
CHAPTER 3

A P P R O A C H E S  T O
C O M P U T A T I O N A L  I N D U C T I O N

— in which it is demonstrated how problems from machine
learning can be reformulated as problems of explanatory and
confirmatory induction —

IN THIS CHAPTER I will review and discuss some of the approaches to computational
induction that can be found in the machine learning and knowledge representation

literature. Broadly speaking, each of these approaches falls in one of two categories: the
induction of logic programs (roughly corresponding to explanatory induction), and the
induction of integrity constraints that are not primarily intended to explain the
classification of the supplied examples. Many aspects of these approaches also occur in
the context of the conceptually simpler problem of learning concepts from examples.

I will start with a discussion of the latter problem, and indicate how it can be
reformulated in logical terms. In this way it becomes clear that concept learning can be
viewed as a special case of induction of logic programs, which is discussed next. After
that I turn to the problem of inducing non-classificatory logical theories. The chapter is
ended with a discussion of the relations between these two forms of computational
induction and the two forms of reasoning introduced in the previous chapter.

§9.  CONCEPT LEARNING FROM EXAMPLES

Traditionally, the problem of concept learning from examples has occupied a central
position among computational approaches to induction. Informally, a concept is a
description of a certain set of objects or instances, and an example is a description of an
instance together with a classification (positive if the instance belongs to the concept,
negative if it does not). Concept learning from examples is the problem of inferring an
unknown concept from given positive and negative examples. This inference is inductive,
since it proceeds from specific facts about a concept to a general definition of the concept.

The Version Space model

Various formalisations of the problem of learning concepts from examples exist. The
following formalisation was proposed by Mitchell (1982, p.204)28:

28For the purposes of the present discussion, Mitchell’s terminology has been adapted
(Mitchell used generalization for concept, training instance for example, and matching for
covering).



3.   A pproaches  t o  com putat ional  i nduct ion

36

Problem: Concept learning from examples.
Given: (1) A language in which to describe instances.

(2) A language in which to describe concepts.
(3) A covering predicate that matches concepts to instances.
(4) A set of positive and negative examples of a target concept to

be learned.
Determine: Concepts within the provided language that are consistent with

the presented examples (i.e., plausible descriptions of the target
concept).

A concept is considered to be consistent with a set of examples if and only if it covers
every positively classified instance and no negatively classified instance.

This problem can be reformulated in set-theoretical terms as follows. If the set of
instances of a concept is called the extension of that concept, then a concept is consistent
with a set of examples if the extension of the concept is a superset of the set of positively
classified instances, while its intersection with the set of negatively classified instances is
empty. Furthermore, concepts can be ordered by their extensions (Mitchell, 1982, p.206):
a concept C1 is said to be (extensionally) more specific than another concept C2 if the
extension of C1 is a proper subset of the extension of C2; we also say that C2 is
(extensionally) more general than C1. Clearly this relation is transitive — we usually
refer to the reflexive (i.e. non-proper) version of this relation as the (extensional)
generality ordering, and say that C1 is as specific as C2 (or C2 is as general as C1). Note
that the generality ordering is not, in general, antisymmetric, since different concepts may
be extensionally equal (e.g., the concept ‘square circle’, and the concept ‘unicorn’).
However, it can be turned into a partial order by considering equivalence sets of
extensionally equivalent concepts.

In fact, most of the regularities exhibited by concept extensions do not carry over to
the set of concepts. For instance, the powerset of the set of instances forms a Boolean
algebra, which means that there are well-defined operations to construct the smallest set of
instances that contains two given sets of instances, and the largest set of instances that is
contained in two given sets of instances (i.e., set-union and set-intersection). However,
the corresponding operations on concepts (i.e. least general generalisation (LGG) and most
general specialisation (MGS)) are usually not uniquely defined, which is a consequence of
the circumstance that not every instance set is the extension of a concept, and that not
every expression of the concept language has an extension. Thus, the complexity of
concept learning is, to a large extent, determined by the languages involved.

Depending on the concept language LC, it may or may not be possible to define a
relation ≥ ⊆  LC×LC of intensional generality or subsumption, which coincides with the
extensional generality ordering. If C1 ≥ C2 implies that C1 is as general as C2, the
subsumption ordering may be called sound; if C1 ≥ C2 whenever C1 is as general as C2,
it may be called complete. Given this terminology, we can formulate the following result.

LEMMA 3.1. If the subsumption ordering ≥ is sound, then the set of all
concepts consistent with a given set of examples is convex wrt. ≥.
Proof. We have to prove that if C1 and C2 are consistent concepts with
C1≥C2, then so is any C such that C1≥C≥C2.



§9.   C oncept  l earning f rom  ex am ples

37

•
S

•C

•
G

Figure 3.1. The Version Space model. S and G are the lower and upper
boundaries of the set of concepts consistent with given examples: every

consistent concept C subsumes at least one member of S, and subsumed by
at least one member of G (the arrows point from the subsuming concept to
the subsumed concept). The grey areas contain the inconsistent concepts.

