
PART I

B A C K G R O U N D S

In the three following chapters work in philosophy, artificial
intelligence, and logic that is relevant for the present
investigations is reviewed. In the first chapter, T h e
philosophy of induction, I discuss the philosophical
backgrounds of this study. I concentrate on philosophers who
have studied induction from a logical perspective, most
notably Peirce and Hempel. The main conclusion drawn from
this chapter is that the dichotomy between explanatory and
confirmatory induction proposed and defended in this thesis is
already present, albeit implicit, in the work of Peirce and
Hempel. The next chapter is called Approaches to
computational induction. It draws upon work in machine
learning (a subfield of artificial intelligence) on inductively
learning concepts, logic programs, and logical theories from
examples. I indicate how the latter two problems can be
reformulated as problems of explanatory and confirmatory
induction, respectively. The third chapter, The analysis of
non-deductive reasoning, is mainly devoted to one article by
Kraus, Lehmann and Magidor that provided the main
inspiration for my work. In that article the authors set out to
“study general patterns of nonmonotonic reasoning”; in this
thesis I have set out to do the same for induction.



 



CHAPTER 2

T H E  P H I L O S O P H Y  O F  I N D U C T I O N

— in which the philosophical backgrounds of this study are
discussed, leading to the conclusion that the dichotomy
between explanatory and confirmatory induction proposed and
defended in this thesis is already present, albeit implicitly, in
the work of Peirce and Hempel —

THE TIME THAT philosophy was considered the Mother of Science is long gone, and
disciplines, such as logic, that were once among the central concerns of philosophers,

have gained a separate identity. However, foundational studies like the present one cannot
afford to ignore the reflections of philosophers of all time. I therefore start my
investigations by considering the philosophy of induction.

I do not claim to give an overview of this subject that can be called complete in any
sense. While hard in general, this task is even more formidable in the case of induction,
which has always been a philosophical battlefield. Instead, I will concentrate on those
philosophers whose work provides some of the foundations upon which this thesis will
be built: Charles Sanders Peirce and Carl G. Hempel. Before considering their work in
more detail, however, I will give a brief historical overview of parts of the battlefield. The
second half of the chapter is devoted to a discussion of various issues that are especially
significant in the context of this thesis.

§4.  THE ‘PROBLEM OF INDUCTION’

Induction has been studied by philosophers of all times, but there appears to be little
agreement about a general theory of inductive reasoning, or even about what the questions
are which such a theory is designed to answer. As a result, there exists a lot of confusion
and disagreement about what the so-called ‘Problem of Induction’ actually is (which is
why I will surround the term by quotes). In this section, I will give a — necessarily brief
and subjective — historical overview of the aspects most relevant to the present
discussion.

Induction was recognised already by Aristotle as a distinguished mode of reasoning in
his Analytica Posteriora. He gives a syllogistic account of what is nowadays called
complete or mathematical induction, a proof strategy in mathematics used to prove
theorems involving the infinite set of all natural numbers. However, complete induction
is actually a deductively valid form of reasoning, and is therefore not relevant for the
present discussion.
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Scientific method, as we know it today, started to take shape during the Renaissance.
Francis Bacon was one of the first philosophers to stress the importance of induction as a
method of scientific theory formation, in his Novum Organum (1620). An inductive
scientific methodology was further worked out by John Stuart Mill in his System of
Logic (1843). Mill identifies four ‘Methods of Experimental Enquiry’, and he formulates
five ‘Canons’ or principles underlying and justifying those methods. After the methods
and canons have been formulated, Mill gives a particularly pregnant formulation of what
remains to be done:

‘Why is a single instance, in some cases, sufficient for a complete
induction, while in others, myriads of concurring instances, without a
single exception known or presumed, go such a very little way towards
establishing an universal proposition? Whoever can answer this question
knows more of the philosophy of logic than the wisest of the ancients, and
has solved the problem of induction.’
(Mill, 1843, Book III, Chapter VIII, p.314)

A century earlier, ‘the greatest of modern philosophers’11 had shone his light upon
this problem. It was generally conceived that the scientific method was concerned with
explicating the necessary causal relations that exist between physical objects in the world.
Likewise, induction was seen as reasoning from observations to logically necessary causal
laws. However, in his Treatise on Human Nature (1739), the Scottish philosopher David
Hume concluded that the idea of a causal law is something that exists solely in the mind,
a mental image provoked by observing a number of occasions in which events of a certain
kind are consistently followed by events of another kind. In other words, there is no
logical necessity inherent to causal laws, and any attempt to formulate a firm logical basis
for induction is doomed to fail.

Hume’s scepsis, directed at metaphysical notions such as substance and causality, did
not lead him to a radical solipsism. He was keenly aware of the practicality of induction
as a systematic method to derive new knowledge, and his argument should be seen as
refuting the logical status of necessity commonly ascribed, in his times, to inductive
conclusions, and not, as it is sometimes perceived, as denouncing the inductive method
itself. Hume was the first to formulate the logical status of inductive conclusions in terms
of probability rather than necessity. However, this inductive probability does not refer to
states of affairs in the world in terms of relative frequencies, as stochastic probability
does, but it expresses the degree to which we are willing to accept the hypothesis on the
basis of available evidence — in other words, it is subjective. The concept of inductive
probability, which has been worked out in considerable detail by twentieth-century
philosophers such as Keynes and Carnap, will not be our major concern in this thesis.12

The American philosopher Charles Sanders Peirce noted that the view of induction as
assessing inductive probabilities presupposes the inductive hypothesis as given, and
leaves the question as to where these hypotheses come from unanswered. Peirce introduced

11According to (Goodman, 1954).
12For a discussion of the philosophical aspects of inductive probabilities, see the chapter

with the same name as the present one in (Keuzenkamp, 1994).
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the term abduction to denote the process of forming explanatory hypotheses, and claimed
that it is a process of logical inference — not because humans actually form inductive
hypotheses by means of some inductive proof procedure (on the contrary, the hypothesis
‘comes to us like a flash’, and is ‘an act of insight’; Peirce compares it to knowledge
obtained through direct perception), but rather because it has ‘a perfectly definite logical
form’. We will find ample opportunity to discuss this logical form in this thesis.

