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Abstract.

This paper presents a logical analysis of induction. Contrary to common approaches to inductive logic that treat
inductive validity as a real-valued generalisation of deductive validity, we argue that the only logical step in
induction lies in hypothesis formation rather than evaluation. Inspired by the seminal paper of Kraus, Lehmann &
Magidor [18] we analyse the logic of inductive hypothesis formation on the metalevel of consequence relations. Two
main forms of induction are considered: explanatory induction, aimed at inducing a general theory explaining given
observations, and confirmatory induction, aimed at characterising completely or partly observed models. Several sets
of meta-theoretical properties of inductive consequence relations are considered, each of them characterised by a
suitable semantics. The approach followed in this paper is extensively motivated by referring to recent and older
work in philosophy, logic, and Machine Learning.

1. Introduction

This paper is an attempt to develop a logical account of inductive reasoning, one of the most important
ways to synthesize new knowledge. Induction provides an idealized model for empirical sciences, where
one aims to develop general theories that account for phenomena observed in controlled experiments. It
also provides an idealized model for cognitive processes such as learning concepts from instances. The
advent of the computer has suggested new inductive tasks such as program synthesis from examples of
input-output behaviour and knowledge discovery in databases, and the application of inductive methods
to Artificial Intelligence problems is an active research area, which has displayed considerable progress
over the last decades.

On the foundational side, however, our understanding of the essentials of inductive reasoning is
fragmentary and confused. Induction is usually defined as inference of general rules from particular
observations, but this slogan can hardly count as a definition. Clearly some rules are better than others for
given observations, while yet other rules are totally unacceptable. A logical account of induction should
shed more light on the relation between observations and hypotheses, much like deductive logic
formalises the relation between theories and their deductive consequences.

This is by no means an easy task, and anyone claiming to provide a definitive solution should be
approached sceptically. The main contribution of this paper lies in the novel perspective that is obtained
by combining older work in philosophy of science with a methodology suggested by recent work in
formalising nonmonotonic reasoning. This perspective provides us with a descriptive — rather than
prescriptive — account of induction, which clearly indicates both the opportunities for and limitations of
logical analysis when it comes to modelling induction.

1.1 Problem formulation and approach

I should start by stressing that the study reported on in this paper should be perceived as an application of
logical analysis to problems in Artificial Intelligence. Thus, we will take it for granted that there exists a
distinct and useful form of reasoning called induction. As a model for this form of reasoning we may take
the approaches to learning classification rules from examples that can be found in the Machine Learning
literature, or the work on inducing Prolog programs and first-order logical theories from examples in the
recently established discipline of Inductive Logic Programming. By taking this position we will avoid the
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controversies abounding in philosophy of science as to whether or not science proceeds by inductive
methods. This is not to say that I will completely ignore philosophical considerations — in fact, my
approach has been partly motivated by works from the philosophers Charles Sanders Peirce and Carl G.
Hempel, as I will explain shortly.

The main question addressed in this paper is the following: Can we develop a logical account of
induction that is sufficiently similar to the modern account of deduction? By ‘the modern account of
induction’ I mean the by now standard approach, developed in the first half of this century, of defining a
logical language, a semantical notion of deductive consequence, and a proof system of axioms and
inference rules operationalising the relation of deductive consequence. By the stipulation that the logical
account of induction be ‘sufficiently similar’ to this modern account of deduction I mean that the former
should likewise consist of a semantical notion of inductive consequence, and a corresponding proof
system.

Those perceiving logic as the ‘science of correct reasoning’ will now object that what I am after is a
deductive account of induction, and it is known already since Hume that inductive hypotheses are
necessarily defeasible. My reply to this objection is that it derives from a too narrow conception of logic.
In my view, logic is the science of reasoning, and it is the logician’s task to develop formal models of
every form of reasoning that can be meaningfully distinguished. In developing such formal models for
nondeductive reasoning forms, we should keep in mind that deduction is a highly idealized and restricted
reasoning form, and that we must be prepared to give up some of the features of deductive logic if we
want to model reasoning forms that are less perfect, such as induction.

The fundamental question then is: which features are inherent to logic per se, and which are accidental
to deductive logic? To illustrate this point, consider the notion of truth-preservation: whenever the
premisses are true, the conclusion is true also. It is clear that truth-preservation must be given up as soon
as we step out of the deductive realm. The question then arises whether a logical semantics is mainly a
tool for assessing the truth of the conclusion given the truth of the premisses, or whether its main function
is rather to define what property is preserved when passing from premisses to conclusion. We will
address this and similar fundamental questions in this paper.

Another objection against the approach I propose could be that deductive logic is inherently
prescriptive: it clearly demarcates the logical consequences one should accept on the basis of given
premisses, from the ones one should not accept. Clearly, our understanding of induction is much too
limited to be able to give a prescriptive account of induction. My reply to this objection is that, while
such a demarcation is inherent to logic, its interpretation can be either prescriptive or descriptive. The
inductive logics I propose in this paper distinguish between hypotheses one should not accept on the basis
of given evidence, relative to a certain goal one wants the hypothesis to fulfil, and hypothesis one might
accept. Put differently, these inductive logics formalise the logic of inductive hypothesis formation rather
than hypothesis selection, which I think is the best one can hope to achieve by purely logical means.

The objective pursued in this paper, then, is to develop semantics and proof systems for inductive
hypothesis formation. What is new here is not so much this objective, which has been pursued before (see
e.g. [4]), but the meta-theoretical viewpoint taken in this paper, which I think greatly benefits our
understanding of the main issues. This meta-theoretical viewpoint has been inspired by the seminal paper
of Kraus, Lehmann & Magidor [18], where it is employed to unravel the fundamental properties of
nonmonotonic reasoning. Readers familiar with the paper of Kraus et al. may alternatively view the
present paper as a constructive proof of the thesis that their techniques in fact establish a methodology, by
demonstrating how they can be successfully applied to analyse a rather different form of reasoning.

1.2 Plan of the paper

The paper is structured as follows. In section 2 the philosophical, logical, and Machine Learning
backgrounds of this paper are surveyed. Section 3 introduces the main logical tool employed in this
paper: the notion of a metalevel consequence relation. Sections 4 and 5 form the technical core of this
paper, stating representation theorems characterising sets of metalevel properties of explanatory induction
and confirmatory induction, respectively. In section 6 we discuss the implications of the approach taken
and results obtained in this paper. Section 7 repeats the main conclusions.
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2. Backgrounds

This section reviews a number of related approaches from the philosophical, logical, and Machine
Learning literature. With such a complex phenomenon as induction, one cannot hope to give an overview
that can be called complete in any sense — I will restrict attention to those approaches that either can be
seen as precursors to my approach, or else are considered as potential answers to my objectives but
rejected upon closer inspection. We start with the latter.

