
CHAPTER 1

I N T R O D U C T I O N  A N D  O V E R V I E W

— in which the motivation for this study will be given, its
scope will be delineated, preliminary concepts and notation
will be defined, and an overview will be provided of what is
still to come —

§1.  MOTIVATION AND SCOPE OF THE THESIS

THIS THESIS GIVES an account of my investigations into the logical foundations of
inductive reasoning. Roughly speaking, induction consists in identifying the

similarities between observed objects or events, and hypothetically extending those
similarities to unobserved objects or future events. It constitutes a mode of reasoning
which plays a role in the acquisition of scientific theories, as well as the acquisition of the
descriptive vocabulary needed to reason about the objects and events encountered in
everyday life, although, it must be added, philosophers (and psychologists) disagree about
the importance of induction in these processes. In recent years researchers in artificial
intelligence have explored the realisation of inductive procedures by means of computer
programs, not only with the purpose to automate the formation of scientific theories and
concept taxonomies, but also aiming at extending inductive techniques to new tasks, such
as the construction of computer programs from examples of their intended behaviour (like
in inductive logic programming). The initial motivation for the present study grew out of
a perceived need for a formal framework in which the various inductive techniques that are
used in practice can be precisely characterised and related to each other. As such, it should
be viewed as a methodological investigation into the formal aspects of inductive methods
as used in computer science in general, and artificial intelligence in particular.

The field of artificial intelligence seeks to implement aspects of human cognitive
behaviour by means of computer programs. By its very nature, the field has a strong
inclination towards epistemological subjects, as they were traditionally studied by
philosophers and logicians1. Clearly, researchers in each of these fields study the same
subjects with quite different aims. For instance, philosophers are interested in such issues
as the scope and justification of human knowledge; logicians are interested in formalising
reasoning processes; and computer scientists may use techniques similar to human
reasoning methods to solve particular problems. Despite these different aims, methods and
results from one of these fields may be relevant for the others. For instance, Gödel’s proof
of the incompleteness of first-order predicate logic as soon as it includes fundamental

1The psychological aspects of induction fall outside the scope of this thesis.
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number theory has some serious philosophical implications; and the computer scientist’s
pursuit for an efficiently implementable deduction strategy has spawned an innumerable
amount of logical investigations. Many problems in artificial intelligence would therefore
benefit from an approach that is not completely ignorant of related views, and inductive
reasoning is no exception in this respect. In this thesis inductive reasoning is studied in a
multidisciplinary context, combining perspectives from philosophy, logic, and artificial
intelligence.

Philosophy

Philosophical investigations of inductive reasoning have concentrated on the justification
of inductively acquired knowledge: the infamous ‘Problem of Induction’. Not only is this
a very complex problem, philosophers disagree about what exactly should be understood
as a justification. Many scholars tend to believe that this requires, in some form or
another, an assessment of the truth of the inductive conclusion, given the truth of the
premisses. Other philosophers claim that describing the inferential patterns underlying
induction suffices. For instance, Nelson Goodman states that ‘the basic task in justifying
an inductive inference is to show that it conforms to the general rules of induction’
(Goodman, 1954, p.374). Such rules of induction delimit what kind of argument we are
prepared to accept as inductive argument — they cannot have, and do not need, any further
justification than their compliance with common practice. Furthermore, as Goodman
notes, this renders the inductive justification problem completely analogous to the
justification of deduction: there, also, a deductive argument is valid if it is in accordance
with the rules of the game — rules that come very close to formalising our intuitions
about deduction, it is true, but which nevertheless can also only be justified by an appeal
to intuition.

It would be, I believe, a mistake to think that the ‘Problem of Induction’ can be
completely reduced to the problem of devising a proper set, or proper sets, of rules of
induction, because a solution to the latter problem leaves unanswered the question how to
assess the truth of the inductive conclusion. The two problems — justifying inductive
reasoning and describing inductive reasoning — are, in the view developed in this thesis,
relatively unrelated. Furthermore, I think that the justification problem is not reserved for
induction, but manifests itself in any form of non-deductive reasoning. In this thesis I will
concentrate on the description problem rather than the justification problem, although I
will also spend some words on the latter.