The ideas of Peirce seem to have gone unnoticed for a long time, especially because at
the time of his writings (the turn of the nineteenth century) the formalisation of logic was
still insufficient for his needs. The term ‘abduction’ for the process of forming
explanatory hypotheses has not been widely accepted in philosophy (it has been introduced
recently in computer science, although there it usually receives a much more restricted
interpretation). On the other hand, the inclination towards taking logic as the basis of
scientific reasoning was yet to reach its peak, in the writings of the so-called Wiener Kreis
(around 1930).

The Wiener Kreis, which included the philosophers and logicians Rudolf Carnap and
Carl G. Hempel, advocated a doctrine known as logical positivism, a radical form of
empiricism and anti-metaphysicism. Being heavily influenced by the early Wittgenstein
and his Tractatus Logico-Philosophicus, they believed that most of the traditional
philosophical problems are in fact pseudo-problems, arising from imprecise or incorrect
use of language. The hallmark of real knowledge, they argued, is verifiability, and the
scientific method is the only way to achieve such knowledge. A different position was
taken by the Austrian philosopher Karl R. Popper, who proposed another criterion to
distinguish between scientific and non-scientific knowledge13: the criterion of
falsifiability. Popper drew attention, like Hume had done before him, to the fact that
scientific hypotheses can never be conclusively verified — however, they can be
conclusively falsified.

Although many of its views are now considered too radical, the Wiener Kreis has had
an enormous influence on philosophy of science, in that many of the main questions have
been reformulated into logical terms. Clearly, Popper has been much more influential
than any member of the Wiener Kreis when it comes to methodological issues in science;
but it must be added that his famous slogan ‘conjectures and refutations’ is worked out
rather sketchy as far as the first conjunct is concerned14. Members of the Wiener Kreis,
most notably Hempel and Carnap, have investigated, in considerable detail, the question
what it means to say that certain conjectures are suggested or confirmed by the evidence,
while others are not. Hempel’s analysis is qualitative, while Carnap’s is quantitative.
Although Carnap seems to think that a qualitative analysis is a rather thin extract of the
real thing, it is Hempel’s analysis that provides a foundation upon which much of my
subsequent investigations will be built.

13Unlike the Wiener Kreis, Popper did not consider non-scientific knowledge to be
nonsensical.

14‘Induction, i.e. inference based on many observations, is a myth. It is neither a psycho-
logical fact, nor a fact of ordinary life, nor one of scientific procedure. The actual procedure of
science is to operate with conjectures: to jump to conclusions’ (Popper, 1963, p.53). However,
the term ‘conjecture’ is not described or defined any further — it does not even occur in the
index of Conjectures and Refutations.
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After having identified the intellectual treasurers to whom I can be held tributary, I
will now proceed to present their work in somewhat more detail. My intention is to be as
faithful as possible to their original writings, leaving my own subjective interpretations
and criticisms for the subsequent discussion (§7).

§5.  THE LOGIC OF ABDUCTION

In a series of lectures on Pragmatism delivered in 1903, Peirce distinguishes three types of
reasoning: deduction, induction, and abduction. Induction ‘consists in starting from a
theory, deducing from it predictions of phenomena, and observing those phenomena in
order to see how nearly they agree with the theory’. Furthermore,

‘The justification for believing that an experiental theory which has been
subjected to a number of experimental tests will be in the near future
sustained about as well by further such tests as it has hitherto been, is that
by steadily pursuing that method we must in the long run find out how the
matter really stands.’ (CP 5.170)15

Note that Peirce claims that ‘induction consists in starting from a theory’ — that is, it
aims at assessing the plausibility of a given theory, rather than constructing that
theory from observations.

However, inductive hypotheses do not come out of the blue, and this is where
abduction comes into play:

‘Abduction is the process of forming an explanatory hypothesis. It is the
only logical operation which introduces any new idea; for induction does
nothing but determine a value, and deduction merely evolves the necessary
consequences of a pure hypothesis.

Deduction proves that something must be; Induction shows that
something actually is operative; Abduction merely suggests that something
may be.

Its only justification is that from its suggestion deduction can draw a
prediction which can be tested by induction, and that, if we are ever to learn
anything or to understand phenomena at all, it must be by abduction that
this is to be brought about.

No reason whatsoever can be given for it, as far as I can discover; and it
needs no reason, since it merely offers suggestions.’ (CP 5.171)

In other words, abduction is the process of conjecturing inductive hypotheses, constrained
by the requirement that they should comply with the available observations. Abduction
represents the purely logical part of inductive reasoning.

Peirce proceeds by defining the logical form of abduction. ‘It must be remembered’, he
writes, ‘that abduction, although it is very little hampered by logical rules, nevertheless is

15References with the prefix ‘CP’ refer to Hartshorne, Weiss & Burks (eds.), Collected Papers
of Charles Sanders Peirce (1931-58).
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logical inference, asserting its conclusion only problematically or conjecturally, it is true,
but nevertheless having a perfectly definite logical form.’ Peirce then defines this logical
form, as follows.

‘Long before I first classed abduction as an inference it was recognized by
logicians that the operation of adopting an explanatory hypothesis —
which is just what abduction is — was subject to certain conditions.
Namely, the hypothesis cannot be admitted, even as a hypothesis, unless it
be supposed that it would account for the facts or some of them. The form
of inference, therefore, is this:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Thus, A cannot be abductively inferred, or if you prefer the expression,
cannot be abductively conjectured until its entire content is already present
in the premiss, “If A were true, C would be a matter of course.” ’
(CP 5.188)

In short, the view of induction that Peirce offers in these marvellously lucid citations
is this. Inductive reasoning16 consists of two steps: (i) formulating a conjecture, and (ii)
evaluating the conjecture. Both steps take the available evidence into account, but in quite
different ways and with different goals. The first step, abduction, requires that the
conjectured hypothesis explains the observations; having a definite logical form, it
represents a form of inference. The second step, induction, evaluates how well predictions
offered by the hypothesis agree with reality; it is not inference, but assigns a numerical
value to a hypothesis.

We can paraphrase this model, to which I will refer as Peirce’s model, as follows: ‘the
goal of inductive reasoning is to find an explanation for some observations, the
predictions of which comply with other observations’. Although the notion of an
explanation is not explicitly defined, we can abduce from the last citation above that A
explains C whenever ‘if A were true, C would be a matter of course’. I will argue in §7
that, although there is room for various interpretations here, this should be interpreted as
‘A deductively entails C’.

