henceforth referred to as
the KLM framework) is nowhere demonstrated more clearly than in the phrase
‘nonmonotonic reasoning’. Usually, the kind of reasoning studied under that name is
exemplified by the prototypical ornithological argument

typically, birds fly

Tweety is a bird

∴  Tweety flies

Clearly, such arguments are defeasible, and the corresponding kind of reasoning is
nonmonotonic — yet so are virtually all non-deductive forms of reasoning. For instance,
the inductive conclusion ‘all swans are white’ is defeated by the observation of a black
swan, which demonstrates that induction is nonmonotonic as well. It is a regrettable fact
that ‘nonmonotonic reasoning’ is used most frequently in the sense of ‘plausible
reasoning’, whereas it is such a wider (and better-defined) term. To avoid confusion, I will
use the term ‘plausible reasoning’ whenever I mean plausible reasoning.
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Plausible consequence relations

Following Gabbay (1985), Kraus et al. focus the study of plausible reasoning on the level
of consequence relations, where a consequence relation is a set of arguments.

DEFINITION 4.1. Let L be a propositional language. A consequence relation
|~ ⊆  L×L40 is a set of pairs of formulas of L. Elements of a consequence
relation are called arguments41; instead of 〈p,q〉∈ |~ we write p |~ q. The left-
hand formula is called the premiss of the argument (if it is a conjunction,
each of the conjuncts is also called a premiss), and the right-hand formula is
called its conclusion.

The intended interpretation of p |~ q is ‘if p, normally q’ or ‘q is a plausible consequence
of p’.42

It is the aim of Kraus et al. to develop sensible axiomatisations of the binary relation
|~, each characterised by a suitable semantics. To this end, they employ a metalanguage
containing a binary predicate |~ (written infix for convenience), variables ranging over
formulas of L (denoted by Greek letters from the beginning of the alphabet), and constants
referring to formulas of L (for convenience, these constants are simply the formulas
themselves — typewriter font refers to formulas from L).

Kraus et al. choose a Gentzen-style notation of axiom schemata and inference rules to
express structural properties of |~. An example of an axiom schema is

• Reflexivity : α  |~ α

Here, α  is a variable in the metalanguage, ranging over formulas of L. A consequence
relation satisfies such an axiom schema if it contains all instances of it (an instance is
obtained by replacing the metavariable α with a formula of L). For example, if bird is a
proposition of L then a consequence relation satisfying Reflexivity contains the argument
bird |~ bird (‘birds normally are birds’).

An example of an inference rule is

• Cautious Monotonicity:
α   |~  β   ,  α   |~  γ

α∧β  |~  γ

The metalevel formulas above the line are the antecedents of the inference rule, and the
formula below the line is its consequent. A consequence relation satisfies an inference rule
if it is closed under that rule, that is, whenever it contains instances of all the antecedents

40A set of premisses Σ is treated as the conjunction of its elements; obviously, this requires Σ
to be finite.

41Kraus et al. use the phrase ‘conditional assertion’; I prefer a term which is also applicable
to forms of reasoning other than plausible reasoning.

42It should be noted that the two intended interpretations are quite different: the first
statement is reminiscent of material implication (if …, then …), while the second is analogous
to logical entailment. Kraus et al. do not make this distinction, which is, I believe, a mistake
— see §16.
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(such that the same variable is replaced by the same formula of L throughout), it also
contains the corresponding instance of the consequent. For example, if a consequence
relation contains bird |~ feathers and bird |~ flies, then it satisfies Cautious
Monotonicity only if it also contains bird∧ feathers |~ flies (‘birds with feathers
normally fly’).

Deductive arguments like ‘penguins are birds’ can also be incorporated in the KLM
framework. They are not part of the consequence relation, but collected separately in a
background theory T. If ‘penguins are birds’ is known from the background theory, this is
written as T = penguin→bird, as usual. In fact, rather than introducing an explicit
background theory, the KLM framework utilises a restricted set of models U, so that =p
means ‘for all m∈ U: m = p’. The distinction is technical, and for all practical purposes U
can be thought of as being the set of models of T.

Deductive arguments can be ‘lifted’ to the metalevel, where they can be used in
inference rules such as the following:

• Right Weakening:
=α → β  , γ  |~ α

γ   |~ β

For instance, if =flies→¬penguin (‘no penguin flies’) and the consequence relation
contains bird |~ flies, then it satisfies Right Weakening only if it also contains
bird |~ ¬penguin (‘birds are normally not penguins’).