2.1 Inductive probability

By now it is commonplace to draw a connection between inductive reasoning and probability calculus.
Inductive or subjective probability assesses the degree to which an inductive agent is willing to accept a
hypothesis on the basis of available evidence. A socalled posterior probability of the hypothesis after
observing the evidence is obtained by applying Bayes’ theorem to the probability of the hypothesis prior
to observation. Rudolf Carnap has advocated the view that inductive probability gives rise to a system of
inductive logic [3]. Briefly, Carnap defines a function c(H,E) assigning a degree of confirmation (a
number between 0 and 1) to a hypothesis H on the basis of evidence E. This function generalises the
classical notion of logical entailment — which can be seen as a ‘confirmation function’ from premisses
and conclusion to {0,1} — to an inductive notion of ‘partial entailment’:

‘What we call inductive logic is often called the theory of nondemonstrative or nondeductive
inference. Since we use the term ‘inductive’ in the wide sense of ‘nondeductive’, we might call it the
theory of inductive inference... However, it should be noticed that the term ‘inference’ must here, in
inductive logic, not be understood in the same sense as in deductive logic. Deductive and inductive
logic are analogous in one respect: both investigate logical relations between sentences; the first
studies the relation of [entailment], the second that of degree of confirmation which may be regarded
as a numerical measure for a partial [entailment]... The term ‘inference’ in its customary use implies
a transition from given sentences to new sentences or an acquisition of a new sentence on the basis of
sentences already possessed. However, only deductive inference is inference in this sense.’ [3, §44B,
pp.205–6]

This citation succinctly summarises why inductive probability is not suitable, in my view, as the
cornerstone of a logic of induction. My two main objections are the following.

Inductive probability treats all nondeductive reasoning as inductive. This runs counter to one of the
main assumptions of this paper, namely that induction is a reasoning form in its own right, which we
want to characterise in terms of properties it enjoys rather than properties it lacks. A more practical
objection is that a single logical foundation for all possible forms of nondeductive reasoning is likely to
be rather weak. Indeed, I would argue that in many forms of reasoning the goal that is to be fulfilled by
the hypothesis, such as explaining the observations, is not reducible to a degree of confirmation.1

Inductive probability, taken as partial entailment, leads to a degenerated view of logic. This is
essentially what Carnap notes when he states that his inductive logic does not establish inference in the
same sense as deductive logic (although he would not call it a degeneration). This means that, for
instance, the notion of a proof reduces to a calculation of the corresponding degree of confirmation. A
possible remedy is to define and axiomatise a qualitative relation of confirmation, such as the relation
defined by qc(H,E) ⇔  c(H,E)>c(H,true). However, such a qualitative relation of confirmation can also
be postulated without reference to numerical degrees of confirmation, which would give us much more
freedom to investigate the relative merits of different axiom systems. In fact, this is the course of action
taken by Hempel, as we will see in the next section.

I should like to stress that it is not inductive probability or Bayesian belief measures as such which are
criticised here — on the contrary, I believe these to be significant approaches to the important problem of
how to update an agent’s beliefs in the light of new information. Since belief measures express the
agent’s subjective estimates of the truth of hypotheses, let us say that inductive probability and related
approaches establish a truth-estimating procedure. My main point is that such truth-estimating
procedures are, generally speaking, complementary to logical systems. Truth-estimating procedures

1Note that degree of confirmation is not a quantity that is simply to be maximised, since this would lead us straight
back into deductive logic.
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answer a type of question which nondeductive logical systems, in general, cannot answer, namely: how
plausible is this hypothesis given this evidence? The fact that deductive logic incorporates such a truth-
estimating procedure is accidental to deductive reasoning; the farther one moves away from deduction,
the less the logical system has to do with truth-estimation. For instance, the gap between logical systems
for nonmonotonic reasoning and truth-estimating procedures is much smaller than the gap between the
latter and logical systems for induction. Indeed, one may employ the same truth-estimating procedure for
very different forms of reasoning.

2.2 Confirmation as a qualitative relation

Carl G. Hempel [15, 16] developed a qualitative account of induction that will form the basis of the
logical system for what I call confirmatory induction (section 5). Carnap rejected Hempel’s approach,
because he considered a quantitative account of confirmation as more fundamental than a qualitative
acount. However, as explained above I think that the two are conceived for different purposes: a function
measuring degrees of confirmation can be used as a truth-estimating procedure, while a qualitative
relation of confirmation can be used as the cornerstone for a logical system. I also consider the two as
relatively independent: a qualitative confirmation relation that cannot be obtained from a numerical
confirmation function is not necessarily ill-conceived, as long as the axioms defining the qualitative
relation are intuitively meaningful.

Hempel’s objective is to develop a material definition of confirmation. Before doing so he lists a
number of adequacy conditions any such definition should satisfy. Such adequacy conditions can be seen
as metalevel axioms, and we will discuss them at some length. The following conditions can be found in
[16, pp.103–106, 110]; logical consequences of some of the conditions are also stated.

(H1) Entailment condition: any sentence which is entailed by an observation report is
confirmed by it.

(H2) Consequence condition: if an observation report confirms every one of a class K of
sentences, then it also confirms any sentence which is a logical consequence of K.
(H2.1) Special consequence condition: if an observation report confirms a hypothesis H,

then it also confirms every consequence of H.
(H2.2) Equivalence condition: if an observation report confirms a hypothesis H, then it

also confirms every hypothesis which is logically equivalent with H.
(H2.3) Conjunction condition: if an observation report confirms each of two hypotheses,

then it also confirms their conjunction.

(H3) Consistency condition: every logically consistent observation report is logically
compatible with the class of all the hypotheses which it confirms.
(H3.1) Unless an observation report is self-contradictory, it does not confirm any

hypothesis with which it is not logically compatible.
(H3.2) Unless an observation report is self-contradictory, it does not confirm any

hypotheses which contradict each other.

(H4) Equivalence condition for observations: if an observation report B confirms a
hypothesis H, then any observation report logically equivalent with B also confirms
H.

The entailment condition (H1) simply means that entailment ‘might be referred to as the special case of
conclusive confirmation’ [16, p.107]. The consequence conditions (H2) and (H2.1) state that the relation
of confirmation is closed under weakening of the hypothesis or set of hypotheses (H1 is weaker than H2

iff it is logically entailed by the latter). Hempel justifies this condition as follows [16, p.103]: ‘an
observation report which confirms certain hypotheses would invariably be qualified as confirming any
consequence of those hypotheses. Indeed: any such consequence is but an assertion of all or part of the
combined content of the original hypotheses and has therefore to be regarded as confirmed by any
evidence which confirms the original hypotheses.’ Now, this may be reasonable for single hypotheses
(H2.1), but much less so for sets of hypotheses, each of which is confirmed separately. The culprit can be
identified as (H2.3), which together with (H2.1) implies (H2). A similar point can be made as regards the
consistency condition (H3), about which Hempel remarks that it ‘will perhaps be felt to embody a too
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severe restriction’. (H3.1), on the other hand, seems to be reasonable enough; however, combined with
the conjunction condition (H2.3) it implies (H3).