Logic

As a separate branch of science, logic has emerged only relatively recently. Until the
twentieth century questions regarding the patterns underlying human reasoning were
considered to belong to philosophy. This century has seen a tremendous breakthrough in
the formalisation of mathematical reasoning, and as a result logical investigations have
become more technical and less philosophical. Logic, as we know it today, is a technical
discipline with the mathematics of deductive logic as its main subject.

Without questioning the worth of current-day logical investigations, I consider it
regrettable that the original, general question regarding the patterns underlying human
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reasoning has been overpowered by a rather more specific question concerning the logical
patterns of deductive reasoning. It is true that non-deductive forms of reasoning can never
be formalised to the same extent as deductive reasoning, for the simple reason that the
latter has a built-in notion of ‘correct’ reasoning which the former lack. However, I
believe that some present-day logical tools can be successfully used to obtain a deeper
understanding of non-deductive forms of reasoning, and this thesis is meant as a
contribution in this direction.

Artificial intelligence

If logic is a young field, artificial intelligence is still in its infancy. Artificial intelligence
can be described as the field that aims to automate human cognitive abilities, in order to
improve the usefulness of computers2. Artificial intelligence research sheds a new light on
many old philosophical problems by taking a computational viewpoint. For instance,
many philosophers, including Peirce and Popper, think that scientific hypotheses come to
us in a ‘flash of insight’, and not by an algorithmic process consisting of small reasoning
steps. There is however, as Peirce noted, a certain relation between the hypothesis and the
observations preceding it, parts of which can be logically formalised, and such a formal
relation can be computed3. While the tendency in philosophy has been ‘humans do not do
this algorithmically, so don’t bother about the logical relation’, the artificial intelligence
attitude is ‘but I want my computer to do it algorithmically, so I need the exact logical
relation as a specification for the computer program’.

We could say that artificial intelligence researchers are philosophical programmers (or
that philosophers are artificial intelligence designers). The interplay between the two
disciplines is likely to produce new insights, and this thesis is hoped to contribute in that
respect.

§2.  PRELIMINARIES

In this section I will introduce the most important concepts, notation and terminology
used throughout the thesis. A summary of many of these terms can be found in an
appendix.

Terminology

If it were possible, at this stage, to give a precise, coherent and undisputed definition of
the terms used in the following chapters, this thesis wouldn’t have been written. For
instance, there is no well-established definition of induction, and the interpretation of the
term ‘abduction’ is a battlefield. The following discussion of the terminology I use in this
thesis is therefore partly premature and subjective.

2I regard artificial intelligence as a subfield of computer science rather than cognitive science
— for a collection of views on this subject see (Flach & Meersman, 1991).

3It may have to be approximated, or limited to special cases, because of undecidability or
complexity problems, but this leaves the main point unaffected.
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Reasoning is an informal term denoting the process of forming arguments, i.e.
drawing conclusions from premisses, and logic is the formal study of that process. It is
taken for granted that different reasoning forms can be identified, such as inductive
reasoning, deductive reasoning, plausible reasoning, and so forth; again, this term will be
used informally. The formalisation of different reasoning forms and their relations is seen
as the main goal of logic, resulting in a catalogue of reasoning forms; such a catalogue, or
a coherent part of it, will be referred to as a descriptive logical theory4.