Given this paraphrase, we can summarise the main claims defended in this thesis as
follows:

(i) the notion of explanation is actually a parameter in Peirce’s model,
that can be instantiated to deductive entailment but also to, for
instance, plausible entailment;

(ii) at a higher level of abstraction, the goal of inductive reasoning is also
a parameter, that can be instantiated to ‘finding a hypothesis that
explains some observations’, but also to ‘finding a hypothesis that is
confirmed by some observations’.

Although not the main motivation, the way the second claim is substantiated in this

16I will use the term ‘inductive reasoning’ for the combined process of abductive or
conjectural reasoning and inductive validation.
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thesis has been influenced by work of Hempel on the concept of confirmation, which I
will discuss now.

§6.  THE LOGIC OF CONFIRMATION

How shall we decide whether certain observational evidence confirms a scientific theory?
Several options come to mind, one being to define a binary relation Cf between two
logical formulas, such that Cf(E,H) formalises the proposition ‘E confirms H’. Another
option is to define instead a function assigning a number between 0 and 1 to H given E.
The first option, leading to a qualitative concept of confirmation, has been worked out by
Hempel in a paper published in 1943; a less technical account, which concentrates on the
philosophical issues involved, can be found in (Hempel, 1945). The second option,
leading to a quantitative concept of degree of confirmation, has been elaborated by Carnap.
I will now concentrate on the qualitative concept, and discuss its relation with the
quantitative concept in §7.

Adequacy conditions

Before considering possible definitions of this relation of confirmation, Hempel presents a
number of logical conditions of adequacy, to be satisfied by any such definition. These
logical conditions, which are represented below, are not independent :

‘The logical requirements are stated in three groups. In each group, the
fulfillment of the first condition entails that of all others. Those other
conditions are mentioned for two reasons; first, because most of them
represent important characteristics which would generally be sought in an
adequately defined concept of confirmation; and secondly, because some
apparently reasonable alternative definitions which we shall examine, turn
out to satisfy some of those weaker conditions, but not the strongest of
each group. Confrontation with the different requirements explicitly stated
will thus provide a yardstick for the appraisal of what might be termed the
degree of adequacy of a proposed definition of confirmation.’
(Hempel, 1943, p.127)

There are some differences in presentation of the adequacy conditions in the two papers —
the exposition below can be found in (1945, pp.103–106)17. Note that an observation
report is a formula without variables. Furthermore, a formula is compatible with a class18

of formulas if their conjunction is consistent.

(H1) Entailment condition: any sentence which is entailed by an
observation report is confirmed by it.
(H1.1) Any observation report is confirmed by itself19.

17Condition (H4) is added on p.110, note 1.
18Hempel uses the word ‘class’; I will consider it synonymous with ‘set’.
19This condition was not explicitly mentioned by Hempel, but is added to facilitate later

discussions.
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(H2) Consequence condition: if an observation report confirms every one
of a class K of sentences, then it also confirms any sentence which
is a logical consequence of K.
(H2.1) Special consequence condition: if an observation report

confirms a hypothesis H, then it also confirms every
consequence of H.

(H2.2) Equivalence condition: if an observation report confirms a
hypothesis H, then it also confirms every hypothesis which
is logically equivalent with H.

(H2.3) Conjunction condition: if an observation report confirms
each of two hypotheses, then it also confirms their
conjunction20.

(H3) Consistency condition: every logically consistent observation report
is logically compatible with the class of all the hypotheses which it
confirms.
(H3.1) Unless an observation report is self-contradictory21, it does

not confirm any hypothesis with which it is not logically
compatible.

(H3.2) Unless an observation report is self-contradictory, it does
not confirm any hypotheses which contradict each other.

(H4) Equivalence condition for observations: if an observation report B
confirms a hypothesis H, then any observation report logically
equivalent with B also confirms H.

These adequacy conditions are intended to formalise certain intuitions about the concept of
confirmation. Whether we find them acceptable or not depends on whether our intuitions
about that concept are the same as Hempel’s. Let us, therefore, investigate the motivation
offered by Hempel for the main adequacy conditions.

The entailment condition is motivated by noting that ‘entailment is a special case of
confirmation’ (1945, p.102). Elsewhere, Hempel remarks that entailment ‘might be
referred to as the special case of conclusive confirmation’ (p.107). These are important
remarks, because they offer some insight in what Hempel has in mind when he talks
about confirmation. Furthermore, they will be a starting point for the logical
formalisation of the concept of confirmation in chapters 6 and 7.

The consequence conditions (H2) and (H2.1) state that the relation of confirmation is
closed under weakening of the hypothesis or set of hypotheses (H1 is weaker than H2 iff it
is logically entailed by the latter). Hempel justifies this condition as follows (1945,
p.103): ‘an observation report which confirms certain hypotheses would invariably be
qualified as confirming any consequence of those hypotheses. Indeed: any such

20This condition is considered on p.106.
21By the entailment condition, a contradictory observation report confirms every

hypothesis. As Hempel notes, ‘it is possible to exclude the possibility of contradictory
observation reports altogether (…). There is, however, no important reason to do so.’
(p.103, note 1). In chapters 6 and 7 I will choose to exclude them.
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consequence is but an assertion of all or part of the combined content of the original
hypotheses and has therefore to be regarded as confirmed by any evidence which confirms
the original hypotheses.’

The consistency condition (H3) seems to be more problematic. Hempel does not really
give a motivation for this condition, but immediately remarks that it ‘will perhaps be felt
to embody a too severe restriction’. He considers to possibility of dropping (H3) while
retaining (H3.1) and (H3.2) (p.106). However, combination of (H3.1) with the
conjunction condition (H2.3) implies (H3); consequently, if we drop (H3) while keeping
(H3.1), we should drop (H2.3), and a fortiori (H2), as well. Hempel decides to keep them
all — without, it must be added, a very clear justification.