We thus see that Hempel’s adequacy conditions are intuitively justifiable, except for the conjunction
condition (H2.3) and, a fortiori, the general consequence condition (H2). On the other hand, the
conjunction condition can be justified by a completeness assumption on the evidence, as will be further
discussed in section 5. We close this section by noting that Hempel’s material definition of the relation of
confirmation of a hypothesis by evidence roughly corresponds to what we would nowadays call ‘truth of
the hypothesis in the truth-minimal Herbrand model of the evidence’. We will return to material
definitions of qualitative confirmation in section 2.5.

2.3 Abduction

Predating Hempel’s work on confirmation by almost half a century is the work of Charles Sanders Peirce
on abduction: the process of forming explanatory hypotheses, which I will briefly discuss in this section.

In a series of lectures on Pragmatism delivered in 1903, Peirce distinguishes three types of reasoning:
deduction, induction, and abduction. Induction ‘consists in starting from a theory, deducing from it
predictions of phenomena, and observing those phenomena in order to see how nearly they agree with the
theory’. Furthermore,

‘The justification for believing that an experiental theory which has been subjected to a number of
experimental tests will be in the near future sustained about as well by further such tests as it has
hitherto been, is that by steadily pursuing that method we must in the long run find out how the
matter really stands.’ [13, 5.170]

Note that Peirce claims, like Carnap, that induction evaluates the plausibility of a given theory, rather
than constructing that theory from observations. However, inductive hypotheses do not come out of the
blue, and this is where abduction comes into play:

‘Abduction is the process of forming an explanatory hypothesis. It is the only logical operation which
introduces any new idea; for induction does nothing but determine a value, and deduction merely
evolves the necessary consequences of a pure hypothesis.

Deduction proves that something must be; Induction shows that something actually is operative;
Abduction merely suggests that something may be.

Its only justification is that from its suggestion deduction can draw a prediction which can be
tested by induction, and that, if we are ever to learn anything or to understand phenomena at all, it
must be by abduction that this is to be brought about.

No reason whatsoever can be given for it, as far as I can discover; and it needs no reason, since it
merely offers suggestions.’ [13, 5.171]

In other words, abduction is the process of conjecturing inductive hypotheses, constrained by the
requirement that they should comply with the available observations. Abduction represents the purely
logical part of inductive reasoning.2

Peirce proceeds by defining the logical form of abduction. ‘It must be remembered’, he writes, ‘that
abduction, although it is very little hampered by logical rules, nevertheless is logical inference, asserting
its conclusion only problematically or conjecturally, it is true, but nevertheless having a perfectly definite
logical form.’ Peirce then defines this logical form, as follows.

2Unfortunately, the term ‘abduction’ is nowadays used in two different ways. Peirce himself is to blame at least
partly for this confusion, sine he first proposed a rather different, syllogistic classification of reasoning forms, which
can be summarized as follows. Consider the Aristotelian syllogism Barbara: ‘All the beans from this bag are white;
these beans are from this bag; therefore, these beans are white’. Now there are two ways to exchange the conclusion
with one of the premisses, one resulting in the inductive syllogism ‘These beans are white; these beans are from this
bag; therefore, all the beans from this bag are white’, the other in ‘All the beans from this bag are white; these beans
are white; therefore, these beans are from this bag’. Peirce refers to this latter syllogism as (forming a) hypothesis.
This syllogistic theory has to a large extent been adopted in the discipline of logic programming, where abduction
(ironically, the term was only introduced in Peirce’s later theory) is generally perceived as the inference of ground
facts from rules and a query that is to be explained. Notice that a logic based on entailment rather than syllogisms is
unable to distinguish between the two latter syllogisms, which both embody a form of reversed deduction. See [10].
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‘Long before I first classed abduction as an inference it was recognized by logicians that the
operation of adopting an explanatory hypothesis — which is just what abduction is — was subject to
certain conditions. Namely, the hypothesis cannot be admitted, even as a hypothesis, unless it be
supposed that it would account for the facts or some of them. The form of inference, therefore, is
this:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Thus, A cannot be abductively inferred, or if you prefer the expression, cannot be abductively
conjectured until its entire content is already present in the premiss, “If A were true, C would be a
matter of course.” ’
[13, 5.188]

In short, the view of induction that Peirce offers here is this. Inductive reasoning consists of two steps:
(i) formulating a conjecture, and (ii) evaluating the conjecture. Both steps take the available evidence into
account, but in quite different ways and with different goals. The first step requires that the conjectured
hypothesis explains the observations; having a definite logical form, it represents a form of inference. The
second step evaluates how well predictions offered by the hypothesis agree with reality; it is not
inference, but assigns a numerical value to a hypothesis. In order to avoid terminological problems, I will
not use Peirce’s terminology and refer to the first step as explanatory hypothesis formation, and to the
second as hypothesis evaluation or validation.

Leaving a few details aside, Peirce’s definition of explanatory hypothesis formation can be formalised
as the inference rule

C  ,  A = C 
A 

In this paper I propose to generalise Peirce’s definition by including the relation of ‘is explained by’ as a
parameter. This is achieved by lifting the explanatory inference from C to A to the metalevel, as follows:

A  = C 
C |< A 

The symbol |< stands for the explanatory consequence relation. Axiom systems for this relation will be
considered in section 4.

2.4 Confirmation vs. explanation

We now have encountered two fundamental notions that play a role in inductive hypothesis formation:
one is that the hypothesis should be confirmed by the evidence, the other that the hypothesis should
explain the evidence. Couldn’t we try and build the requirement that the hypothesis be explanatory into
our definition of confirmed hypothesis?

The problem is that an unthoughtful combination of explanation and confirmation can easily lead into
paradox. Let H1 and H2 be two theories such that the latter includes the former, in the sense that
everything entailed by H1 is also entailed by H2. Suppose E is confirming evidence for H1; shouldn’t we
conclude that it confirms H2 as well? To borrow an example of Hempel: ‘Is it not true, for example, that
those experimental findings which confirm Galileo’s law, or Kepler’s laws, are considered also as
confirming Newton’s law of gravitation?’ [16, p.104]. This intuition is formalised by the following
condition:

(H5) Converse consequence condition: if an observation report confirms a hypothesis H,
then it also confirms every formula logically entailing H.

The problem is, however, that this rule is incompatible with the special consequence condition (H2.1).
This can be seen as follows: in order to demonstrate that E confirms H for arbitrary E and H, we note that
E confirms E by (H1), so by the converse consequence condition E confirms E∧ H; but then E confirms H
by (H2.1). Thus, we see that the combination of two intuitively acceptable conditions leads to a collapse
of the system into triviality, a clearly paradoxical situation.