My definition of the deductive reasoning form is rather generous. An argument is
deductive if the conclusion cannot be contradicted by new knowledge without contradicting
the premisses also; a form of reasoning is deductive if it only allows deductive arguments.
Another way to say the same thing is: deduction is the logic of non-defeasible reasoning.
This is not meant to say that there is a single deductive logic, and that it is clear which
arguments are deductively valid and which are not. On the contrary: the argument ‘two
plus two equals four; therefore, if the moon is made of green cheese, then two plus two
equals four’ will be rejected by those who favour a causal or relevance interpretation of if–
then rather than a truth-functional interpretation. However, as soon as such an argument is
accepted as deductively valid, the only way to defeat the conclusion is by denying that two
plus two equals four, and this defeats the premisses also. Note that I didn’t talk about the
logical language, or about the proposed semantics: modal, temporal, relevance, and
intuitionistic logics are all formalisations, sometimes conflicting, of certain aspects of
deductive reasoning.

Non-deductive reasoning forms are defeasible: a conclusion may be defeated by new
knowledge, even if the premisses on which the conclusion was based are not defeated. For
instance, the argument ‘birds typically fly; Tweety is a bird; therefore, Tweety flies’ is
non-deductive, since Tweety might be an ostrich, hence non-typical. The argument ‘every
day during my life the sun rose; I don’t know of any trustworthy report of the sun not
rising one day in the past; therefore, the sun will rise every future day’ is non-deductive,
since if the sun would not rise tomorrow, this would invalidate the conclusion but not the
premisses.

The Tweety-argument is a well-known example of what I call plausible reasoning:
reasoning with general cases and exceptions. This terminology is not generally accepted:
this form of reasoning is normally referred to as non-monotonic reasoning5. A reasoning
form is monotonic if, given an argument, adding a premiss cannot defeat the conclusion.
In fact, this is the same property as what I called non-defeasibility above; since any non-
deductive reasoning form is defeasible, it follows that any non-deductive reasoning form is
non-monotonic. In other words, the property of non-monotonicity is of limited use in

4I don’t think that the field of logic, in its current state, has developed very well towards this
goal. Most of the logics around, such as modal, temporal, partial and relevance logics, are
mostly variations upon a theme, the theme of deductive reasoning, and thus represent only a
tiny subspectrum of the huge range of possible reasoning forms. Like algebra has generalised
the properties of numbers into such abstract concepts as groups, rings and fields, logic should
investigate what properties of deductive logic are contingent and could be different, and what
properties are tied to the nature of logic, expressing an inherent quality of reasoning. Such
investigations belong to the discipline of descriptive logic.

5Default reasoning would be a good term, but this seems too strongly connected to a
particular logic, i.e. default logic.
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classifying reasoning forms; for this reason I prefer a different (and more meaningful)
term. Typically, plausible reasoning encompasses deductive reasoning, but also tries to
draw, in the absence of crucial information, conclusions that are not deductively justified.
In this sense plausible reasoning is ‘supra-deductive’ or, as I will call it, quasi-deductive.

The second argument above, concerning the prediction of sunrise, is an example of
induction, which is commonly defined as reasoning from specific observations (also called
evidence) to general rules or hypotheses. As a first attempt this is an acceptable definition,
but note that it leaves the logical relation between observations and inductive hypothesis
unspecified. After all, after observing 100 white swans we might conclude that swans may
have any colour. Few people would accept this inductive conclusion, but why is this so?
Like with deductive reasoning this should be based on some notion of ‘inductive validity’.
This is exactly the subject of this thesis, although I will eschew the term ‘validity’
because of its strong deductive connotation. Note that inductive reasoning does not
comprehend all deductively valid arguments and is therefore not quasi-deductive; I will call
reasoning forms that do not aim at approximating deduction a-deductive.

Abduction is a term originally introduced by C.S. Peirce to denote the process of
forming an explanatory hypothesis given some observations (a hypothesis from which the
observations can be deduced). According to the view defended in this thesis, inferring a
general explanation of observations is one possible form of inductive reasoning, so we
might say that abduction is a special case of induction. However, in recent years a different
notion of abduction has emerged in the logic programming field, according to which the
general explanation is known, but one of its premisses is not known to be true; abduction
is then seen as hypothesising this missing premiss. As a consequence, abduction and
induction are viewed as complementary: induction infers the general rule, given that its
premisses and its conclusion hold in specific cases; abduction infers specific premisses,
given the general rule, and specific instances of its conclusion and some of its premisses.
In this thesis I will stick to the former interpretation of abduction, as originally intended
by Peirce; in order to minimise confusion I will mostly avoid the term abduction in
favour of the term explanatory reasoning.