The confirmation paradox

The adequacy conditions (H1–4) are mutually compatible, in the sense that their
combination does not lead to counterintuitive results. This might be taken to indicate that
each of them indeed formalises some aspect of a single intuitive notion. There is,
however, a fifth rule, with considerable intuitive appeal, which is incompatible with (H1–
4). This problem is known as the confirmation paradox. While there are various
formulations of this paradox, we will follow here Hempel’s original treatment; the reader
is referred to (Hesse, 1974) for a more elaborate discussion.

Let H1 and H2 be two theories such that the latter includes the former, in the sense
that everything entailed by H1 is also entailed by H2. Suppose E is confirming evidence
for H1; shouldn’t we conclude that it confirms H2 as well? To borrow an example of
Hempel: ‘Is it not true, for example, that those experimental findings which confirm
Galileo’s law, or Kepler’s laws, are considered also as confirming Newton’s law of
gravitation?’ (1945, p.104). This intuition is formalised by the following condition:

(H5) Converse consequence condition: if an observation report confirms a
hypothesis H, then it also confirms every formula logically
entailing H.

The problem is, however, that this rule is incompatible with consequence conditions (H2)
and (H2.1). This can be seen as follows: in order to demonstrate that E confirms H for
arbitrary E and H, we note that E confirms E by (H1.1), so by the converse consequence
condition E confirms E∧ H; but then E confirms H by (H2.1). Thus, we see that the
combination of two intuitively acceptable conditions leads to a collapse of the system
into triviality, a clearly paradoxical situation.

Hempel solves the problem on the formal level by dropping the converse consequence
condition in favour of the consequence conditions. However, on the intuitive level the
paradox remains, since Hempel does not provide a clear justification of his choice. I will
argue at the end of the present chapter that the confirmation paradox can be fully dissolved
by making a clear distinction between a confirmed hypothesis and an explanatory
hypothesis. For instance, the converse consequence condition does make sense for
hypotheses that are required to be explanatory (in the sense of Peirce) rather than
confirmed. The duality between explanatory and confirmatory reasoning we encounter here
for the first time will be a leading theme throughout the thesis.
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The satisfaction criterion of confirmation

I will now proceed to explain Hempel’s proposal for a definition of confirmation
satisfying the above adequacy conditions, following the less technical exposition in
(Hempel, 1945). The basic idea is simple and elegant:

‘Consider the simple case of the hypothesis H: ‘∀ x: Raven(x)→Black(x)’,
where ‘Raven’ and ‘Black’ are supposed to be terms of our observational
vocabulary. Let B be an observation report to the effect that
Raven(a)∧ Black(a) ∧  ¬Raven(c)∧ Black(c) ∧  ¬Raven(d)∧¬ Black(d). Then B
may be said to confirm H in the following sense: There are three objects
altogether mentioned in B, namely a, c, and d; and as far as these are
concerned, B informs us that all those which are ravens (i.e. just the object a)
are also black. In other words, from the information contained in B we can
infer that the hypothesis H does hold true within the finite class of those
objects which are mentioned in B.’ (Hempel, 1945, p.108; with slight
modifications regarding the logical symbols)

To formalise the notion of ‘a hypothesis being true within a class of objects’, Hempel
introduces the concept of the development of a hypothesis H for a finite set of individuals
C, which ‘states what H would assert if there existed exclusively those objects which are
elements of C’ (p.109). The formal definition can be found in (Hempel, 1943, p.131); I
will introduce the concept by means of a few examples. The development of the
hypothesis

H1 = ∀ x: P(x)∨ Q(x)

for the set {a, b} is (P(a)∨ Q(a))∧ (P(b)∨ Q(b)); the development of

H2 = ∃ x: P(x)

for the same set is P(a)∨ P(b); and the development of a formula without variables, such as

H3 = P(c)∨ Q(c)

is that formula itself, regardless of the set of individuals. In perhaps more familiar
terminology we might say that the development of H for a set C is the set of ground
instances of H over the Herbrand universe C22. It should be noted that Hempel does not
include function symbols in his language.

For reasons which will be exhibited shortly, the relation of confirmation is defined in
terms of a narrower relation of direct confirmation:

An observation report E directly confirms a hypothesis H if E entails the
development of H for the class of those objects which are mentioned in E.

Here, an observation report is a formula without variables, such as E = P(a)∧ P(b). Thus,
E directly confirms H1 and H2, but not H3. However, the relation of direct confirmation

22Assuming that H is a set of formulas in clausal form (without existential quantifiers).
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does not satisfy the equivalence condition (H2.2), since E does not directly confirm

H4 = H1 ∧  H3 = (∀ x: P(x)∨ Q(x)) ∧  (P(c)∨ Q(c))

although this formula is logically equivalent with H1. This problem is overcome in the
following definition:

An observation report E confirms a hypothesis H if H is entailed by a class
of formulas each of which is directly confirmed by E.

So, P(a)∧ P(b) confirms each of H1–H4.
Hempel calls this definition the satisfaction criterion of confirmation ‘because its basic

idea consists in construing a hypothesis as confirmed by a given observation report if the
hypothesis is satisfied in the finite class of those individuals which are mentioned in the
report’ (1945, pp.109–110). This idea suggests an alternative formalisation of this
criterion, namely in terms of satisfaction by a specially constructed model. This will be
considered in the next section.

Hempel rounds off his 1945 paper with the following considerations:

‘A general definition of confirmation, couched in purely logical terms, was
developed for scientific languages of a specified and relatively simple
logical character. The logical model thus obtained appeared to be
satisfactory in the sense of the formal and material standards of adequacy
that had been set up previously.
(…) Among the open questions which seem to deserve careful
consideration, I should like to mention the exploration of concepts of
confirmation which fail to satisfy the general consistency condition; the
extension of the definition of confirmation to the case where even
observation sentences containing quantifiers are permitted; and finally the
development of a definition of confirmation for languages of a more
complex logical structure than that incorporated in our model.
(Hempel, 1945, pp.120–121)

I will return to these issues below as well.