By the soundness of ≥ , C1≥C  implies that if C1 does not cover any
negatively classified instance, neither does C. Likewise, C≥C2 implies that
if C2 covers every positively classified instance, so does C. We conclude
that C is consistent. ≈

Mitchell calls the set of all concepts that are consistent with the examples the Version
Space, ‘because it contains all plausible versions of the emerging concept’ (Mitchell,
1982, p.212). He notes that the convexity of the Version Space allows for a compact
representation in terms of the following two sets:

S = {C∈ LC | C is a concept that is consistent with the examples, and there
is no concept which is both more specific than C and
consistent with the examples}

G = {C∈ LC | C is a concept that is consistent with the examples, and there
is no concept which is both more general than C and
consistent with the examples}

The sets S and G contain the most specific and most general concepts consistent with the
examples. A concept C is consistent with the examples if and only if it subsumes some
member of S, and is subsumed by some member of G (fig. 3.1).

I will refer to the view of a hypothesis space as a partially ordered convex set with
lower and upper bounds as the Version Space model. Every computational approach to
induction exploits, in one way or the other, the subsumption ordering when searching the
space of possible hypotheses. The Version Space model is therefore an important
conceptual tool for describing such approaches.



3.   A pproaches  t o  com putat ional  i nduct ion

38

Attribute-value languages

In his general definition of the concept learning problem, Mitchell distinguished between
an instance language and a concept language. Indeed, the distinction between expressions
describing instances and expressions describing sets of instances seems a crucial one, an
observation which would suggest the use of a predicate-logical language. However, many
approaches to concept learning employ in fact the same language for describing instances
and concepts, a strategy that has been referred to as the Single Representation Trick
(Dietterich et al., 1982). This is, logically speaking, a non-obvious step that deserves
some further attention.

The most frequently employed languages in computational approaches to concept
learning belong to the class of attribute-value languages. These are propositional
languages in which propositions are attribute-value pairs. Each attribute, such as colour,
has a designated set of possible values, e.g. {red, yellow, blue}. Attribute-value pairs may
be combined into expressions by means of the usual logical connectives, leading to
expressions like

colour=red ∧  (shape=square ∨  shape=triangle) (1)

Descriptions of instances may be restricted to conjunctions of attribute-value pairs, but
this restriction is not essential.

What is important here is that the covering relation, which tests whether a concept
covers an instance, is now equivalent to the subsumption relation, which tests whether a
concept is more general than another concept. For instance, expression (1) subsumes the
following expression

colour=red ∧  shape=square ∧  size=small (2)

If expression (2) describes an instance, we may conclude that this instance belongs to the
concept described by (1). Alternatively, if (2) describes a concept, then this concept is
more specific than the concept described by (1).

We may furthermore note that if attribute-value pairs are considered as propositions
that may take on a truth value, every truth-assignment satisfying formula (2) also satisfies
formula (1) — in other words, (2) logically entails (1). More generally, subsumption in
attribute-value languages can be seen as a special case of logical entailment in
propositional logic. It should be noted, however, that in some cases additional background
knowledge is needed. For instance, consider the following expression:

colour=red ∧  ¬(shape=round ∨  size=big) (3)

Intuitively, the concept described by (3) subsumes the concept described by (2). However,
(2) only logically entails (3) if we know that shape=square→¬(shape=round)
and size=small→¬(size=big) are logically valid (true in every interpretation).
Axioms to this effect should be included for all attributes, and for all pairs of values.29

29By employing a higher-order logic, one could take care of all attributes at once — see
(Flach, 1992a).



§9.   C oncept  l earning f rom  ex am ples

39

What has been demonstrated here is that, even if concept learning from examples
proceeds from instances to sets of instances, it can be formalised by employing a simple
propositional language that fails to recognise the difference. However, it should be made
clear that something is lost along the way. For instance, consider a situation in which
some of the examples are incomplete: the values of some attributes are left unspecified. It
may happen that one of the missing attributes is crucial for explaining the classification
of those instances — in fact, it is possible that two instances receive the same incomplete
description, while one is classified positively and the other negatively! Clearly, in the
above setting this would immediately result in logical inconsistency, because the two
instances are described by syntactically equal expressions. Such inconsistencies can be
avoided by employing a predicate-logical language, since such a language allows us to
mention the instance explicitly.

Concept learning in predicate logic

In predicate logic instances are denoted by constants, and sets of instances are denoted by
free variables. Following this observation, the concept denoted by attribute-value
expression (1) could be represented in predicate logic as

colour-red(X) ∧  (shape-square(X) ∨  shape-triangle(X)) (4)

where colour-red, shape-square and shape-triangle are unary predicates. In
general, a formula can have any number of free variables, describing concepts whose
extensions contain tuples of instances — another advantage offered by predicate logic over
propositional logic. The idea of representing concepts by open formulas can be traced back
to Gottlob Frege (1893), and is extensively discussed in (Console & Saitta, 1994).

An instance, like the one expressed by attribute-value expression (2), could be
represented by a variable-free formula, thereby naming the instance:

colour-red(a) ∧  shape-square(a) ∧  size-small(a) (5)

Instance a can be shown to belong to the concept defined by (4) by substituting a for X,
and showing that the resulting formula is logically implied by (5). Similarly, one concept
can be shown to subsume another by substituting an arbitrary constant for the variable in
both formulas, and to show that the latter logically entails the former.