Rule systems for plausible reasoning

Axiom schemata and inference rules can be combined to derive additional rules. For
instance, by putting γ=α  in Right Weakening and applying Reflexivity, one obtains the
following derived rule:

• Entailment:
=α→β
α   |~ β

What this derivation tells us is that a consequence relation satisfying Reflexivity and
Right Weakening contains at least all deductive arguments. Furthermore, note that
Reflexivity can be obtained from Entailment by putting β=α , which implies that in the
presence of Right Weakening, Reflexivity and Entailment are equivalent, and only one of
them needs to be included if both properties are required. Part of the KLM framework aims
at finding elegant axiomatisations or rule systems for different sets of required properties.

Kraus et al. define five different rule systems, three of which are of immediate interest
to us here. In order of increasing strength, these are the systems C (for cumulative
reasoning), P (preferential reasoning) and M (monotonic reasoning). P is strictly stronger
than C (and M  is strictly stronger than the other two) in the following sense: every
preferential consequence relation is cumulative, but some cumulative consequence
relations are not preferential. Consequently, every preferential consequence relation
satisfies all the properties of cumulative consequence relations, and the system P can be
obtained from C by adding some additional rules.

We summarise the main definitions and results concerning these three rule systems
below. The weakest rule system C contains, according to Kraus et al., the minimal
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conditions under which a consequence relation can still be claimed to model some form of
plausible reasoning.

DEFINITION 4.2 (KLM 3.143). A consequence relation |~ is said to be
cumulative iff it satisfies the following axiom schema and inference rules:

• Reflexivity : α  |~ α

• Left Logical Equivalence:
=α ↔ β  , α  |~  γ

β  |~  γ

• Right Weakening:
=α → β  , γ  |~ α

γ   |~ β

• Cut:
α∧β  |~   γ   ,  α   |~ β

α   |~  γ

• Cautious Monotonicity:
α   |~  β   ,  α   |~  γ

α∧β  |~  γ

Together, these rules constitute the system C.

One of the derived rules of C is the following (KLM 3.3):

• And:
α   |~  β   ,  α   |~  γ

α   |~ β∧γ

The next rule system, P, takes the central position in the KLM framework.

DEFINITION 4.3 (KLM 5.1). A consequence relation |~ is said to be
preferential iff it satisfies the rules of C and the following:

• Or:
α   |~   γ  ,  β   |~  γ

α∨β  |~  γ

Together, these rules constitute the system P.

One of the derived rules of P is the following (KLM 5.2):

• S :
α∧β  |~  γ
α   |~ β→γ

It can be shown (KLM 5.3) that an alternative axiomatisation of P is obtained by
replacing Cut with And, resulting in the following set of properties: Reflexivity, Left
Logical Equivalence, Right Weakening, And, Cautious Monotonicity, and Or.

Finally, the third rule system M is the strongest of the three. As we will see below it

43This refers to Definition 3.1 of (Kraus et al., 1990).
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models monotonic, deductive reasoning.

DEFINITION 4.4 (KLM 7.1). A consequence relation |~ is said to be
monotonic iff it satisfies the rules of C and the following:

• Contraposition:
α   |~ β

¬β  |~ ¬ α

Together, these rules constitute the system M.

An alternative axiomatisation (KLM 7.3) can be obtained from P by replacing Cautious
Monotonicity with

• Monotonicity:
=α → β  , β  |~  γ

α   |~  γ

Since Left Logical Equivalence is implied by Monotonicity, this results in the following
set of properties: Reflexivity, Right Weakening, And, Monotonicity, and Or.
Furthermore, we notice that Or could also be replaced with rule S (KLM 7.3).

Characterisation of plausible consequence relations

Each of the rule systems in the KLM framework is characterised by an appropriate
semantics. Obviously, the weakest system C requires the most elaborate semantics, and
each of the stronger systems simplifies this semantics in some respect. The basic idea of
the semantics for C was already proposed by Shoham (1987), who introduced a partial
ordering of preference between interpretations, stipulating that α  plausibly entails β if
every most preferred model of α satisfies β.

However, for cumulative reasoning the preference relation compares sets of models
rather than single models. A further technicality is that the same set of models may appear
at more than one place in the ordering. Therefore, preference is expressed between abstract
states, each of which is labelled with a set of models (recall that U is a set of models,
expressing an implicit background theory)44.

DEFINITION 4.5 (KLM 3.10). A cumulative structure45 is a triple 〈S,l,<〉 ,
where S is a set of states, l: S→2U is a function that labels every state with
a nonempty set of models, and < is a binary relation46 on S.