§7.  DISCUSSION

I will now relate the issues raised above to each other and to the rest of this thesis.
Specifically, I will investigate the significance of Hempel’s adequacy conditions for
characterising the logical form of abduction as put forward by Peirce. I will then briefly
discuss the confirmation paradox and what I consider as the cause of it. Furthermore, I
will reformulate Hempel’s satisfaction criterion of confirmation in the terminology of
clausal logic. Finally, I will discuss the relation between a qualitative notion of
confirmation as put forward by Hempel, and the quantitative concept of degree of
confirmation studied by Carnap.
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The logical form of abduction

Recall that Peirce defined the logical form of an abductive argument as follows:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

The problem with this definition is that it contains a few nonlogical phrases, viz. C being
a ‘surprising fact’ and ‘there is reason to suspect’ that A is true. The first phrase can be
made precise by introducing a background theory T, and stipulating that T should not
logically entail C. Thus, if C is known to be true by virtue of T, it will not allow for any
abductive explanation. On the other hand, the reader will probably agree that this
represents a nonessential borderline case, not unlike the treatment of inconsistent theories
in deductive logic: such a theory entails anything, yet one could make a case for not
inferring anything from such a theory. For the moment, I will choose the option of
allowing any abductive explanation if C is already known.

The phrase ‘there is reason to suspect that A  is true’ requires some careful
consideration. Clearly, Peirce couldn’t have used the phrase ‘A is true’ instead, since some
of the possible abductive explanations of C will probably be false. However, there seems
to be a mixture of syntactic and semantic issues here. Consider, as an illustration, the
deductively valid scheme of modus ponens23:

A

A→B

∴  B

This scheme can be paraphrased in several ways. One possibility is

If A is true,
and ‘if A then B’ is true,
then B is true.

However, the validity of modus ponens does not depend on the truth of any of the
propositions involved — the following argument is still deductively valid:

If the moon is made of green cheese,
and, if the moon is made of green cheese then 2+2=4
then 2+2=4.

 although the first premise is false.
This illustrates that a scheme like modus ponens should be construed so as to describe

the beliefs held by a particular deductive reasoner X:

If X holds A,
and X holds A→B,
then X holds B.

23The conclusion sign ∴  separates the premises from the conclusion.



2.   T he phi losophy  of  i nduct ion

24

Whether the beliefs held by X are actually true is a completely different issue. Tarskian
semantics proves that if we start from true propositions, modus ponens will never derive a
false proposition, but it is clear that this cannot hold for any abductive scheme. I thus
propose to paraphrase Peirce’s scheme in terms of an abductive reasoner Y:

If Y observes C,
and ‘if A were true, C would be a matter of course’,
then Y conjectures A.

I write ‘Y conjectures A’ rather than ‘Y holds A’ in order to indicate that Y will not be
inclined to adopt each and every one of the abductive explanations she conceives as
possible.

It remains to decide upon the interpretation of the second premise of this scheme. Let
us try ‘Y holds A→C’ first. Now, if Y observes C, it seems likely that Y will believe
that C is true — but then, by definition of material implication, Y necessarily believes
that A→C is true for any A, implying that Y is ready to conjecture any proposition
whatsoever. A more appropriate interpretation is that A should logically entail C rather
than materially, i.e. =A→C24. We thus arrive at the following paraphrase:

If Y observes C,
and =A→C,
then Y conjectures A.

For convenience we will abbreviate ‘if Y observes C, then Y conjectures A’ to ‘Y holds
that C is abductively explained by A’; usually the reference to the abductive reasoner Y
will be omitted, leading to the final scheme:

If =A→C,
then C is abductively explained by A.

Note that Peirce presented his scheme as a definition of the logical form of abduction,
i.e. C is abductively explained by A if, and only if, A logically entails C. In this thesis I
will also consider more liberal forms of abduction, such that the above scheme represents
an adequacy condition which is to be satisfied (in one direction only) by any form of
abduction, rather than a logical equivalence.

Adequacy conditions for abduction

Having thus clarified Peirce’s proposed definition of the relation ‘is abductively explained
by’, we can investigate which of the adequacy conditions considered by Hempel it
satisfies. These conditions are reproduced below, with phrases like ‘confirms’ replaced by
‘is explained by’. The conditions are renumbered (P1–5); (P1) denotes that this condition
is invalid for Peirce’s definition.

24I.e. A materially implies C in every possible interpretation; this condition may be
considered too strong, but note that it will be treated in the sequel as a sufficient rather than a
necessary condition.
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(P1) Entailment condition: any sentence which is entailed by an
observation report explains it.
(P1.1) Any observation report explains itself.

(P2) Consequence condition: if an observation report is explained by
every one of a class K of sentences, then it is also explained by any
sentence which is a logical consequence of K.
(P2.1) Special consequence condition: if an observation report is

explained by a hypothesis H, then it is also explained by
every consequence of H.

(P2.2) Equivalence condition: if an observation report is explained
by a hypothesis H, then it is also explained by every
hypothesis which is logically equivalent with H.

(P2.3) Conjunction condition: if an observation report is explained
by each of two hypotheses, then it is also explained by their
conjunction.

(P3) Consistency condition: every logically consistent observation report
is logically compatible with the class of all the hypotheses by
which it is explained.
(P3.1) Unless an observation report is self-contradictory, it is not

explained by any hypothesis with which it is not logically
compatible.

(P3.2) Unless an observation report is self-contradictory, it is not
explained by any hypotheses which contradict each other.

(P4) Equivalence condition for observations: if an observation report B is
explained by a hypothesis H, then any observation report logically
equivalent with B is also explained by H.

(P5) Converse consequence condition: if an observation report is
explained by a hypothesis H, then it is also explained by every
formula logically entailing H.

The entailment condition (P1) is clearly invalid — entailment is not a special case of
‘is explained by’. However, (P1.1) is valid, and we will see shortly that it can be used to
derive a replacement for the entailment condition. Clearly, the consequence conditions
(P2) and (P2.1) are invalid as well: explanations cannot be arbitrarily weakened.
Equivalence condition (P2.2) remains valid. Conjunction condition (P2.3) is valid only by
virtue of the fact that inconsistent explanations are allowed — which is also the reason
why (P3.1) is invalid. The other consistency conditions (P3) and (P3.2) are clearly
invalid. The equivalence condition for observations (P4) is trivially valid.