Hempel concludes that one cannot have both (H2.1) and (H5), and drops the latter. His justification of
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this decision is however unconvincing, which is not surprising since neither is a priori better than the
other: they formalise different intuitions. While (H2.1) formalises a reasonable intuition about
confirmation, (H5) formalises an equally reasonable intuition about explanation:

(H5′) if an observation report is explained by a hypothesis H, then it is also explained by
every formula logically entailing H.

In this paper I defend the position that Hempel was reluctant to take, namely that with respect to
inductive or scientific hypothesis formation there is more than one possible primitive notion: the relation
‘confirms’ between evidence and hypothesis, and the relation ‘is explained by’. Each of these primitives
gives rise to a specific form of induction. This position is backed up by recent work in Machine Learning,
to which we will turn now.

2.5 Inductive Machine Learning

Without doubt, the most frequently studied induction problem in Machine Learning is concept learning
from examples. Here, the observations take the form of descriptions of instances (positive examples) and
non-instances (negative examples) of an unknown concept, and the goal is to find a definition of the
concept that correctly discriminates between instances and non-instances. Notice that this problem
statement is much more concrete than the general description of induction as inference from the particular
to the universal: once the languages, in which instances and concepts are described, are fixed, the desired
relation between evidence and hypothesis is determined. A natural choice is to employ a predicate for the
concept to be learned, and to use constants to refer to instances and non-instances. In this way, a
classification of an instance can be represented by a truthvalue, which can be obtained by setting up a
proof.3 We then obtain the following general problem definition:

Problem: Concept learning from examples in predicate logic.
Given: (1) A predicate-logical language.

(2) A predicate representing the target concept.
(3) Two sets P and N of ground literals of this predicate, representing the

positive and negative examples.
(4) A background theory T containing descriptions of instances.

Determine: A hypothesis H within the provided language such that
(i) for all p∈ P: T∪ H = p;
(ii) for all n∈ N: T∪ H =/  n.

Notice that condition (ii) is formulated in such a way that the hypothesis only needs to contain
sufficient conditions for concept membership (since a negative classification is obtained by negation as
failure). This suggests an analogy between concept definitions and Horn clauses, which can be articulated
by allowing (possibly recursive) logic programs as hypotheses and background knowledge, leading us
into the field of Inductive Logic Programming (ILP) [22]. Furthermore, P and N may contain more
complicated formulae than ground facts. The general problem statement then becomes: given a partial
logic program T, extend it with clauses H such that every formula in P is entailed and none of the
formulae in N.

The potential for inductive methods in Artificial Intelligence is however not exhausted by
classification-oriented approaches. Indeed, it seems fair to say that most knowledge implicitly represented
by extensional databases is non-classificatory. Several researchers have begun to investigate non-
classificatory approaches to knowledge discovery in databases. For instance, in previous work I have
demonstrated that the problem of inferring the set of functional and multivalued attribute dependencies
satisfied by a database relation can be formulated as an induction problem [6, 7, 8]. Furthermore, De
Raedt & Bruynooghe have generalized the classificatory ILP-setting in order to induce non-Horn clauses
from ground facts [5]. Both approaches essentially employ the following problem statement.

3The alternative is to represent concepts by open formulae, and to operationalize classification by means of
subsumption.
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Problem: Non-classificatory induction.
Given: (1) A predicate-logical language.

(2) Evidence E.
Determine: A hypothesis H within the provided language such that:

(i) H is true in a model m0 constructed from E;
(ii) for all g within the language, if g is true in m0 then H = g.

Essentially, the model m0 employed in the approaches by De Raedt & Bruynooghe and myself is the
truth-minimal Herbrand model of the evidence.4 The hypothesis is then an axiomatisation of all the
statements true in this model, including non-classificatory statements like ‘everybody is male or female’
and ‘nobody is both a father and a mother’.

The relation between the classificatory and non-classificatory approaches to induction is that they both
aim at extracting similarities from examples. The classificatory approach to induction achieves this by
constructing a single theory that entails all the examples. In contrast, the non-classificatory approach
achieves this by treating the examples as a model — a description of the world that may be considered
complete, at least for the purposes of constructing inductive hypotheses. The approach is justified by the
assumption that the evidence expresses all there is to know about the individuals in the domain. Such a
completeness assumption is reminiscent of the Closed World Assumption familiar from deductive
dabases, logic programming, and default reasoning — however, in the case of induction its underlying
intuition is quite different. As Nicolas Helft, one of the pioneers of the non-classificatory approach, puts
it:

‘induction assumes that the similarities between the observed data are representative of the rules
governing them (…). This assumption is like the one underlying default reasoning in that a priority is
given to the information present in the database. In both cases, some form of “closing-off” the world
is needed. However, there is a difference between these: loosely speaking, while in default reasoning
the assumption is “what you are not told is false”, in similarity-based induction it is “what you are
not told looks like what you are told”.’ [14, p.149]

There is a direct connection between Peirce’s conception of abduction as formation of explanatory
hypotheses and the classificatory induction setting, if one is willing to view a theory that correctly
classifies the examples as an explanation of those examples. In this paper I suggest to draw a similar
connection between Hempel’s conception of confirmation as a relation between evidence and potential
hypotheses and the non-classificatory induction setting outlined above. Non-classificatory induction aims
at constructing hypotheses that are confirmed by the evidence, without necessarily explaining them.
Rather than studying material definitions of what it means to explain or be confirmed by evidence, as is
done in the works referred to above, in the following sections I will be concerned with the logical
analysis of the abstract notions of explanation and confirmation.

3. Inductive consequence relations

In the sections to follow I employ the notion of a consequence relation, originating from Tarski [24] and
further elaborated by Gabbay [11], Makinson [20], and Kraus, Lehmann & Magidor [18, 19]. In this
section I give an introduction to this important metalogical tool that is largely self-contained. The basic
definitions are given in section 3.1. In section 3.2 I consider some general properties of consequence
relations that arise when modelling the reasoning behaviour of inductive agents. Section 3.3 is devoted to
a number of considerations regarding the pragmatics of consequence relations in general, and inductive
consequence relations as used in this paper in particular.

3.1 Consequence relations

We distinguish between the language L in which an inductive agent formulates premisses and conclusions
of inductive arguments, and the metalanguage in which statements about the reasoning behaviour of the

4An alternative approach is to consider the information-minimal partial model of the evidence [8].
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inductive agent are expressed. In this paper L is a propositional language5 over a fixed countable set of
proposition symbols, closed under the usual logical connectives. We assume a set of propositional models
U, and a satisfaction relation =  ⊆  U×L that is well-behaved with respect to the logical connectives and
compact. As usual, we write =α  for ∀ m∈ U: m=α, for arbitrary α∈ L. Note that U may be a proper subset
of the set of all truth-assignments to proposition symbols in L, which would reflect prior knowledge or
background knowledge of the inductive agent. Equivalently, we may think of U as the set of models of an
implicit background theory T, and let =α  stand for ‘α is a logical consequence of T’.