44It should be noted that a state is fully determined by the set of models labelling it and its
place in the preference ordering, and thus needs no further definition. In the words of Kraus et
al.: ‘We shall not define further the notion of a state, but suppose that every state is, in a
[structure], labeled with a set of [models] (intuitively the set of all [models] the reasoner thinks
are possible in this state)’ (p.181).

45What I call a structure is called a model by Kraus et al., and what I call a model they call a
world. I chose to change terminology because I prefer to use the term ‘model’ in its classical
sense.

46< is not necessarily a partial order, but it should satisfy a certain ‘smoothness condition’,
which is for instance satisfied if < does not have infinite descending chains.
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Every cumulative structure defines a consequence relation, as follows.

DEFINITION 4.6 (KLM 3.11, 3.13). Let W  = 〈S,l,<〉  be a cumulative
structure. A state s∈ S satisfies a formula α∈ L iff for every model m∈ l(s),
m = α ; the set of states satisfying α  is denoted by [α]. The consequence
relation defined by W is denoted by |~W and is defined by: α  |~W β iff every
state minimal (wrt. <) in [α] satisfies β.

It is relatively easy to show that the consequence relation defined by a cumulative
structure is in fact cumulative, that is, it satisfies the rules of C (KLM 3.16). This is a
soundness result for cumulative consequence relations.

The corresponding completeness result requires that, for an arbitrary cumulative con-
sequence relation |~, there exists a cumulative structure W such that |~W coincides with |~.
Briefly, the construction is as follows. Define an equivalence relation ~ by: α~β iff α |~ β
and β |~ α , and let S be the set of equivalence classes of formulas under ~. Furthermore,
each equivalence class is labelled with the set of normal models for the formulas in that
class, where a model m∈ U is a normal model for α  iff it verifies all of its plausible
consequences. Finally, s1 is preferred over s2 (s1<s2) iff some formula in s1 is a plausible
consequence of some formula in s2, and s1≠s2. The combination of soundness and
completeness gives us the following representation theorem.

THEOREM 4.7 (KLM 3.25). A consequence relation is a cumulative
consequence relation iff it is defined by some cumulative structure. ≈

The corresponding results for P and M  are obtained by constraining cumulative
structures. A preferential structure is a cumulative structure where states are labelled with
singleton sets of models, and < is a strict partial order. We then essentially have a
preference over models (except that the same model may label different states — see
(Kraus et al., 1990, p. 193) for an example why this additional freedom is needed).

DEFINITION 4.8 (KLM 5.6). A preferential structure is a triple W = 〈S,l,<〉 ,
where S is a set of states, l: S→U is a function that labels every state with
a model, and < is a strict partial order47 on S. A state s∈ S satisfies a
formula α∈ L iff l(s) = α; the consequence relation defined by W is denoted
by |~W and is defined as in Definition 4.6.

For proving completeness the following preferential structure is built. Let S be the set of
pairs 〈m,α〉  of models m and formulas α , such that m is a normal model for α . Every
state 〈m,α〉  in S is simply labelled with m. Finally, a state 〈m,α〉  is preferred over an-
other state 〈n,β〉 iff α∨β  |~ α  (expressing that α  is not less ordinary than β48) and m =/  β

47I.e., < is irreflexive and transitive. In addition, < should satisfy the ‘smoothness
condition’.

48In the words of Kraus et al.: ‘Indeed, if we would conclude that α is true on the basis that
either α  or β is true, this means that the former is not more out of the ordinary than the latter’
(p.195). Notice that by Or and Reflexivity β |~ α  is a sufficient condition for α∨β  |~ α .
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(this is just to make the ordering irreflexive). We then have the following representation
theorem.

THEOREM 4.9 (KLM 5.18). A consequence relation is a preferential
consequence relation iff it is defined by some preferential structure. ≈

A monotonic49 structure is a preferential structure in which the preference relation < is
empty. This removes the need for the intermediate level of states, since different states
labelled by the same model can be considered identical. In practice, a monotonic structure
is thus defined by a subset W of U, and the consequence relation defined by a monotonic
structure is equivalent to logical entailment over W.

DEFINITION 4.10 (KLM 7.4). A monotonic structure is a set W⊆ U. The
consequence relation |~W defined by a monotonic structure W is defined by:
α  |~W β iff every model m∈ W that satisfies α, also satisfies β.