Finally, and most interestingly, the converse consequence condition (P5) is valid: a
given explanation can be arbitrarily strengthened. Furthermore, since every observation
report is explained by itself by (P1.1), we can use the converse consequence condition to
derive the following:

(P1) Converse entailment condition: an observation report is explained
by every formula logically entailing it.
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In other words: converse entailment is a special case of ‘is explained by’; (P1) represents
one half of Peirce’s definition of abduction. As already indicated, I will consider several
alternative definitions, but each of them satisfies the converse entailment condition (P1)
— with a minor modification, since I will require that any observation report and any
explanation be compatible. Note that this also means that the conjunction condition
(P2.3) becomes invalid, and (P3.1) becomes valid. The exact list of adequacy conditions
for abductive or, as I will call it, explanatory reasoning is given at the end of the chapter.

The confirmation paradox

A question we did not yet address is whether these adequacy conditions for ‘is explained
by’ are mutually compatible. For instance, doesn’t the converse consequence condition
(P5) reintroduce the confirmation paradox? This latter question is easily answered: it does
not, since the consequence conditions (P2) have been disabled. The more general question
is left for chapter 7, where a formal analysis demonstrates that they are indeed compatible.

This, then, is the solution I propose to get rid of the confirmation paradox: to make a
clear distinction between the statements ‘these observations confirm this hypothesis’ and
‘these observations are explained by this hypothesis’. The fundamental difference between
the property of being a confirmed hypothesis, and the property of being an explanatory
hypothesis, is that the former property is passed on to logical consequences, as expressed
by the consequence condition, and the latter is passed on to logically stronger
explanations, as expressed by the converse consequence condition. If the consequence
condition seems intuitively valid, it is because we think of confirmed hypotheses; if the
converse consequence conditions seems intuitively valid, it is because we think of
explanatory hypotheses. The ‘confirmation paradox’ is not a paradox at all, but
demonstrates rather convincingly that ‘confirms’ and ‘is explained by’ are quite different
relations.

This being said, it may seem natural to study the combination of these two relations
— that is, to investigate a formalisation of the statement ‘these observations confirm and
are explained by this hypothesis’. Since this statement is a simple conjunction of the two
statements previously mentioned, the resulting binary relation is the intersection of the
relations ‘confirms’ and ‘is explained by’. This approach would avoid paradoxes such as
the confirmation paradox, since the two concepts of confirmation and explanation are not
confused, but clearly separated before they are combined. However, I believe that the
compound concept can only be successfully studied after a sufficient understanding of its
parts has been obtained. It is this understanding that is primarily pursued in this thesis.

Furthermore, and more importantly, inductive reasoning can also be successfully
applied to infer hypotheses that do not have explanatory power, but exhibit certain
regularities implicit in the observations. That is, the goal for which inductive hypotheses
are sought influences the logical relation between evidence and hypothesis. Therefore, I
think that it makes sense to speak about two genuinely distinct forms of inductive
reasoning: the ‘Peircean’ form of induction, which I will call explanatory induction, and
which is aimed at finding explanations of the observations; and the ‘Hempelian’ form,
which I will call confirmatory induction, the primary aim of which is to find other
generalisations, with no or limited explanatory power. In order to stress the fact that I am
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mostly concerned with the first step of inductive hypothesis formation, I will usually
speak of explanatory and confirmatory reasoning rather than induction. I will use the term
conjectural reasoning whenever the question whether it is explanatory or confirmatory is
immaterial.

The satisfaction criterion of confirmation

I will now demonstrate that Hempel’s ideas, which led him to the formulation of the
satisfaction criterion of confirmation, can also be used to derive a slightly different but
very similar criterion, which seems to be more faithful both to his original ideas and to
the notion of a satisfaction criterion.

Consider Hempel’s original example, cited above: the observations

Raven(a)∧ Black(a) ∧  ¬Raven(c)∧ Black(c) ∧  ¬Raven(d)∧¬ Black(d)

confirm the hypothesis ∀ x: Raven(x)→Black(x), since the latter is true as far as the
objects a, c and d are concerned. Hempel formalises this by reconstructing what the
hypothesis has to say about each of these objects. Alternatively, we can reconstruct what
the observations have to say if a, c and d are the only (relevant) objects. This can be
effected by switching from a formula expressing the observations to a designated
interpretation. Basically, there is only one interpretation over the domain {a, c, d}
satisfying the observations. We can then say that any formula that is satisfied by this
designated interpretation is confirmed by the observations.

This raises a number of issues. What if the knowledge that d is not a raven is missing
from the observations? Clearly, in that case there are two interpretations over the domain
{a, c, d} satisfying the observations, one in which d is a raven, and one in which d is not.
Should we require a confirmed hypothesis to be satisfied by both interpretations? If so, the
above hypothesis is not confirmed. Alternatively, we could require that a confirmed
hypothesis be satisfied by at least one of these interpretations, or we could select one of
them as the designated interpretation (for instance by stipulating that if d is not known to
be a raven, it is expected not to be).

Another problem arises if the hypothesis talks about objects not present in the
observations. Recall that, according to Hempel’s criterion, the observations P(a)∧ P(b)
confirm ∀ x: P(x)∨ Q(x), but also (∀ x: P(x)∨ Q(x)) ∧  (P(c)∨ Q(c)) and hence P(c)∨ Q(c).
Should we map c to one of the observed objects a and b? Should we say that, since it is
not known whether c is a P or a Q, it is expected to be neither? Or should we restrict
attention to hypotheses that talk only about objects present in the observations?

Clearly, the current proposal falls short of being a precise definition, but an
improvement will have to wait until chapter 7. What I want to demonstrate here is that
there is, at least intuitively, quite a close connection between Hempel’s criterion of
confirmation and so-called designated or preferred model semantics. In fact, I think that
defining confirmation in terms of a designated model or models reflects more closely the
intuitions about confirmation, including the intuitions given by Hempel.

I should add that the idea of applying preferred model semantics to formalise inductive
hypothesis formation is not new. As will be described in chapter 3, similar ideas have
been proposed by (Helft, 1989) and (De Raedt, 1993). These authors did not formulate
their work in terms of the concept of a confirmed hypothesis, however.
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Degree of confirmation and its relation to the qualitative concept

There is one remaining issue we need to discuss here, which is the supposed quantitative
nature of confirmation. Indeed, it seems very natural to ask, when a body of evidence is
said to confirm a hypothesis, to which degree this is so. In this section I intend to address
this issue by spending a few words on the work of Rudolf Carnap, who has proposed a
rather elaborated system of what he calls ‘inductive logic’.