The metalanguage is a restricted predicate language built up from a unary metapredicate = in prefix
notation (standing for validity with respect to U in L) and a binary metapredicate |< in infix notation
(standing for inductive consequence). In referring to object-level formulae from L we employ a countable
set of metavariables α , β, γ, δ, …, the logical connectives from L (acting like function symbols on the
metalevel), and the metaconstants true and false. Formulae of the metalanguage, usually referred to as
rules or properties, are of the form P1, …, Pn / Q for n≥0, where P1, …, Pn and Q are literals (atomic
formulae or their negation). Intuitively, such a rule should be interpreted as an implication with
antecedent P1, …, Pn (interpreted conjunctively) and consequent Q, in which all variables are implicitly
universally quantified. An example of such a rule, written in an expanded Gentzen-style notation, is

=α∧β→γ  , α |< β
α∧¬γ  |</  β

This is a rule with two positive literals in its antecedent, and a negative literal in its consequent.
Intuitively, it expresses that an inductive hypothesis β, previously inferred from evidence α , should be
withdrawn if the negation of a consequence of α and β together is added to the evidence.

Consequence relations provide the semantics for this metalanguage, by fixing the meaning of the
metapredicate |<. Formally, a consequence relation is a subset of L×L. They will be used to model part or
all of the reasoning behaviour of a particular reasoning agent, by listing a number of arguments (pairs of
premiss and conclusion) the agent is prepared to accept6. A consequence relation satisfies a rule
whenever it satisfies all instances of the rule, and violates it otherwise, where an instance of a rule is
obtained by replacing the variables of the rule with formulae from L. A consequence relation satisfies an
instance of a rule if, whenever it satisfies the literals in the antecedent of the rule, it also satisfies the
consequent. Finally:

(i) a literal =α is satisfied whenever the propositional formula from L denoted by α is
true in every model in U;

(ii) a literal =/ α is satisfied whenever the propositional formula from L denoted by α is
false in some model in U;

(iii) a literal α |< β is satisfied whenever the pair of propositional formulae from L
denoted by α and β is an element of the consequence relation;

(iv) a literal α |</  β is satisfied whenever the pair of propositional formulae from L
denoted by α and β is not an element of the consequence relation;

For instance, the consequence relation {〈p,q〉 , 〈p∧¬ p,q〉} violates the rule above. We will often refer to a
particular consequence relation as |< and write p |< q instead of 〈p,q〉∈ |<.

A useful analogy with clausal logic is revealed by noting that the object language L establishes a
Herbrand universe built up from the proposition symbols in L as constants and the connectives from L as
function symbols. Consequence relations then correspond to Herbrand interpretations7  of the
metalanguage, whose rules can be easily transformed to clausal notation. The following terminology is
borrowed from logic programming:

(i) if all of P1,…,Pn and Q are positive literals the rule is definite;
(ii) if at least one of P1,…,Pn is a negative literal and Q is a positive literal the rule is

indefinite;
(iii) if all of P1,…,Pn are positive literals and Q is a negative literal the rule is a denial.8

5One may argue that in induction the distinction between statements about individuals (ground facts) and statements
about sets of individuals (universal sentences) is crucial, which calls for a predicate language. This point is discussed
in section 6.
6This is not to say that the agent actually draws the conclusion when observing the premisses, but merely that she
considers it one of the possible conclusions.
7These Herbrand interpretations are restricted to the metapredicate |~; = is treated as a built-in predicate.
8This exhausts all the possibilities: the case that at least one of P1,…,Pn is a negative literal and Q is a negative
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For instance, all the rule systems of [18] are made up of definite rules only. Logic programming theory
teaches us that the set of consequence relations satisfying a set of definite rules is closed under
intersection. In contrast, the rule system R characterised in [19] contains one indefinite rule, viz. Rational
Monotonicity. Consequently, the set of rational consequence relations is not closed under intersection.

3.2 Some properties of inductive consequence relations

After having stated the main definitions concerning consequence relations I will now list some properties
generally obeyed by inductive consequence relations. In this section we will not distinguish between
explanatory or confirmatory induction, and simply interpret α |< β as ‘β is a possible hypothesis given
evidence α’.

The first two rules state that the logical form of evidence and hypotheses is immaterial:

Left Logical Equivalence
=α↔β ,  α |< γ

β |< γ

Right Logical Equivalence
=β↔γ ,  α |< β

α |< γ

Left Logical Equivalence states, for instance, that if the evidence is expressed as a conjunction of ground
facts, the order in which they occur is immaterial. From the viewpoint of practical induction algorithms
this may embody a considerable simplification — however, the framework represented in this paper is
intended to provide a model for inductive reasoning in general rather than particular algorithms.9

The following two rules express principles well-known from philosophy of science:

Verification
=α∧β→γ  , α |< β

α∧γ  |< β

Falsification
=α∧β→γ  , α |< β

α∧¬γ  |</  β

In these two rules γ is a prediction made on the basis of hypothesis β and evidence α. Verification
expresses that if such a prediction is indeed observed, hypothesis β remains a possible hypothesis, while
if its negation is observed, β may be considered refuted according to Falsification.10 One might remark
that typically the inductive hypothesis will entail the evidence, so that the first condition in the antecedent
of Verification and Falsification may be simplified to =β→γ. However, this is only the case for certain
approaches to explanatory induction; generally speaking inductive hypotheses, in particular those that are
confirmed without being an explanation, may not contain all the information conveyed by the evidence.
The formulation above represents the general case.

Falsification can be simplified in another sense, as shown by the following lemma.

LEMMA 3.1. In the presence of Left Logical Equivalence, Falsification is equivalent with
the following rule:

Consistency
α |< β

=/ β→¬α

Proof. To derive Falsification, suppose =α∧β→γ , i.e. =β→¬ (α∧¬γ ), then by Consistency
α∧¬γ  |</  β . To derive Consistency from Falsification, suppose α  |< β and =β→¬α , i.e.

literal can be rewritten to (i) or (ii).
9Practical algorithms establish a function from evidence to hypothesis rather than a relation, i.e. also Right Logical
Equivalence would be invalidated by an induction algorithm (of all the logically equivalent hypotheses only one
would be output).
10Notice that, contrary to the previous two rules, Verification and Falsification happen to be meaningful also when
modelling the behaviour of an induction algorithm: Verification expresses that the current hypothesis should not be
abandoned when the next observation is a predicted one (in the terminology of [1] the algorithm is conservative),
while Falsification expresses that the current hypothesis must be abandoned when the next observations runs counter
to the predictions of the algorithm (called consistency by [1]). However, in the context of the present paper these are
not the intended interpretations of the two rules.
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=α∧β→ false, then by Falsification α∧¬ false |</  β, and by Left Logical Equivalence α |</  β,
a contradiction. ≈

Falsification and Consistency rule out inconsistent evidence and hypotheses. The way inconsistent
evidence is handled is merely a technicality, and we might have decided to treat it differently — for
instance, Hempel’s entailment condition (H1) implies that in his framework inconsistent evidence
confirms arbitrary hypotheses. The case of inconsistent hypotheses is different however: it is awkward to
say, for instance, that arbitrary evidence induces an inconsistent hypothesis. Furthermore, in inductive
concept learning often negative examples are included, that are not to be classified as belonging to the
concept, which requires consistency of the induced rule. Also, the adoption of Consistency is the only
way to treat explanatory and confirmatory induction in a unified way as regards the consistency of
evidence and hypothesis.