The expressiveness of predicate logic can be further exploited by including a designated
predicate expressing the classification of instances. For instance, the following formula
expresses that b is a positive example of the concept ‘pretty things’:

colour-red(b) ∧  size-small(b) → pretty(b) (6)

The following formula gives a definition of that concept:

∀ X: (colour-red(X) ∨  colour-blue(X)) ↔ pretty(X) (7)

This definition is consistent with positive example (6), since the latter is logically



3.   A pproaches  t o  com putat ional  i nduct ion

40

entailed by the former, or equivalently, the consequent of implication (6) is logically
entailed by its antecedent combined with (7).

Another definition that is consistent with example (6) is the following:

∀ X: colour-red(X) ↔ pretty(X) (8)

Clearly, the concept defined by (8) is more specific than the one defined by (7) —
however, neither of them logically entails the other. The usual solution to this problem is
to replace the equivalences ↔ with implications →, expressing sufficient conditions for
concept membership:

∀ X: (colour-red(X) ∨  colour-blue(X)) → pretty(X) (7′)

∀ X: colour-red(X) → pretty(X) (8′)

It is now obvious that (7′) logically entails (8′), hence the former defines a more general
concept than the latter.30 Representing a concept definition by sufficient conditions only
means that a negative classification follows from a failure to prove a positive
classification, similar to negation as failure in logic programming. Alternatively, one
could add explicit necessary conditions — if these are different from the sufficient
conditions, one would effectively obtained a three-valued concept.

I have indicated several ways in which the problem of concept learning from examples
can be reformulated in predicate logic. One possibility is to represent concepts by open
formulas with free variables. An alternative to this ‘open formula’ approach is to represent
sufficient and necessary conditions by closed formulas, by introducing a designated
predicate naming the concept to be learned. This ‘closed formula’ approach has the distinct
advantage that a more general concept corresponds to a logically stronger formula, which
is intuitively more appealing.

As for the examples, in the open formula approach these are represented by variable-
free descriptions, while in the closed formula approach there are again two alternatives.
Consider formula (6) above, which describes an instance b as belonging to the concept
pretty. One alternative is to consider the complete implication as the example, which
should be entailed by the concept definition (the ‘examples as implications’ approach).
Another option is to split the implication in two parts, the description of the object (here:
colour-red(b)∧ size-small(b)), and its classification (here: pretty(b)), and
to consider only the latter as constituting the example, while the former is part of the
background knowledge. This ‘examples as classifications’ approach has the additional
advantage that instances need not be described by variable-free formulas only: their
properties could be deduced from a general background theory.

Combining the ‘closed formula’ and ‘examples as classifications’ approaches, we
obtain the following predicate logical paraphrase of the concept learning problem:

30Under this representation, reasoning from specific to general corresponds to reasoning
from logically weaker to logically stronger, which seems very natural. However, notice that
this is at variance with the attribute-value and open formula representations of concepts, where
the more specific concept entails the more general one. This has been a source of much
confusion and debate — see e.g.  (Niblett, 1988; Flach, 1992b; Console & Saitta, 1994).



§9.   C oncept  l earning f rom  ex am ples

41

Problem: Concept learning from examples in predicate logic.
Given: (1) A predicate-logical language.

(2) A predicate representing the target concept.
(3) A set of ground positive and negative literals of this predicate,

representing the positive and negative examples.
(4) A background theory from which descriptions of instances can

be deduced.
Determine: Concepts within the provided language that are consistent with

the presented examples.

A concept is consistent with the examples if, together with the background theory, it
entails every positive example, without misclassifying any of the negative examples.
This presupposes that concepts are represented as sufficient conditions only, which is
usually the case.

Note that such a sufficient condition corresponds to a definite clause in logic
programming, and a concept definition corresponds to a definite program. Thus, the above
problem statement is general enough so as to cover the problem of inferring a logic
program from examples. The latter problem constitutes a considerably more difficult
induction task, since in general both background theory and target program may be
recursive. Furthermore, if function symbols are involved, the universe of instances is
infinite.

§10.  INDUCTION OF LOGIC PROGRAMS

I should like to stress that representing an inductive hypothesis as a logic program, i.e. a
set of definite or normal clauses, does not necessarily imply that the inductive hypothesis
is meant to be used as a computer program. For instance, a medical doctor might be
interested in a definition of the concept ‘symptoms indicating a rheumatoid disease’
without intending to execute it as a Prolog program. The choice for logic programs as
description formalism is a matter of representation rather than pragmatics. On the other
hand, the synthesis of Prolog programs is one possible application of what has come to
be called inductive logic programming (LavraË & Dæeroski, 1984).

If a concept is represented by a logic program consisting of clauses with the target
predicate in the head, its extension is represented by the minimal Herbrand model of the
program plus the background theory, restricted to the ground atoms of the target predicate.
In other words, the extension of such a predicate definition consists of the set of ground
instances of the target predicate logically entailed by that definition. It follows that the
extensional generality ordering is a special case of logical entailment between predicate
definitions, relative to the background theory. However, a subsumption relation between
sets of clauses is computationally expensive, and many approaches to induction of logic
programs employ a subsumption relation between single clauses instead.