Explanatory reasoning is meant to formalise one aspect of inductive reasoning, namely
that inductive hypotheses should be able to explain the observations. Confirmatory
reasoning formalises another intuitive aspect of induction, that is, the idea that the
inductive conclusion should be confirmed by the hypothesis. One might expect that the
ideal inductive hypothesis is both explanatory and confirmed; however, straightforward
logical formalisations of both aspects turn out to interfere in such a way that they have
been developed separately in this study. Neither of these formalisations is intended to fully
capture the essence of inductive reasoning; therefore, I tend to avoid the term induction in
the more formal parts of the thesis, and adopt the more neutral term conjectural reasoning;
the term conjecture is used synonymously with ‘hypothesis’ in the sense of ‘defeasible
general rule’.

Logical preliminaries

Throughout the thesis I assume that a logical language L is fixed. Except for chapter 7,
whose completeness results only hold if L is a (first-order) propositional language, I will
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normally assume that L is a (first-order) predicate-logical language, unless indicated
otherwise. Formally, such a language is defined by a denumerable set of predicate symbols
with arity 0,1,2,…, a denumerable set of variable symbols, a denumerable set of constant
symbols, and a denumerable set of function symbols with arity 1,2,…. Terms and well-
formed formulas (wff’s) are defined in the usual recursive way, by means of the
connectives ¬ , ∧ , ∨ , →, and ↔, and the quantifiers ∀  and ∃ :

1a. a constant symbol is a term;
1b. a variable symbol is a term;
1c. if f is a function symbol with arity n, and t1,…,tn is a sequence of n

terms, then f(t1,…,tn) is a term;
1d. nothing else is a term.
2a. true and false are wff’s;
2b. if P is a predicate symbol with arity n, and t1,…,tn is a sequence of n

terms, then P(t1,…,tn) is a wff, also referred to as an atomic formula,
or briefly, an atom;

2c. if F1 and F2 are wff's, then (¬ F1), (F1∧ F2), (F1∨ F2), (F1→F2), and
(F1↔F2) are wff’s;

2d. if x is a variable and F is a wff, then (∀ x: F) and (∃ x: F) are wff’s;
2e. nothing else is a wff.

Brackets will usually be dropped as much as possible without causing confusion. A
propositional language is a special case of a predicate-logical language, built only from
predicate symbols with arity 0, referred to as proposition symbols or propositional atoms,
and connectives; the set of propositional wff’s is defined by clauses 2a–c and 2e.

The scope of a quantifier ∀ x (resp. ∃ x) in ∀ x: F (resp. ∃ x: F) is F. An occurrence of a
variable in a formula is bound if it immediately follows a quantifier, or if it occurs in the
scope of a quantifier with the same variable. Any other occurrence of a variable in a
formula is free. Although the same variable can have both bound and free occurrences
within a formula, this is usually avoided by renaming; in that case we simply refer to free
and bound variables. A closed formula is a formula without free occurrences of any
variable; otherwise the formula is open. For any formula, ∀ (F) denotes the universal
closure of F, which is the closed formula obtained by adding a universal quantifier for
every variable with a free occurrence in F.