In the presence of Consistency a number of other principles have to be formulated carefully. For
instance, we have reflexivity only for consistent formulae. In the light of Consistency a formula is
consistent if it occurs in an inductive argument, either as evidence or as hypothesis, so we have the
following weaker versions of reflexivity:11

Left Reflexivity
α |< β
α |< α

Right Reflexivity
α |< β
β |< β

If a consequence relation contains an argument α |< α , this signals that α is consistent with the reasoner’s
background theory. We will call such an α admissible (with respect to the consequence relation), and use
conditions of this form whenever we require consistency of evidence or hypothesis in a rule.12

The final rule mentioned in this section is a variant of Verification that allows to add any prediction to
the hypothesis rather than the evidence:

Right Extension
=α∧β→γ  , α |< β

α |< β∧γ

Further rules considered in this paper are specific to either explanatory or confirmatory induction, and are
therefore to be discussed in later sections.

3.3 The pragmatics of consequence relations

Before moving to the technical results of the paper we may spend a few thoughts on the exact nature of
consequence relations. As defined above, a consequence relation is an extensional specification of the
behaviour of a reasoning agent. The symbol |< is introduced in order to reason about consequence
relations and reasoning behaviour, and functions as a binary predicate in the metalanguage. Rules
describing properties of |< express boundaries of rationality of inductive reasoning: a consequence relation
violating such a rule would be considered irrational.

Now suppose X is a set of such rationality postulates, and let A be a set of inductive arguments.
Clearly, by means of X we could derive additional inductive arguments A′, the significance of which is: if
an inductive agent accepts arguments A, and it behaves rationally according to X , it should also accept
arguments A′ . For instance, if X includes the rule of Verification, A contains the argument

chad_is_black |< crows_are_black

and the background knowledge includes

=crows_are_black→chevy_is_black

then A′ contains the additional inductive argument

11One might argue that induction is inherently non-reflexive if the hypothesis is to generalise the evidence. This
point will be taken up in section 6.
12Readers with a background in inductive learning may interpret α |< α as ‘hypothesis α does not cover any negative
example’.
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chad_is_black∧ chevy_is_black |< crows_are_black

implying that if the agent would not accept the latter, it would behave irrationally (wrt. X).
One may now ask: what is the smallest set of arguments containing A and satisfying the rules of X?

Such a set, if it exists, would represent the closure of A under X, denoted AX. The significance of such a
closure is that if two agents start from the same set of arguments A, they cannot possibly disagree about
any other argument if they both act rationally according to X. Clearly, the existence of such a closure
operation depends on the rules in X. As has been remarked before, if all the rules in X are definite
(having only positive literals in their antecedents and consequent) the closure of A under X is unique for
arbitrary A. All the rule systems in [18] consist solely of definite rules.

However, the situation changes drastically if not all rules are definite. In particular, rule systems
containing indefinite rules (having at least one negative literal in their antecedent and a positive literal as
consequent) will not have an associated closure operation. An indefinite rule represents a rationality
principle of the following kind: ‘if you accept this argument, you should accept at least one of those’. One
example is Rational Monotonicity as studied in [19]; other examples will be found in this paper. The
upshot of such rules is that even if two agents agree on the initial set of arguments they accept, they can
disagree about some other arguments without violating the rationality postulates. Put differently, if we
have two consequence relations both satisfying the rules of X, and we take their intersection to find out
on what arguments they agree, this intersection itself may not satisfy the rules of X.

Lehmann & Magidor are not content with this indefiniteness: they define an operation of rational
closure which selects, among the many supersets of A that satisfy X, one that has certain desirable
properties [19, p.33]. This seems to be motivated by the tacit assumption that rationality postulates X
should lead to a closure operation A→AX. Such a closure operation can be seen as a consequence
operation in the sense of Tarski [24], mapping any set of premisses to the set of its consequences under
some inference system. However, the notion of inference represented by such closure operations should
be clearly distinguished from the notion of inference represented by consequence relations — if the latter
operate on a metalevel, closure operations establish a meta-metalevel.

In this paper we will not be concerned with inference on this meta-metalevel. This choice is motivated
on methodological rather than technical grounds: I don’t believe that rationality postulates for induction
necessarily establish an unequivocal closure operation. If we intersect two inductive consequence
relations to see what two inductive agents agree upon, the resulting set of arguments may, as a
consequence relation, not satisfy some rationality postulate, but this is, it seems to me, just to be
expected.

A further criticism of the meta-metalevel view is that it obscures the status of the consequence relation
symbol. The relevant question on the meta-metalevel is: what expressions of the form α  |~ β are entailed
by a set of expressions of the same form? In other words: on the meta-metalevel |~ acts as a connective.13

This is also apparent from Kraus, Lehmann & Magidor’s terminology: they call α  |~ β a conditional
assertion, a set of such conditional assertions is called a conditional knowledge base, and they ask
themselves the question: what does a conditional knowledge base entail?, i.e. what other conditional
assertions can be deduced from it? It seems to me that the meta-metalevel perspective is at odds with the
metalevel perspective — indeed, it is my conjecture that the theory of entailment of conditional assertions
can be developed without reference to an intermediate level of consequence relations.

In this paper the notion of closure will be employed on the metalevel rather than the meta-metalevel, in
order to compare consequence relations and rule systems. Given a consequence relation |<, its closure C |<:
L→2L is defined as C|<(α) = {β  | α  |< β}, and C|<(α) is referred to as the closure of α  under |<. A
consequence relation |<1 is called (at least) as restrictive as another consequence relation |<2 if for every
α∈ L the closure of α under |<1 is a subset of the closure of α  under |<2 — or equivalently, if |<1 is a subset
of |<2 — and more restrictive than |<2 if in addition |<1 ≠ |<2. A set of rules X1 is (at least) as restrictive as
another set of rules X2 if for every consequence relation |<2 satisfying X2 there is a unique least restrictive
consequence relation |<1 satisfying X1 such that |<1 is as restrictive as |<2; we say that |<1 is the X1-
restriction of |<2. In addition the mapping from |<2 to its X1-restriction is required to be a surjection onto
the set of relations satisfying X1 (see [9] for further motivation and analysis of these definitions).