In the case of non-recursive clauses, there is a very elegant intensional generality
relation exactly matching extensional generality, which is called θ-subsumption. If C1 and
C2 are two clauses, C1 θ-subsumes C2 if and only if there exists a substitution that can
be applied to C1, such that every literal in the resulting clause occurs in C2. For instance,



3.   A pproaches  t o  com putat ional  i nduct ion

42

consider the following two clauses:

element(X,[Y|Z]).
element(V,[V|W]):-list(W).

The first clause states that X is an element of any non-empty list; the second clause states
that the head of the list is an element, provided the tail is a list. The first clause can be
made equal to the head of the second by applying the substitution {X→V,Y→V,Z→W};
thus, the first clause θ-subsumes the second. One could say that in the first clause the
head and the tail of the list are more constrained: the head by unifying it with the first
argument, the tail by the literal in the body.

For recursive clauses, however, θ-subsumption is sound but incomplete. For instance,
consider the following two clauses:

list([X,Y|Z]):-list(Z).
list([V|W]):-list(W).

If P is a predicate definition of list containing the first clause, and P′ is obtained from
P by replacing the first clause with the second, it is clear that P′ is extensionally more
general than P. However, the first clause is not θ-subsumed by the second.

On the other hand, the intensional generality ordering of θ-subsumption has the
advantage that it behaves more regularly than its extensional counterpart. This is
illustrated by the following two clauses:

list([A,B|C]):-list(C).
list([P,Q,R|S]):-list(S).

Under θ-subsumption, there is a unique least general clause subsuming both of these
clauses:

list([X,Y|Z]):-list(V).

However, the following clause is also extensionally more general than the first two,
without θ-subsuming them:

list([X|Y]):-list(Y).

Thus, under θ-subsumption the operation of forming a least general generalisation or
LGG is uniquely defined, which is a clear computational advantage. An extensive analysis
of the relation between θ-subsumption and logical implication can be found in (Idestam-
Almquist, 1994).

There are basically two approaches to induction of logic programs from examples, that
can be understood in terms of the Version Space model. The so-called top-down methods
search the generality ordering from the top downwards, constructing a most general
program that is consistent with the examples, gradually specialising the program when
more examples become available. Such methods rely heavily on the availability of
negative examples, in order to prevent overgeneralisation. Bottom-up methods, on the
other hand, construct a most specific program that implies the positive examples. Both
methods will be briefly reviewed below.



§10.   Induct ion of  l ogi c program s

43

Top-down induction

Shapiro’s Model Inference System (MIS) was the first system to infer logic programs
consisting of definite clauses from examples (Shapiro, 1981; 1983). It was mainly
intended for incrementally synthesising Prolog programs. MIS performs a breadth-first
search of the space of possible clauses, ordered by θ-subsumption. I will describe the
operation of MIS by means of an example. Suppose we are learning the element
predicate, then MIS starts with the most general clause element(X,Y). Upon receipt of
the first negative example, this clause is retracted and a list of possible specialisations
(called refinements by Shapiro) is added to the search agenda. Under θ-subsumption, a
clause can be specialised in two ways:

(i) by adding a literal to the clause;
(ii) by applying a substitution to the clause.

One possible specialisation of element(X,Y) is element(X,[V|W]), obtained by
applying the substitution {Y→[V|W]}. Somewhere in the search process this clause will
be considered; if it is still too general, it can subsequently be specialised to
element(X,[X]) by applying the substitution {V→X, W→[]}. This clause is true in
the intended interpretation, so it will never be refuted by a negative example. However,
this single-clause program will be incomplete with respect to most positive examples
concerning longer lists, so the search for an additional clause continues. Another
specialisation of element(X,[V|W]), obtained by adding a literal to the body, is
element(X,[V|W]):-element(X,W). This clause is also true in the intended
interpretation; together, the two constructed clauses form a correct predicate definition of
element.

The main drawback of the MIS system was its inefficiency, mostly due to the
employment of a breadth-first search strategy. FOIL is a much more efficient top-down
induction algorithm, that operates in function-free definite clause logic, employing a hill-
climbing search using an information-gain heuristic (Quinlan, 1990). Below we will
consider De Raedt’s extension of MIS to the problem of inducing integrity constraints.

Bottom-up induction

One approach to bottom-up induction applies operators that invert the deductive inference
rule of resolution, and is called inverse resolution (Muggleton & Buntine, 1988). One
inverse resolution operator constructs a clause which, together with a given clause,
produces a given resolvent. The main problem that has to be solved is to prevent trivial
solutions that can be constructed by inverting propositional resolution with empty
substitutions. To this end, the CIGOL system hypothesises inverse substitutions, which
turn non-variable terms at specific positions into variables.