In order to prove completeness, we need to construct a monotonic structure V from a
given consequence relation |~, such that |~ and |~V coincide. To this end, V is defined as
follows:

V = {m∈ U | for all α ,β∈ L: if α  |~ β, then m = α→β}

That is, V consists of those models that verify every plausible argument as if it were a
deductive argument. It is not difficult to show that the consequence relation defined by V
corresponds to |~ if the latter is monotonic.

THEOREM 4.11 (KLM 7.5). A consequence relation is a monotonic
consequence relation iff it is defined by some monotonic structure. ≈

This concludes our discussion of the characterisation results for the systems C, P and M.

§16.  DISCUSSION

In this chapter, I have tried to show how the standard analysis of deductive logic can be
adapted in order to accommodate for a non-deductive form of reasoning. The KLM
framework provides a systematic study of different forms of plausible reasoning, and will
be a model for my subsequent investigations of different forms of induction. As I will
argue below, this is possible because the KLM framework is so flexible that it in fact
provides a methodology for analysing any kind of reasoning. I will also discuss criteria for
comparing the strength of different rule systems.

The KLM approach as a methodology of descriptive logic

Although Kraus et al. were only concerned with plausible reasoning, their choice of
considering plausible consequence as a metanotion on top of a classical propositional
language (rather than devising a special-purpose language such as default logic (Reiter,

49Kraus et al. call such structures simple preferential.
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1980) or circumscription (McCarthy, 1980)) turns their approach into a methodology
for analysing arbitrary forms of reasoning on the metalevel. Indeed, the formal analysis in
Part II of this thesis provides a case in point: although many of the ideas underlying that
analysis were conceived independently of the KLM framework, it was the paper by Kraus
et al. which prompted the formalisation of those ideas by means of conjectural
consequence relations worked out in chapters 6 and 7.

I would like to add that both Kraus et al.’s analysis of plausible reasoning and my
analysis of induction should be considered, in my view, as belonging to a distinguished
branch of logic which I will call descriptive logic. The aim of descriptive logic is to
provide a catalogue of different forms of reasoning, and to study the distinguishing
qualities of each of those forms of reasoning, in their own right as well as in relation to
each other. If such a catalogue deals only with reasoning forms of type X, I call it a
descriptive logical theory of type X. For instance, the KLM framework establishes a
descriptive logical theory of plausible reasoning; my primary aim in this thesis is to
provide a descriptive logical theory of induction. In order to justify this new terminology,
I have to explain why the systematic study of reasoning forms is useful, and why it
requires a separate branch of logic.

The first point is easily dealt with. One only needs to consult the scientific literature
in order to find answers to questions like: What is deduction? What is induction? Is any
non-deductive logic inductive? What is abduction? and what is its relation to induction?
What constitutes a logical system? Throughout the philosophical and logical literature,
one will find either embarrassingly few answers, or an equally embarrassing variety of
proposed answers, to these questions. In my view, this state of affairs puts a threat to the
scientific credibility of logic, and reduces logic to ‘the formal study of whatever logicians
choose to study’.

Be that as it may, one might argue that the ontology of reasoning forms should be
(and is) treated in the field known as philosophy of logic. To quote Haack:

‘...among the characteristically philosophical questions raised by the
enterprise of logic are these: What does it mean to say that an argument is
valid? that one statement follows from another? that a statement is
logically true? Is validity to be explained as relative to some formal
system? Or is there an extra-systematic idea that formal systems aim to
represent? What has being valid got to do with being a good argument?
How do formal logical systems help one to assess informal arguments?
(…) Is there one correct formal logic? and what might ‘correct’ mean here?
How does one recognise a valid argument or a logical truth? Which formal
systems count as logics, and why? Certain themes recur: concern with the
scope and aims of logic, the relations between formal logic and informal
argument, and the relations between different formal systems.’
(Haack, 1978, p.1)

It perhaps only requires a bit of good will to see that the systematic study of reasoning
types would fit into Haack’s description of the main questions studied by philosophy of
logic. What bothers me, however, is that the issue of non-deductive or non-standard logics
seems to occupy a rather peripheral position within that field. Furthermore, and perhaps
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more importantly, it seems to be a (regrettable) fact of life that issues raised in
‘philosophy of Y’ are usually taken to be of limited significance by practitioners of Y. I
do, therefore, strongly advocate the view that the systematic study of logic forms an
integral part of logic itself, rather than a meta-science studying the things logicians do.
One can draw a parallel with the study of computer programming languages: although
initially computer programming was identified with imperative programming, the advent
of other programming paradigms such as functional and logic programming prompted
computer scientists to reflect upon the essence of computer programming and
programming paradigms, rather than banishing that subject to ‘philosophy of
programming languages’ (although the term sounds good!).