The preceding definitions reflect that rule systems should be compared by comparing the set of
conclusions for given premisses, rather than by metalevel entailment. From [KLM90] one might get the

13This raises the question why conditional assertions cannot be nested, as in (α |~ β) |~ γ. Note that the answer to this
question is perfectly clear on the metalevel, since this expression makes as little sense as, say, (α = β) =  γ.
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impression that monotonic consequence is stronger (more restrictive) than preferential consequence
because the rule system M entails every rule in the rule system P (or equivalently, every monotonic
consequence relation is preferential). However, this does not work in general: the metalevel axiom α  |~ β
entails all the rules in M, yet defines a very unrestrictive form of reasoning. Furthermore, our criterion
also allows to compare rule systems that are not related by metalevel entailment, as we will see below.

I will now proceed with a technical analysis of the process of forming an explanatory hypothesis from
evidence à la Peirce (section 4) and the process of forming a confirmed hypothesis à la Hempel (section
5).

4. Explanatory induction

In this section we will study abstract properties and semantics for explanatory consequence relations.
Throughout the section α  |< β is to be read as ‘evidence α is explained by hypothesis β’ or ‘hypothesis β
is a possible explanation of evidence α’. What counts as a possible explanation will initially be left
unspecified — the framework of consequence relations allows us to formulate abstract properties of
hypothesis formation, without fixing a particular material definition. We will then single out a particular
set of properties (the system EM) and characterise it semantically by means of strong explanatory
structures.

4.1 Properties of explanatory induction

A natural requirement for explanatory induction is that every consistent hypothesis that entails the
evidence counts as a possible explanation. As explained above the condition that hypothesis β be
consistent is expressed by β |< β, which gives us the following rule:

Admissible Converse Entailment
=β→α  , β |< β

α |< β

Another requirement for explanations has been discussed above as (H5′): possible explanations may be
logically strengthened, as long as they remain consistent. This is expressed as follows:

Admissible Right Strengthening
α |< β , =γ→β , γ  |< γ

α |< γ

We may note that Admissible Converse Entailment can be derived from Admissible Right Strengthening
if we assume Consistency and the following rule:

Explanatory Reflexivity
α |< α , ¬β  |</  α

β |< β

This rule represents a weakening of reflexivity especially tailored for explanatory induction. It is best
understood by rewriting it into its contrapositive: from α  |< α  and β |</  β infer ¬β  |< α , which states that if
β is inadmissible, i.e. too strong a statement with regard to the background knowledge, its negation ¬β  is
so weak that it is explained by arbitrary admissible hypotheses α.

LEMMA 4.1. In the presence of Consistency and Explanatory Reflexivity, Admissible Right
Strengthening implies Admissible Converse Entailment.
Proof. Suppose =β→α, then by Consistency ¬α  |</  β. Suppose furthermore β |< β, then by
Explanatory Reflexivity α  |< α . The desired result follows by Admissible Right
Strengthening.  ≈

While the rules above express properties of possible explanations, the following two rules concentrate
on the evidence. The underlying idea is a basic principle in inductive learning: if the evidence is a set of
instances of the concept, we can partition the evidence arbitrarily and find a single hypothesis that is an
explanation of each subset of instances. This principle is established by the following two rules:14

14In previous work [8] Incrementality was called Additivity, and Convergence was called Incrementality. The
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Incrementality
α |< γ , β  |< γ

α∧β  |< γ

Convergence
=α→β  , α |< γ

β |< γ

LEMMA 4.2. If |< is a consequence relation satisfying Incrementality and Convergence,
then α∧β  |< γ iff α |< γ and β |< γ,.
Proof. The if part is Incrementality, and the only-if part follows from Convergence. ≈

Incrementality and Convergence are of considerable importance for computational induction, since
they allow for an incremental approach. Incrementality states that pieces of evidence can be dealt with in
isolation. Another way to say the same thing is that the set of evidence explained by a given hypothesis is
conjunctively closed. By the rule of Consistency this set is consistent, which yields the following
principle:

Left Consistency
α |< β

¬α  |</  β

LEMMA 4.3. In the presence of Right Reflexivity and Admissible Converse Entailment, Left
Consistency implies Consistency.
Proof. Suppose =β→¬α . Now, either β |< β or β  |</  β ; in the former case, ¬α  |< β by
Admissible Converse Entailment, and we conclude by Left Consistency. In the latter case,
we have δ |</  β for any δ by Right Reflexivity. ≈

It follows that Left Consistency and Consistency are equivalent in the presence of Right Reflexivity,
Admissible Converse Entailment, and Incrementality.

Convergence states a monotonicity property of induction, which can again best be understood by
considering its contrapositive: a hypothesis that is rejected on the basis of evidence β cannot become
feasible again when stronger evidence α  is available. In other words: the process of rejecting a hypothesis
is not defeasible (i.e. based on assumptions), but based on the evidence only. This is the analogue of the
monotonicity property of deduction (note that the latter can be obtained by reversing the implication in
the first condition of Convergence).

LEMMA 4.4. The combination of Verification and Convergence is equivalent with the
following rule:

Predictive Convergence
=α∧γ→β  , α |< γ

β |< γ

Proof. To derive Predictive Convergence, suppose =α∧γ→β  and α  |< γ, then by
Verification α∧β  |< γ, and by Convergence β |< γ.
Predictive Convergence implies Convergence, since =α→β  implies =α∧γ→β .
Predictive Convergence implies Verification, since =α∧β→γ  implies =α∧β→α∧γ . ≈

Predictive Convergence can be seen as a strengthening of Convergence, in the sense that β is not merely a
weakening of evidence α, but can be any set of predictions. Note that Right Reflexivity is an instance of
Predictive Convergence (put γ=β).

The final postulate we consider in this section expresses a principle well-known from algorithmic
concept learning: if α  represents the classification of an instance and β its description, then we may either
induce a concept definition from examples of the form β→α, or we may add β to the background theory
and induce from α  alone. Since in our framework background knowledge is included implicitly, β is
added to the hypothesis instead.

terminology employed here better reflects the meaning of the rules.
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Conditionalisation
α |< β∧γ

β→α |< γ

After having discussed various abstract properties of formation of explanatory hypotheses we now turn
to the question of characterising explanatory induction semantically.

4.2 Strong explanatory consequence relations

As we have seen, Peirce’s original idea was to define explanatory hypothesis formation as reversed
deduction. I will amend Peirce’s proposal in two ways. First, as explained above it is required that the
hypothesis be consistent with respect to the background knowledge. Secondly, I reformulate reversed
deduction as inclusion of deductive consequences. The main reason for the latter is that in this way the
explanatory consequence relation is defined in terms of a property that is preserved by arguments (viz.
explanatory power).

DEFINITION 4.5. An explanation mechanism is some consequence relation |~. The
explanatory consequence relation |< defined by |~ is defined as α  |< β iff C |~(α) ⊆  C |~(β) ⊂
L. A strong explanatory consequence relation is defined by a monotonic explanation
mechanism.