If A is an atom, then ¬ A is a negative literal; an atom is also referred to as a positive
literal. A clause is the universal closure of a disjunction of positive and negative literals.
We adopt the usual notation for clauses: a clause like A1;A2:-B1,B2 stands for the
formula ∀ (A1∨ A2∨¬ B1∨¬ B2 ); the part preceding the symbol ‘:-’ is called the head of
the clause, the part succeeding it is called the body. A clause is a denial if it has no
positive literal, definite if it has one positive literal, and indefinite if it has more than one
positive literal. A non-definite clause is also called an integrity constraint. A fact is a
definite clause without negative literals; the ‘:-’ symbol is omitted for facts. A normal
clause is obtained from an indefinite clause by moving all but one positive literals to the
body, preceded by a negation symbol. A logic program is a set (conjunction) of definite
and normal clauses.

We conform to the Prolog notation (see Flach, 1994): predicate symbols, function
symbols and constant symbols start with a lowercase letter, while variable symbols start
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with an uppercase letter. A functor is a function symbol occurring in a clause. The term
.(X,Y), where ‘.’ is the list functor, is usually written [X|Y]; the empty list constant
is [], and for lists of fixed length such as .(a,.(b,.(c,[]))) we employ the linear
notation and write [a,b,c]. A substitution is a function mapping variables to terms;
applying a substitution to a clause replaces all occurrences of the variables in the domain
of the substitution with the corresponding term. A ground term (clause) is a term (clause)
without variables. The Herbrand universe of a language or a program is the set of ground
terms. The Herbrand base of a language or a program is the set of ground atoms.

A predicate-logical interpretation is a pair 〈D,i〉 , where D is a non-empty domain of
individuals, and i is a function assigning to every constant symbol an element of D, to
every function symbol with arity n a mapping from Dn to D, and to every predicate
symbol with arity n a mapping from Dn to the set of truthvalues {true,false}6. A
valuation is a function v assigning to every variable an element of D . Given an
interpretation I = 〈D,i〉  and a valuation v a mapping iv from terms to individuals and from
formulas to truthvalues is defined as follows:

1a. if t is a constant symbol, iv(t) = i(t);
1b. if t is a variable symbol, iv(t) = v(t);
1c. if t is a term f(t1,…,tn), iv(t) = i(f)(iv(t1),…,iv(tn)).
2a. iv(true) = true; iv(false) = false;
2b. if F is an atom P(t1,…,tn), iv(F) = i(P) (iv(t1),…,iv(tn));
2c. iv(¬ F) = true if iv(F) = false, and false otherwise;

iv(F1∧ F2) = true if iv(F1) = true and iv(F2) = true, and
false otherwise;
iv(F1∨ F2) = iv(¬ (¬ F1∧¬ F2));
iv(F1→F2) = iv(¬ F1∨ F2);
iv(F1↔F2) = iv((F1→F2)∧ (F2→F1));

2d. iv(∀ x: F) = true if ivx→d(F) = true for all d∈ D, and false
otherwise, where vx→d is v except that x is assigned d;
iv(∃ x: F) = iv(¬∀ x: ¬ F).

An interpretation I satisfies a formula F, notation I = F, if iv(F) = true for all valua-
tions v; we usually say that I is a model of F. Models are usually denoted by the letter m,
and occasionally treated as functions assigning truthvalues to formulas. A formula is
satisfiable if it is satisfied by some interpretation, unsatisfiable otherwise. If all models of
a set of formulas Σ are also models of ϕ , we say that Σ logically entails ϕ  or ϕ  is a
logical consequence of Σ, and write Σ = ϕ7. If Σ is empty, ϕ is called a tautology; instead
of ∅  = ϕ, we write =ϕ. A formula ψ is a contradiction if ¬ψ  is a tautology. In chapter 7
the following compactness property of first-order predicate logic will be used: a set of
formulas Σ is satisfiable iff every finite subset of Σ is satisfiable.

6I will not distinguish between the symbol in the language denoting a truthvalue and the
truthvalue itself. Note that in §28 we consider partial or three-valued interpretations; the main
differences with two-valued interpretations will be explained there.