Due to the soundness of resolution as a deductive inference rule, the hypothesised
clause logically entails the resolvent at the root of the tree, given the other clauses. Since
resolution is refutation-complete, it seems that a full inversion of resolution is capable of
constructing every clause that entails a given resolvent, given a number of other
clauses31. However, notice that some of these clauses may have to be used several times

31See (Nienhuys-Cheng & Flach, 1991) for a discussion of the completeness of inverse



3.   A pproaches  t o  com putat ional  i nduct ion

44

in order to derive the given resolvent. The CIGOL system, on the other hand, constructs
inverse proof trees in which the hypothesised clause occurs only once; it was proved by
Gottlob (1987) that the resulting generality relation is θ-subsumption (relative to the
given clauses) rather than logical entailment. (Muggleton, 1992b) discusses techniques to
invert logical entailment.

The GOLEM system (Muggleton & Feng, 1990) embodies a different approach to
bottom-up induction. Rather than constructing clauses completing an inverse proof tree,
they construct minimal generalisations of pairs of positive examples by means of relative
least general generalisation (RLGG). Briefly, such an RLGG is the LGG under θ-
subsumption of two ground clauses with the positive examples in the head, and literals
from a ground background theory in the body. Syntactical restrictions, such as
determinacy of variables in the body of the hypothesised clause, are applied in order to
restrict the size of candidate clauses. Upon construction of a clause, the positive examples
it covers are removed, and search proceeds in order to cover the remaining examples.

§11.  INDUCTION OF INTEGRITY CONSTRAINTS

Both concept learning and induction of logic programs are classification-oriented forms of
induction. Their main goal is to induce a theory that is capable of partitioning a universe
of instances (or tuples of instances) into positive and negative instances. By introducing a
classification predicate, such classification theories naturally correspond to a definite logic
program. However, not every logical theory is intended to perform classification — for
instance, integrity constraints, i.e. indefinite clauses (having more than one positive
literal) and denials (having no positive literal), do not unequivocally define a classification
predicate. In order to induce such non-classificatory logical theories one needs a
perspective that differs from the traditional concept learning setting.

Induction as nonmonotonic inference

Such an alternative perspective was provided by Helft (1989). He noted that ‘upon
observing a number of birds and their ability to fly, people might generate the rule that all
birds fly simply as a conclusion of the observations, grounded on their similarities, rather
than as an explanation of the fact that, for example, Tweety flies knowing that it is a bird’
(p.149). Furthermore, Helft observed that

‘induction assumes that the similarities between the observed data are
representative of the rules governing them (…). This assumption is like the
one underlying default reasoning in that a priority is given to the
information present in the database. In both cases, some form of “closing-
off” the world is needed. However, there is a difference between these:
loosely speaking, while in default reasoning the assumption is “what you
are not told is false”, in similarity-based induction it is “what you are not
told looks like what you are told”.’ (Helft, 1989, p.149)

resolution operators.



§11.   Induct ion of  i nt egri t y  cons t raint s

45

On the basis of these observations, Helft arrives at the following problem definition:

Problem: Induction of generalisations (Helft).
Given: (1) A predicate-logical language.

(2) A set ∆ of formulas.
Determine: A set of generalisations Γ within the provided language such

that ∆ =IND Γ, where =IND is a certain rule of inference that
embodies the assumptions underlying induction.

Essentially, the solution provided by Helft runs as follows. Given evidence ∆ the set of
generalisations Γ consists of those clauses that are true in every truth-minimal model32 of
∆ (the ‘strong’ generalisations), and those clauses that are true in some truth-minimal
model of ∆ (the ‘weak’ generalisations). Additional requirements guarantee that none of
the clauses in Γ can be deduced from ∆, and that Γ contains no clauses that can be deduced
from other generalisations in Γ.

The ‘rule of inference’ =IND has a certain resemblance to what I call a conjectural
consequence relation in this thesis. However, when defining this logical relation between
evidence and generalisations Helft is concerned first and foremost with practical issues.
For instance, ∆ is restricted to a set of (possibly indefinite) clauses having certain
properties, ensuring that every such ∆ has a finite set of finite truth-minimal models.
Furthermore, Γ  is limited to (possibly indefinite) clauses having a certain ‘injectivity’
property, ensuring that there are no infinite descending chains of such clauses under θ-
subsumption. These restrictions ensure, for example, that Γ is always finite.

Discovery of clausal theories

De Raedt has implemented the system CLAUDIEN, which is capable of constructing a
general theory consisting of clauses (including integrity constraints) from a given database
consisting of range-restricted normal clauses33 (De Raedt & Bruynooghe, 1993). Such a
theory is complete in the sense that it entails every clause in the language that is satisfied
by the given database.

Problem: Induction of a clausal theory (De Raedt).
Given: (1) A predicate-logical language.

(2) A database D of range-restricted normal clauses.
Determine: A theory T within the provided language such that:

(i) Comp(D) = T;
(ii) for all formulas f in the language, if Comp(D) = f then T = f.

In addition, T is required to be minimal (i.e., no clause can be removed from T without
giving up the completeness property).

In this problem setting Comp(D) denotes the predicate completion of D (Clark, 1978),
which is essentially a theory expressed in predicate logic, obtained from D by adding

32These are not necessarily Herbrand models.
33A normal clause is a clause with a single literal in the head, possibly including negated

literals in the body. A range-restricted clause is a clause in which every variable in the head also
occurs in the body.