Before investigating his proposal, I should like to remark that Carnap’s writings are
classic cases of the scientific precision advocated by the Wiener Kreis. Consider, as a case
in point, his notion of explication:

‘The task of explication consists in transforming a given more or less
inexact concept into an exact one or, rather, in replacing the first by the
second. We call the given concept (or the term used for it) the
explicandum, and the exact concept proposed to take the place of the first
(or the term proposed for it) the explicatum. The explicandum may
belong to everyday language or to a previous stage in the development of
scientific language. The explicatum must be given by explicit rules for its
use, for example, by a definition which incorporates it into a well-
constructed system of scientific either logicomathematical or empirical
concepts.’ (Carnap, 1950, p.3)

Carnap then proceeds by stating the requirements for an explicatum: similarity to the
explicandum, exactness, fruitfulness, and simplicity. The reason that I chose this citation
is that it nicely characterises what I have set out to do in this thesis: explicating the
logical aspects of inductive reasoning.

In his Logical Foundations of Probability (1950) Carnap develops a system of
inductive logic based on a quantitative notion of degree of confirmation or c-function,
which is a function c(H,E) assigning a number between 0 and 1 to a hypothesis H on the
basis of evidence E. Such c-functions should be regular, in the sense that they obey some
general adequacy conditions for probability measures. As has been remarked in §4, such a
degree of confirmation is not a statistical fact about the world in terms of relative
frequency — in fact, according to Carnap it should be interpreted as an ‘estimate of the
relative frequency’ (§41D, p.168). Carnap formulates his conception of an inductive logic
as follows:

‘What we call inductive logic is often called the theory of nondemonstrative
or nondeductive inference. Since we use the term ‘inductive’ in the wide
sense of ‘nondeductive’, we might call it the theory of inductive inference...
However, it should be noticed that the term ‘inference’ must here, in
inductive logic, not be understood in the same sense as in deductive logic.
Deductive and inductive logic are analogous in one respect: both investigate
logical relations between sentences; the first studies the relation of
[entailment], the second that of degree of confirmation which may be
regarded as a numerical measure for a partial [entailment]... The term
‘inference’ in its customary use implies a transition from given sentences
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to new sentences or an acquisition of a new sentence on the basis of
sentences already possessed. However, only deductive inference is inference
in this sense.’ (§44B, pp.205–6)

Thus, in Carnap’s view an inductive logic is based on a notion of ‘partial’ entailment,
expressing how well a conclusion is confirmed by the premisses: the higher the degree of
confirmation, the more plausible the conclusion becomes.

I should like to stress that I disagree with Carnap in two, quite crucial respects. First
of all, in this thesis I do not interpret inductive as ‘nondeductive’ — on the contrary, the
main motivation for my research has always been that induction should (and can) be
defined in its own right, and not negatively in terms of something else. Secondly, I
disagree with Carnap on the conception of a logic. As will be elaborated in chapter 5,
what Carnap calls ‘inductive logic’ is in fact a semantics for estimating the plausibility of
a formula given the truth of others. Although certainly useful, such a semantics does not
induce a notion of proof (as noted by Carnap). However, there exists an alternative notion
of semantics which does have a natural proof-theoretical counterpart, and which I call
preservation semantics. It is the combination of preservation semantics, proof procedure,
and metatheory which I will call a logical system.

What should interest us, however, is what Carnap has to say about the qualitative
concept of confirmation and the work of Hempel. Carnap notes in §86 that a qualitative
relation of confirmation can be defined by c(H,E)>c(H,true)25. It should be noted that
until this point no particular c-function has been fixed26; this translation merely serves to
transform the adequacy conditions for regular c-functions into adequacy conditions for
qualitative confirmation and vice versa. Carnap critically examines Hempel’s adequacy
conditions, and finds that quite a few of them don’t correspond to the regularity of c-
functions. While Carnap accepts the equivalence conditions (H2.2) and (H4), as well as (a
qualified form of) the entailment condition (H1), the remaining conditions are invalidated
by certain regular c-functions. Specifically, Carnap rejects both the consequence condition
and the converse consequence condition, and remarks about the consistency condition (H3)
that ‘it seems to me not even plausible’ (§87, p.476), which seems to be mainly caused
by the perceived implausibility of the derived condition (H3.2). On the other hand, (H3.1),
which basically states that evidence and hypothesis are compatible, is accepted.

Finally, Carnap considers Hempel’s definition of confirmation. It is clear from the
foregoing discussion of the adequacy conditions, some of which are rejected by Carnap,
that this definition cannot be unconditionally accepted by Carnap either. In an interesting
analysis, he shows that Hempel’s definition is overly restrictive in the following sense: it
‘holds only in the special case where the evidence ascribes to all individuals essentially
occurring in it the property in question’ (§88, p.481). The reason that this is considered
overly restrictive is that, in Carnap’s view, the main function of a qualitative notion of
confirmation is that it reflects the qualitative aspects of a quantitative measure:

25In fact, Carnap also takes background knowledge B into account by requiring that
c(H,B∧ E)>c(H,B); however, in order to retain the parallel with Hempel’s work B is set
to true.

26The degree of confirmation suggested by Carnap is, in modern terminology, the
fraction of Herbrand models of E in which H is also true (§110).
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‘Some years ago those who worked on these problems expected that, if and
when a definition of degree of confirmation were to be constructed, it would
be based on a definition of a nonquantitative concept of confirming
evidence. However, today it is seen that this is not the case either for dc [a
quantitative concept put forward by Hempel] nor for my definition of c*,
and it is not regarded as probable that it will be the case for other
definitions which will be proposed. It appears at present more promising to
proceed in the opposite direction, that is, to define a quantitative form of
the concept of confirming evidence on the basis of an explicatum for degree
of confirmation...’ (§88, p.481)

In summary, the observed discrepancies between Carnap’s desiderata for a quantitative
measure of confirmation and Hempel’s desiderata of a qualitative relation of confirmation
lead Carnap to the conclusion that the latter notion, as perceived by Hempel, is inadequate
to model the qualitative aspects of the former notion, as perceived by Carnap. This
conclusion seems correct to me — but then, why should we want to develop an
independent qualitative notion if it can be derived from the quantitative measure? This
point is noted by Carnap as well:

‘The task of finding an adequate explicatum for the classificatory concept of
confirmation defined in purely classificatory, that is, nonquantitative terms
is certainly an interesting problem; but it is chiefly of importance for those
who do not believe that an adequate explicatum for the quantitative concept
of confirmation can be found.’ (§86, p.467)

Thus, Carnap considers the qualitative concept of confirmation as a rather poor, and in fact
superfluous, surrogate for the real thing: a quantitative concept.