7Conforming to standard logical practice the symbol = denotes both the satisfaction relation
between interpretations and formulas, and the entailment relation between sets of formulas and
formulas. Wherever this might cause confusion the intended meaning is indicated in words.
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A Herbrand interpretation is an interpretation 〈D,i〉 in which the domain D is the
Herbrand universe H of ground terms, while i maps every constant symbol to itself, and
every function symbol f with arity n to a function from Hn mapping a sequence of ground
terms 〈t1,…,tn〉  to f(t1,…,tn). Thus, Herbrand interpretations only differ in their truthvalue
assignments to predicate symbols; consequently, any Herbrand interpretation is completely
defined by, and usually identified with, the set of ground atoms it assigns the truthvalue
true (i.e. a  subset of the Herbrand base)8. The main differences between Herbrand
interpretations and the general case are:

• the treatment of equality: syntactically different ground terms denote
different individuals, and

• quantification, which is only over the known individuals: e.g. if the
Herbrand universe is {a}, then {P(a), ∃ x: ¬P(x)} does not have a
Herbrand model (although it is satisfiable).

For clauses, which don’t contain existential quantifiers, Herbrand interpretations are
sufficient, in the following sense: a set of clauses is unsatisfiable iff it does not have a
Herbrand model.

A proof procedure consists of a set of (logical) axioms and a set of inference rules. Given a
proof procedure P, we say that ϕ  is provable from Σ and write Σ |P ϕ  if there exists a
finite sequence of formulas ϕ1, ϕ2, …, ϕn which is obtained by successive applications of
inference rules to axioms, premisses in Σ, or previous formulas in the sequence, or
combinations of these, while ϕn is the conclusion ϕ. Such a sequence of formulas, if it
exists, is called a proof of ϕ  from Σ. A proof procedure P is sound, with respect to the
semantics established by predicate-logical interpretations, if Σ = ϕ whenever Σ |P ϕ; it is
complete if Σ |P ϕ whenever Σ = ϕ. For a sound and complete proof procedure for first-
order predicate logic, see e.g. (Turner, 1984, p.15). A set of formulas Σ is consistent, with
respect to a proof procedure P, if not both Σ |P ϕ and Σ |P ¬ϕ  for some formula ϕ; two
sets of formulas are compatible if their union is consistent. I will usually omit the
reference to a particular proof procedure, and write | for some provability relation that
coincides with =. Likewise, if a set of formulas is called consistent, a sound and complete
proof procedure is understood; consequently, a set of formulas is consistent iff it is
satisfiable.

In chapter 8 I will make use of the proof procedure of resolution in clausal logic. In
clausal logic no interaction occurs between the connectives due to the normal form in
which clauses are written, and thus the set of axioms is empty. The single inference rule
of resolution allows one to infer, from two clauses F1∨ L1 and F2∨¬ L2, the clause
(F1∨ F2)θ, where θ is the most general unifier of L1 and L2 (the minimal substitution such
that L1θ = L2θ). In terms of definite clauses this amounts to matching the head of one
clause with a literal in the body of another. The resolution proof procedure is not
complete, but it is refutation-complete, i.e. if a set of clauses is inconsistent resolution is
able to derive the unsatisfiable empty clause ∆. Therefore, proofs of Σ | ϕ, where ϕ is a
conjunction of positive literals, are transformed to refutation proofs Σ∪ {¬ϕ } | ∆, where
¬ϕ  is a denial called a query and written ?-B1,…,Bn. As we saw earlier, Herbrand

8The same observation can be made for propositional interpretations.
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interpretations are sufficient to characterise such a refutation proof procedure in clausal
logic. SLD resolution is a particular resolution proof procedure specifically tailored for
definite logic programs; SLDNF resolution is an extension of SLD resolution that is able
to deal with normal clauses by negation as failure.

§3.  OVERVIEW OF THE THESIS

The thesis consists of three parts: Backgrounds, Foundations, and Practice. A brief
overview of the chapters in each of these parts follows.