3.   A pproaches  t o  com putat ional  i nduct ion

46

sufficient conditions for the predicates in D. Predicate completion establishes a semantics
for normal logic programs, for which SLDNF resolution (SLD resolution with negation
as failure) provides a sound proof procedure. Typically the completion of a normal
program results in a single model (restricted to the vocabulary of the program); as De
Raedt notes, the completion semantics might be replaced by another semantics for logic
programs selecting a particular model. All such semantics coincide when the given
program is definite, and result in the unique truth-minimal model of the program, which
assigns false to all ground atoms of which the truthvalue is unknown.

The main algorithm of the CLAUDIEN system is very similar to MIS, and operates by
searching the space of possible clauses in a top-down manner, applying refinement
operators to specialise clauses that are violated by the given database.

Induction of attribute dependencies

My own approach to inducing attribute dependencies in databases also falls in the non-
classificatory category. Since it will be fully elaborated in chapter 8, I will only make a
few brief remarks here. Two different kinds of attribute dependencies are distinguished:
functional dependencies, and multivalued dependencies. A functional dependency states that
the value a tuple takes on for a certain attribute is completely determined by the value it
takes on for other attributes. Consequently, if two tuples in a relation satisfying the
functional dependency have identical values for the latter attributes, they also have an
identical value for the determined attribute. The induction problem is to determine the set
of functional dependencies that hold for a given relation.

Problem: Induction of functional dependencies.
Given: (1) A relation scheme R.

(2) A set E of tuples over R.
Determine: A set H of functional dependencies over R such that:

(i) for all h∈ H: h is satisfied by E;
(ii) for every functional dependency g satisfied by E: H

logically entails g.

Note that the phrase ‘h is satisfied by E’ takes on its standard logical meaning: functional
dependencies correspond to definite clauses, and relations correspond to sets of ground
facts, such that a relation satisfies a functional dependency if and only if the corresponding
set of ground facts is a Herbrand model of the corresponding definite clause. Similarly,
logical entailment in condition (ii) denotes entailment between definite clauses.

Multivalued dependencies generalise functional dependencies by stipulating that the
function governing the determined attributes is set-valued. The details need not concern us
here; suffice it to say that the problem statement for induction of multivalued
dependencies is analogous to the one for functional dependencies above. However, the
situation changes if tuples are processed one at a time: in such an incremental setting,
dependencies should possibly be refuted by known examples only, and not by means of
making possibly unwarranted assumptions about unseen instances. This will be further
elaborated in the next section.



§12.   Di scuss ion

47

§12.  DISCUSSION

I will now analyse the computational approaches to induction presented in this chapter
from the point of view of this thesis. In particular, I will categorise these approaches
according to the two forms of induction distinguished in chapter 2: explanatory reasoning
and confirmatory reasoning. After that, I will discuss an important property that can be
used to distinguish some of these approaches: incrementality.

Induction of logic programs as explanatory reasoning

Both concept learning and induction of logic programs aim at formulating a hypothesis
that classifies the examples correctly. We might say that such a hypothesis provides
explanations for the classification of every single example, in the sense that the
classification is obtained by a deductive proof. As a result, the classified instances
themselves become obsolete once a hypothesis has been adopted.

In the case of induction of logic programs, where only sufficient conditions are
induced, a positive classification is obtained by setting up a deductive proof, while a
negative classification results whenever such a proof cannot be constructed (negation as
failure). This means that negative classifications are not really explained: this would
require necessary conditions as well. Rather, the induced hypothesis should be logically
compatible with the negative examples, represented as negated ground literals — for
practical purposes, they can be simply added to the background theory. This pragmatic
view of negative examples into our logical framework corresponds to the way they are
used in practice: as a means to prevent overgeneralisation, rather than as full-fledged
premisses in a conjectural argument34.

We thus arrive at the following abstract problem statement:

Problem: Induction of logic programs from examples.
Given: (1) A predicate-logical language.

(2) A set E of ground positive literals of the target predicate.
(3) A background theory T, defining auxiliary predicates as well as

negative examples (ground negative literals of the target
predicate).

Determine: Hypotheses H within the provided language such that:
(i) for all e∈ E: T∪ H = e;
(ii) H is compatible with T.

Notice that this problem statement could be easily adapted to learning necessary
conditions by replacing ‘positive’ with ‘negative’ and vice versa; likewise, one would
obtain a hypothesis stating both sufficient and necessary conditions by including all
examples, positive as well as negative, in E.

34As argued in (De Raedt & Bruynooghe, 1992), negative examples can be generalised into
constraints with which the hypothesis should be compatible.



3.   A pproaches  t o  com putat ional  i nduct ion

48

I will now show that inference from E to H relative to T is a form of explanatory
reasoning, since it obeys the adequacy conditions formulated in chapter 2. These
conditions are reproduced below, with the term ‘observation report’ replaced with ‘set of
examples’.

(E1) Converse entailment condition: a set of examples is explained by
every consistent hypothesis entailing it.

(E2) Converse consequence condition: if a set of examples is explained
by a hypothesis H, then it is also explained by every consistent
formula entailing H.

(E3) Special consistency condition: a set of examples is compatible with
every hypothesis by which it is explained.

(E4) Equivalence condition for observations: if a set of examples E is
explained by a hypothesis H, then any set of examples logically
equivalent with E is also explained by H.