To reiterate the point: descriptive logic, the systematic study of reasoning forms, is a
branch of logic whose significance, especially for artificial intelligence researchers, can
hardly be overestimated. The work by Kraus et al. represents an important contribution to
descriptive logic, providing a descriptive logical theory of plausible reasoning. I will take
advantage of the inherent flexibility of their framework, by using their methods to
construct a descriptive logical theory of conjectural consequence relations, thus providing
a constructive proof for the proposition that the KLM approach represents a methodology
of descriptive logic.

The pragmatics of consequence relations

If one accepts this methodological view of the KLM framework, the distinction between
the object level (a propositional language) and the metalevel (the language of plausible
arguments) seems crucial. As soon as the metalevel consequence symbol |~ is interpreted
as an object level connective, the methodological view seems to vanish.

Ironically, Kraus et al. are not very clear on this point, as is demonstrated by their
account of the pragmatics of plausible consequence relations.

‘The queries one wants to ask an automated knowledge base are formulas
(of L) and query β should be interpreted as: Is β expected to be true? To
answer such a query the knowledge base will apply some inference
procedure to the information it has. We shall now propose a description of
the different types of information a knowledge base has.
The first type of information (…) is coded in the universe of reference U
that describes both hard constraints (e.g., dogs are mammals) and points of
definition (e.g., youngster is equivalent to not adult). Equivalently, such
information will be given by a set of formulas defining U to be the set of
all [models] that satisfy all the formulas of this set.
The second type of information consists of a set of conditional assertions50

describing the soft constraints (e.g., birds normally fly). This set describes
what we know about the way the world generally behaves. This set of
conditional assertions will be called the knowledge base, and denoted by K.

50Called ‘plausible arguments’ in this chapter.
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The third type of information describes our information about the specific
situation at hand (e.g., it is a bird). This information will be represented by
a formula. (…)
Our inference procedure will work in the following way, to answer query β.
In the context of the universe of reference U and a specific situation
described by α, it will try to deduce (…) the conditional assertion α |~ β
from the knowledge base K. This is a particularly elegant way of looking
at the inference process: the inference process deduces conditional assertions
from sets of conditional assertions.’ (Kraus et al., 1990, pp. 173–174)

For instance, given the ‘hard’ rule

=penguin→bird

and the ‘soft’ rules

bird |~ flies
penguin |~ ¬flies

the conditional assertion penguin |~ flies , which would establish a kind of
contradiction, can be derived using rules from M, but not using only rules from P51;
Kraus et al. say that the assertion is monotonically, but not preferentially, entailed by the
knowledge base.

Now this may be considered ‘a particularly elegant way of looking at the inference
process’ by some — but it is not the kind of inference process I am concerned with in this
thesis. The difference is that Kraus et al. interpret a given plausible consequence relation
as a knowledge base, while I interpret it as a description of the behaviour of a
particular reasoning agent. Under the first interpretation the symbol |~ represents the
connective of plausible implication; but then one wonders why this connective cannot be
nested (as in (α |~ β) |~ γ), or why different plausible implications cannot be combined by
means of other connectives (as in α |~ γ ∨  β  |~ γ)? Under the second interpretation these
questions simply make no sense: the expression (α  |~ β) |~ γ is just as meaningless as
(α  =  β) =  γ.

The position taken in this thesis can be summarised as follows:
(i) an argument like α |~ β describes part of the behaviour of a particular

reasoning agent;
(ii) a metalevel rule like Cautious Monotonicity is a rationality postulate

for certain kinds of reasoning;
(iii) a consequence relation closed under the rules of a certain rule system is

a complete description of the behaviour of an agent performing a
certain kind of reasoning.

For instance, if a plausible reasoning agent would accept the conclusions flies and

51The proof proceeds via Transitivity, a derived rule in M but not in P. To see that
penguin |~ flies is not preferentially entailed, consider the preferential model con-
sisting of three states s<t<u with l(s)={bird,flies}, l(t)={penguin,bird}, and
l(u)={penguin,bird,flies}.
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has_wings from the premiss bird, we would consider the agent irrational if it
wouldn’t accept the conclusion flies from the premiss bird∧ has_wings.