Backgrounds

In the first part work in philosophy, logic, and artificial intelligence that is relevant for
the present investigations is reviewed. The choice of works is subjective, and no claim is
made as to the completeness of these overviews. On the contrary, I often concentrate on
one or two authors whose work has inspired mine. Apart from some minor terminological
adjustments9, which I have permitted myself with a view to overall consistency, I have
tried to remain as faithful as possible to the original author’s views and intentions. Where
I have felt the need to comment on or voice disagreement with those views I have done so
in a separate discussion section at the end of the chapter.

In the first chapter in this part, The philosophy of induction, I discuss the
philosophical backgrounds of this study. I concentrate on philosophers who have studied
induction from a logical perspective, most notably Peirce and Hempel. The work of
Carnap on confirmation measures is briefly reviewed in the discussion section, since it
provokes some reflections on the aims and scope of logic (further dealt with in chapter 5).
However, his numerical approach is not seen as fundamental to the subject of this thesis,
since it does not provide any insight into the logic of induction. The main conclusion
drawn from this chapter is that the dichotomy between explanatory and confirmatory
induction proposed and defended in this thesis is already present, albeit implicit, in the
work of Peirce and Hempel.

The next chapter is called Approaches to computational induction. It draws upon work
in machine learning (a subfield of artificial intelligence) on inductively learning concepts,
logic programs, and logical theories from examples. I indicate how the latter two
problems can be reformulated as problems of explanatory and confirmatory induction,
respectively.

The third and final chapter in the first part, The analysis of non-deductive reasoning, is
mainly devoted to one article by Kraus, Lehmann and Magidor that provided the main
inspiration for my approach. In that article the authors set out to “study general patterns of
nonmonotonic reasoning”. The main tool they used for that study is the notion of a
consequence relation, which is a set of pairs of premiss and conclusion, originally
proposed by Gabbay. By formulating and combining properties of such consequence
relations, such as (Cautious) Monotonicity and Transitivity, they succeeded in providing a
systematic and precise overview of different forms of plausible reasoning, that is, a

9all of which are indicated in footnotes.
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descriptive theory of plausible reasoning. In this thesis I have set out to do the same for
inductive reasoning.

Foundations

The second part makes up the core of this thesis. It consists of three, increasingly
technical, chapters. The first chapter, Outline of a descriptive theory of induction, is
probably the most speculative among them, challenging some established dogmas of
logic. Specifically, I take issue with the idea that a logical semantics is necessarily based
on the notion of truth. In my view, any quality worth preserving in an argument may give
rise to a logic formalising some useful form of reasoning. Two of the qualities that may
be preserved in inductive arguments are explanatory power and regularity of
interpretations10. Since the preservation of such qualities may not be reserved for inductive
reasoning, nor characterise it completely, I introduce the term ‘conjectural reasoning’ for
any form of reasoning involving uncertain hypotheses, including induction.

In the next chapter, Properties of conjectural consequence relations, I commence my
study of general patterns of conjectural reasoning in the spirit of Kraus et al. Starting with
the adequacy conditions for a material definition of the relation of confirmation formulated
by Hempel, I propose a number of rules for explanatory and confirmatory reasoning, and
some rules that are meaningful in both cases. Systems of such rules are studied and
semantically characterised in the final chapter in this part, Rule systems for conjectural
reasoning.

Practice

Of the two forms of induction studied in this thesis, explanatory induction and
confirmatory reasoning, the latter is certainly much less understood than the former. In the
third and last part of this thesis I illustrate the practice of confirmatory induction in the
context of relational databases. This chapter also illustrates my claim that in confirmatory
induction one needs an additional goal which the inductive hypothesis is meant to fulfil,
since ‘being confirmed’ is not an end in itself. Those readers who wish to have a concrete
idea of confirmatory induction could read this chapter before diving into the formalities of
the Foundations part.

The thesis is ended with a chapter recapitulating the main achievements and conclusions,
and with a few appendices including a glossary of terms and logical rules.

*

10A third one, generality, is briefly considered but not worked out in this thesis.