The converse entailment condition (E1) states that consistent entailment is a special
case of explanation. For the cases discussed in this chapter this condition can actually be
strengthened to equivalence; I will demonstrate in chapter 7 that the same effect can be
obtained by adding additional conditions. On the other hand, in some cases explanation is
indeed a more comprehensive concept than consistent entailment; this will also be
discussed in chapter 7.

The converse consequence condition (E2) expresses that from a given explanation H,
one might go up along the generality ordering in the Version Space, as long as one does
not go beyond the line established by the G set (recall that consistency is relative to the
background theory including negative examples). It should be noted however that some
forms of explanatory reasoning violate the converse consequence condition, for instance if
explanations are only plausible, rather than deductive, consequences. In such cases, the
Version Space contains ‘holes’: hypotheses that are in between the S and G boundaries,
yet do not explain some positive example.

The special consistency condition (E3) basically states that explanations must be
compatible with the negative examples. Finally, condition (E4) expresses that the logical
form of the examples is immaterial; this may seem trivial in the context of clausal logic,
in which formulas are expressed in conjunctive normal form, but note that logical
equivalence should be interpreted relative to the background theory.

We may conclude that induction of logic programs conforms to the adequacy
conditions for explanatory reasoning. Further conditions will be introduced in §24, which
will enable a more detailed categorisation of different approaches to explanatory induction.

Induction of integrity constraints as confirmatory reasoning

Each of Helft’s, De Raedt’s, and my own problem setting discussed in §11 is an instance
of the following abstract setting:



§12.   Di scuss ion

49

Problem: Confirmatory induction.
Given: (1) A predicate-logical language.

(2) Evidence E.
Determine: A hypothesis H within the provided language such that:

(i) H is confirmed by E;
(ii) for all g within the language, confirmed by E: H logically

entails g.

The relation ‘H is confirmed by E’ is a parameter in this scheme, that can be instantiated
to either ‘H is satisfied by the truth-minimal model of E’ (Helft, De Raedt) or ‘H is a set
of attribute dependencies satisfied by the relation E’. The use of the term confirmation is
justified by the fact that each of these instantiations satisfies Hempel’s adequacy
conditions, reproduced below35:

(C1) Entailment condition: any sentence which is entailed by consistent
evidence is confirmed by it.

(C2) Consequence condition: if the evidence confirms every one of a set
K of sentences, then it also confirms any sentence which is a
logical consequence of K.

(C3) Consistency condition: consistent evidence is compatible with the
set of all the hypotheses which it confirms.

(C4) Equivalence condition for observations: if evidence E confirms a
hypothesis H, then any evidence logically equivalent with E also
confirms H.

The entailment condition (C1) states that logical entailment is a special case of
confirmation. This is obviously true for the minimal model setting: if every model of E
is a model of H, certainly the minimal one is, which exists if E is consistent. For the
attribute dependency setting this condition is essentially void, since such a sentence will
be outside the hypothesis language. However, if we generalise this setting to ‘the
evidence, being a set of ground facts, forms a model for the hypothesis’, then clearly (C1)
holds for this setting as well.

The consequence condition (C2) states that confirmation is closed under logical
consequence, which is true for each of the three settings. Interestingly, this means that
also here the Version Space model applies, with a trivial S set (the equivalence class of
tautologies). Condition (ii) in the problem statement for confirmatory induction above
then essentially states that we are interested in constructing the G set of this Version
Space. Consistency condition (C3) is obviously valid, since all hypotheses share the same
model with the evidence; the same can be said about (C4).

We may conclude that each of the three problem settings for induction of non-
classificatory theories can be seen as establishing a form of confirmatory reasoning.
However, there are also difference between these approaches, that hinge upon the question

35I have replaced the term ‘observation report’ with ‘evidence’, because in Helft’s and De
Raedt’s settings the input need not be restricted to ground facts.



3.   A pproaches  t o  com putat ional  i nduct ion

50

whether it is allowed to process examples one by one. This question will be addressed
below.

Incremental induction

In each of the problem settings discussed previously, hypotheses were constructed on the
basis of a set of examples E. Now suppose a new example e is presented. If the induction
algorithm is able to re-use its previous calculations for E in order to construct one or
more hypotheses for E∪ {e}, the algorithm is said to be interactive or incremental. If, on
the other hand, the induction algorithm merely repeats its calculations for the extended set
of examples E∪ {e}, the algorithm is said to be empirical or non-incremental.

Mitchell’s candidate elimination algorithm, which calculates the S and G sets
delimiting the Version Space, is a nice example of an incremental algorithm. After receipt
of a new example, the new S and G sets are calculated from the old sets and the example.
The rationale behind this algorithm is that hypotheses below the S set or above the G set,
that were refuted by some previous example, never become candidate hypotheses again. In
other words: the Version Space is monotonically non-increasing when the set of examples
increases. Notice that this is a necessary condition for the algorithm to converge upon a
unique solution.