However, in my view the two concepts are conceived for quite different reasons, and
the relation between them is less transparent than Carnap seems to think. I will not have
space to defend this here — in a way, this whole thesis serves as an illustration of this
point. To reiterate some remarks I made earlier: it will be shown in chapter 7 that the
qualitative concept of confirmation does give rise to a full-fledged logical system,
including a proof procedure, while the quantitative concept does not do so, even if we
would only derive conclusions that are maximally confirmed by the evidence. In the words
of Popper:

‘Those who identify confirmation with probability must believe that a high
degree of probability is desirable. They implicitly accept the rule: ‘Always
choose the most probable hypothesis!’ Now it can be easily shown that
this rule is equivalent to the following rule: ‘Always choose the hypothesis
which goes as little beyond the evidence as possible!’
(Popper, 1963, pp.289–90)

In fact, Carnap has recognised this problem, but dissolves it by stating that inductive
logic has a different goal:

‘Inductive logic alone does not and cannot determine the best hypothesis on
a given evidence... This preference is determined by factors of many
different kinds...’ (§46, p.221)
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What I want to argue here is that Carnap’s conception of an ‘inductive logic’ is actually a
procedure which, given some logical system, can be used to estimate the plausibility of
the formulas derived by that logical system27. That is, such a truth-estimating procedure
is subordinate to, and only useful in conjunction with, some other logical system (see
chapter 5 for a further discussion of this subject). In this thesis my primary interest lies
with such a logical system for induction, and not with a truth-estimating procedure which
takes the hypothesis as an input.

§8.  SUMMARY AND CONCLUSIONS

In this chapter I have outlined the main philosophical aspects of induction relevant for the
subject of this thesis. I have put special emphasis on the work of Peirce and Hempel,
which I will take as a starting point for my subsequent investigations. From Peirce I
borrow the idea of taking explanation as the central notion of inductive hypothesis
formation. From Hempel I borrow the idea of taking confirmation as an alternative
notion. Furthermore, I will use and formalise Hempel’s tool of adequacy conditions.

However, unlike Hempel and Carnap, I consider it necessary to develop several,
alternative sets of adequacy conditions or systems, each of them designed to formalise a
distinguished kind of induction. I will distinguish two main families of systems, one
formalising explanatory induction, the other formalising confirmatory induction. This
distinction is justified by the idea that any formal theory of induction should take into
account the purpose which the inductive conclusion is intended to fulfil. In explanatory
induction this purpose is explaining the observations, while in confirmatory induction the
purpose is to find non-explanatory but confirmed theories expressing regularities implicit
in the observations.

This distinction also provides a solution to the confirmation paradox, which results
from combining the consequence condition and its converse. I have argued that, while the
consequence condition formalises an intuition about confirmatory reasoning, the converse
consequence condition belongs to the realm of explanatory reasoning. We thus obtain two
sets of adequacy conditions: (C1–4) for confirmatory reasoning, and (E1–4) for
explanatory reasoning.

(C1) Entailment condition: any sentence which is entailed by a consistent
observation report is confirmed by it.
(C1.1) Any consistent observation report is confirmed by itself.

(C2) Consequence condition: if an observation report confirms every one
of a set K of sentences, then it also confirms any sentence which is
a logical consequence of K.
(C2.1) Special consequence condition: if an observation report

confirms a hypothesis H, then it also confirms every
consequence of H.

27Carnap’s work is closely related with so-called Bayesian methods for dealing with
uncertainty in a numerical way (Pearl, 1987).
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(C2.2) Equivalence condition: if an observation report confirms a
hypothesis H, then it also confirms every hypothesis which
is logically equivalent with H.

(C2.3) Conjunction condition: if an observation report confirms
each of two hypotheses, then it also confirms their
conjunction.

(C3) Consistency condition: every consistent observation report is
compatible with the set of all the hypotheses which it confirms.
(C3.1) Special consistency condition: an observation report is

compatible with any hypothesis which it confirms.
(C3.2) An observation report does not confirm any hypotheses

which contradict each other.

(C4) Equivalence condition for observations: if an observation report B
confirms a hypothesis H, then any observation report logically
equivalent with B also confirms H.

Insofar there are differences with Hempel’s conditions, these are caused by the fact that
Hempel allows contradictory observation reports (which confirm any hypothesis), while I
don’t.

The adequacy conditions for abductive or, as I will call it in this thesis, explanatory
reasoning are as follows.

(E1) Converse entailment condition: an observation report is explained
by every consistent hypothesis entailing it.
(E1.1) Any consistent observation report explains itself.

(E2) Converse consequence condition: if an observation report is
explained by a hypothesis H, then it is also explained by every
consistent formula entailing H.
(E2.1) Equivalence condition: if an observation report is explained

by a hypothesis H, then it is also explained by every
hypothesis which is logically equivalent with H.

(E3) Special consistency condition: an observation report is compatible
with every hypothesis by which it is explained.

(E4) Equivalence condition for observations: if an observation report B is
explained by a hypothesis H, then any observation report logically
equivalent with B is also explained by H.

Notice that the converse consequence condition (E2) is not valid for a set K of hypotheses,
in the manner of the consequence condition (C2): most likely, alternative explanatory
hypotheses will be incompatible.

I have also raised some points that merely serve as a preview of claims made further
on in this thesis. I have suggested that an alternative formalisation of Hempel’s
satisfaction criterion of confirmation can be based on the notion of a designated or
preferred model semantics, as will be elaborated in chapter 7. Furthermore, I have argued
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that a relation of confirmation is more than just a qualitative plaster cast of a function
assigning degrees of confirmation, since the former, unlike the latter, gives way to a full-
fledged logical system. This raises the question as to what constitutes a logical system, a
question that will be considered in chapter 4.

*  *