Comparing forms of reasoning

The different rule systems in the KLM framework are related by metalevel entailment: for
instance, every rule of P can be derived from the rules of M, prompting Kraus et al. to
call M  stronger than P . Since consequence relations can be viewed as Herbrand
interpretations of rule systems, an equivalent formulation of this observation is that every
monotonic consequence relation is preferential. This can also be seen on the semantic
level, by noting that every monotonic structure V establishes a preferential structure
W=〈V,IV,∅〉 52, such that the monotonic consequence relation |~V defined by V coincides
with the preferential consequence relation |~W defined by W.

However, the connection between this formal relation of relative strength between rule
systems and the intuitive relation of relative strength between forms of reasoning is not
so clear-cut as one might conclude from the KLM framework. Intuition tells us that
plausible reasoning is weaker or less restrictive than deductive reasoning, in the sense that
plausible reasoning allows, in general, for more conclusions from given premisses than
deductive reasoning does. Thus, the weakest possible form of reasoning would draw any
conclusion from arbitrary premisses — let us call such a form of reasoning flunky.
Flunky reasoning is axiomatised by the following rule:

• Flunk: α  |~ β

The system F consists of the single rule of Flunk. Now, it is easy to see that every rule
of M is a derived rule of F, so F is stronger than M according to the KLM criterion!
Another way to see this is by noting that every flunky consequence relation (there is only
one, viz. L×L) is monotonic (i.e. it is defined by the empty monotonic structure).

I would argue that the criterion for comparing the strength of different forms of
reasoning operates by relating semantic structures rather than rule systems. For instance,
the claim that preferential reasoning is less restrictive than monotonic reasoning might be
substantiated as follows. Let W=〈S,l,<〉  be a preferential structure defining a preferential
consequence relation |~W, let V⊆ U be the set of background models labelling some state in
S53, and let |~V be the monotonic consequence relation defined by V. From Definitions 4.8
and 4.10 we see that |~V is indeed a subset of |~W, and if < is non-empty the inclusion is
proper. That is, for a given formula α we can draw at least the same consequences using
|~W as we can draw using |~V; for instance, by virtue of the preference relation we may be
able to conclude bird |~W flies, while bird|~/ V flies. Furthermore, |~V represents
the most comprehensive monotonic consequence relation included in |~W: any monotonic
consequence relation |~X that is a superset of |~V, and that includes an argument in |~W but
not in |~V (such as bird |~W flies), would also include some argument not in |~W
(such as ¬ flies |~X ¬ bird). |~V contains all the arguments from |~W  that can be

52IV: V→V denotes the identity function on V.
53Strictly speaking, V should be defined as {l(s) | s is minimal in [α] for some α∈ L}, i.e.

only including those models in U that are actually used to determine the preferential
consequences of some α .
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obtained by means of monotonic, i.e. non-preferential, means; it is called the monotonic
restriction of |~W. It is the existence of such a mapping between semantic structures which
prompts us to call one form of reasoning more restrictive than another.

§17.  SUMMARY AND CONCLUSIONS

In this chapter I have introduced the main formal tool that will be applied in this thesis:
the general concept of a consequence relation, intended as a metalevel abstraction of an
arbitrary reasoning form. I owe this tool to Kraus, Lehmann & Magidor, who use it to
develop a descriptive logical theory of plausible reasoning. I have argued that the concept
of a consequence relation establishes in fact a methodology of descriptive logic.

The rule systems developed by Kraus et al. will also play a role in the coming
chapters, which is the reason why they have been presented here in some detail. For
instance, my characterisation of explanatory reasoning will be based on a converse form of
the rules of M. Furthermore, as has been mentioned in the previous chapter, confirmatory
reasoning can be thought of as a form of preferential reasoning. This will be worked out
more fully in chapter 7.

The question arises whether the methods for a logical analysis of reasoning outlined in
this chapter are universal. Does every form of reasoning allow for a tripartite
formalisation in terms of semantics, proof theory and metatheory? As we have seen in the
previous chapter, Carnap’s answer to this question is negative: his ‘inductive logic’ only
provides a semantics in terms of a function assigning a degree of confirmation to arbitrary
arguments, rendering the concept of a proof theory superfluous. On the other hand, the
KLM framework does supply a tripartite formalisation of plausible reasoning. In this
respect, it is illustrative to compare their approach to the standard formalisation of
deductive reasoning: the only difference appears on the semantic level, in that the concept
of satisfaction-preservation is replaced by the concept of what might be called preferential
satisfaction-preservation. I will generalise this in the next chapter by introducing the
concept of a preservation semantics, whose main virtue it is to define a certain semantic
quality that the conclusion of an argument inherits from the premisses.

*  *  *  *