Now consider a situation in which only positive examples are available. In order to
prevent overgeneralisation, one might hypothesise that certain instances, that have not
been presented as positive examples, are actually negative examples. This would rule out
those hypotheses that cover the assumed negative examples. However, if examples are
supplied one at a time, it might be the case that an instance that was once considered
negative turns out to be positive. Consequently, some of the hypotheses previously
refuted become candidates again. If this happens, it is clear that the complete Version
Space has to be rebuilt from scratch. The important conclusion must be that an
incremental approach is incompatible with a strategy in which hypotheses are refuted on
the basis of assumed classifications of instances.

However, this is exactly the strategy that is applied in the approaches of Helft and De
Raedt, when they assume that every ground fact that is not known to be true must be
false. Also, in my attribute dependency setting every tuple that is not known to be in the
relation is assumed not to be in it. Does this imply that confirmatory reasoning is
inherently non-incremental? The answer is: no, it does not — confirmatory reasoning can
very well be incremental. For one thing, despite appearances, induction of functional
dependencies can be done incrementally. The reason for this is that the only way to refute
a functional dependency is by demonstrating that two tuples, that have equal values for the
determining attributes but unequal values for the determined attribute, are in the relation.
In other words, functional dependencies are refuted by positive examples only. Since we
only make assumptions about unseen tuples being negative, functional dependencies are
never refuted on the basis of assumptions, but always by hard facts. The set of functional
dependencies satisfied by a relation is monotonically non-increasing when the relation
increases.

For multivalued dependencies the situation is different. As will be explained in chapter
8, a multivalued dependency predicts that, if the relation contains two tuples which have



§12.   Di scuss ion

51

the same values for the determining attributes, a certain third tuple that can be constructed
from those two must also be in the relation. Thus, a multivalued dependency is refuted by
refuting one of its predictions, which requires a negative example, or else an assumption
that any tuple that is not known the be in the relation is out of it. The latter assumption
necessitates a non-incremental strategy. However, incrementality can be restored by not
making any assumption about a tuple being in the relation or not, unless it is explicitly
given by a positive or negative example. This can be formalised by introducing the notion
of a partial relation, which is a pair 〈E,N〉  of positive tuples E and negative tuples N. This
leads to the following problem definition.

Problem: Incremental induction of multivalued dependencies.
Given: (1) A relation scheme R.

(2) A set E of positive tuples over R.
(3) A set N of negative tuples over R.

Determine: A set H of multivalued dependencies over R such that:
(i) for all h∈ H: h is satisfied by the partial relation 〈E,N〉
(ii) for every multivalued dependency g satisfied by 〈E,N〉: H

logically entails g.

What it means for a multivalued dependency to be satisfied by a partial relation will be
explained in chapter 8.

The same idea can be used to obtain an incremental version of Helft’s and De Raedt’s
approach36, as will be worked out in chapter 7. Rather than demanding that the hypothesis
be satisfied by the truth-minimal model of the evidence, we require in the incremental
setting that the hypothesis not be falsified by the information-minimal partial model of
the evidence. In this model, the truthvalue of the unseen instances is undefined, preventing
us from making unwarranted assumptions. Hypotheses are only refuted if they explicitly
disagree with the seen examples, and thus the Version Space shrinks with growing
evidence.

§13.  SUMMARY AND CONCLUSIONS

In this chapter I have discussed induction from a computational viewpoint. Every
computational approach to induction presupposes a well-defined problem, such as concept
learning from examples, induction of logic programs, induction of non-classificatory
theories, and induction of attribute dependencies. It has been demonstrated that concept
learning can be seen as a special case of induction of logic programs, which in turn is a
prototypical form of explanatory induction, conforming to the four adequacy conditions
(E1–4) listed in §8. Furthermore, I have demonstrated that each of the remaining problems
can be seen as an instance of confirmatory induction, aimed at constructing a confirmed
theory entailing all confirmed formulas. This has been similarly achieved by
demonstrating that each of those instances satisfies Hempel’s adequacy conditions (H1–4).

36In a different sense these approaches are incremental: if the evidence is seen as constituting
one or more models of the intended hypotheses, rather than logical statements (De Raedt,
personal communication).



3.   A pproaches  t o  com putat ional  i nduct ion

52

In the course of the discussion I have frequently referred to Mitchell’s Version Space
model, which has been developed in the context of concept learning, but has a much
broader conceptual significance. Indeed, in explanatory reasoning the set of possible
hypotheses will be convex relative to logical implication whenever explanation is
identified with deductive entailment. In confirmatory reasoning this set is also convex,
with a fixed upper bound.

Finally, the important notion of incrementality has been discussed. Incrementality is a
property both of an induction algorithm and of a general problem setting. An algorithm is
incremental whenever it processes examples one by one, constructing at each step a
hypothesis that is based on the previous one. Such an algorithm will never reconsider
previously refuted hypotheses, therefore it is important that hypotheses are never refuted
on the basis of assumptions (which may turn out to be wrong) — this may be called
incrementality of the problem setting. Explanatory reasoning is incremental in this sense:
hypotheses are only refuted by known positive or negative examples. The confirmatory
settings of Helft and De Raedt are non-incremental, since every instance not known to be
positive is assumed to be negative. My own, incremental approach to induction of
attribute dependencies in databases suggests a formalisation of incremental confirmatory
induction in terms of partial models.

*  *  *