Thus, an explanation is required to have at least the same consequences under the explanation mechanism
as the premiss it is obtained from, without becoming inconsistent. It should be noted that, in the general
case, the conditions C|~(α)⊆ C|~(β) and β |~ α are not equivalent.15 However, for monotonic explanation
mechanisms they are, which provides us with the following ‘Peircean’ definition of strong explanatory
consequence relations.

DEFINITION 4.6. A strong explanatory structure is a set W⊆ M. The consequence relation it
defines is denoted by |<W and is defined by: α  |<W β iff (i) there is a m0∈ W such that m0 =  β,
and (ii) for every m∈ W, m = β→α .

The following system of rules will be proved to axiomatise strong explanatory structures.

DEFINTION 4.7. The system EM  consists of the following rules: Admissible Right
Strengthening, Explanatory Reflexivity, Incrementality, Predictive Convergence, Left
Consistency, and Conditionalisation.

We note the following derived rules of EM: Convergence, Admissible Converse Entailment and Right
Reflexivity (instances of Predictive Convergence) and Consistency (Lemma 4.3). The following derived
rule will also prove useful.

LEMMA 4.8. The following rule is a derived rule of EM:

Consistent Right Strengthening
α |< γ , ¬β   |</  γ

α |< β∧γ

Proof. Suppose ¬β  |</  γ; since =¬ (β∧γ )∧γ→¬β , we have ¬ (β∧γ ) |</  γ by Predictive
Convergence. Furthermore, suppose α  |< γ, then by Right Reflexivity γ |< γ, so by
Explanatory Reflexivity we have β∧γ  |< β ∧ γ . We conclude by Admissible Right
Strengthening. ≈

Soundness of EM is easily checked.

LEMMA 4.9 (Soundness of EM). Any strong explanatory consequence relation satisfies the
rules of EM.

15C|~(α)⊆ C|~(β) implies β |~ α  if |~ is reflexive; β |~ α  implies C|~(α)⊆ C|~(β) if |~ is transitive.
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Proof. Let W⊆ U be a strong explanatory structure; we need to demonstrate that |<W, as
defined in Definition 4.6, satisfies the rules of EM.
Admissible Right Strengthening: if γ |<W γ, then some model in W satisfies γ. Furthermore,
if m = β→α and =γ→β, then m = γ→α .
Explanatory Reflexivity: we have that some model in W satisfies α, while not all models in
W satisfy α→¬β , i.e. there is a model in W satisfying α∧β  and hence β.
Incrementality: if m = γ→α  and m = γ→β then m = γ→(α∧β ).
Predictive Convergence: if =α∧γ→β  and m = γ→α then m = γ→β.
Left Consistency: if some model in W satisfies β while all models in W satisfy β→α, then
there is a model in W not satisfying β→¬α .
Conditionalisation: trivial. ≈

In order to prove completeness we build a strong explanatory structure W from a given consequence
relation |< satisfying the rules of EM, such that α |< β iff α |<W β. For non-empty explanatory relations the
following construction is used:

W = {m∈ U | for all α, β such that α |< β: m = β→α}

An empty explanatory relation signals inconsistent background knowledge, and is hence defined by the
empty explanatory structure.

We need a few intermediate results. The following lemma states that every strong explanatory
hypothesis is satisfiable in W.

LEMMA 4.10. Let |< be a consequence relation satisfying the rules of EM, and let W be
defined as above. If α |< β then there is a model m∈ W such that m = β.
Proof. Let α  |< β; we will prove that {β} ∪  {δ→γ | γ |< δ} is satisfiable. Suppose not, then
by compactness there is a finite ∆⊆ {δ→γ | γ |< δ} such that =β→¬∆ . Furthermore, since ϕ
|< ψ for any ψ→ϕ∈∆ , we have ψ→ϕ |< true for any ψ→ϕ∈∆  by Conditionalisation, ∆ |<
true by Incrementality, and ∆  |< β by Right Reflexivity and Admissible Right
Strengthening. But then by Consistency =/ β→¬∆ , a contradiction. ≈

Furthermore, we have that every inadmissible formula is unsatisfiable in W.

LEMMA 4.11. Let |< be a non-empty consequence relation satisfying the rules of EM, and
let W be defined as above. If γ |</  γ then γ is unsatisfiable in W.
Proof. Let α  |< β, then true |< true by Convergence and Left Reflexivity. Furthermore, if γ
|</  γ then ¬γ |< true by Explanatory Reflexivity, hence m =true →¬γ for every m∈ W. ≈

I will now show that W defines a consequence relation that is included in |<.

LEMMA 4.12. Let |< be a non-empty consequence relation satisfying the rules of EM, and
let W be defined as above. If α |<W β then α |< β.
Proof. Suppose that α  |</  β, we will show that either no model in W satisfies β, or there
exists a model m0∈ W that does not satisfy β→α.
First of all, if β  |</  β then β is unsatisfiable in W  according to LEMMA 4.11. In the
remainder of the proof we will assume that β |< β. Define Γ0 = {¬α } ∪  {δ | δ |< β}; we will
first show that Γ0 is satisfiable. Suppose not, then by compactness there is a finite ∆⊆ {δ | δ
|< β} such that =∆→α , i.e. =β→(∆→α); by Admissible Converse Entailment ∆→α |< β
(recall that β |< β). But by Incrementality ∆ |< β; using Incrementality and Convergence, we
obtain α |< β. Contradiction, so Γ0 is satisfiable.
Let m0 =  Γ0; clearly m0 =/  α and, since β∈Γ 0, m0 =  β. It remains to prove that m0 is in W;
i.e., that for all ϕ, ψ such that ϕ  |< ψ we have m0 = ψ→ϕ. Let ϕ  |< ψ; if ¬β  |</  ψ, then by
Consistent Right Strengthening ϕ  |< ψ∧β , and by Conditionalisation ψ→ϕ |< β; thus
ψ→ϕ∈Γ 0 and therefore m 0  =  ψ → ϕ. On the other hand, if ¬ β  |< ψ then by
Conditionalisation and Convergence β→¬ψ  |< true, by Admissible Right Strengthening
β→¬ψ |< β, and by Incrementality and Convergence ¬ψ  |< β; thus ¬ψ∈Γ 0 and therefore m0

=/  ψ, hence m0 = ψ→ϕ . ≈
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Armed with the previous three lemmas we can prove the completeness of EM.

THEOREM 4.13 (Representation theorem for strong explanatory consequence relations). A
consequence relation is strong explanatory iff it satisfies the rules of EM.
Proof. The only-if part is Lemma 4.9. For the if part, let |< be an arbitrary non-empty
consequence relation satisfying the rules of EM, and let

W = {m∈ U | for all α, β such that α |< β: m = β→α}

Suppose α  |< β, then by the construction of W, m =β→α for all m∈ W. Furthermore, by
Lemma 4.10 there is a model in W satisfying β. We may conclude that α |<W β. Conversely,
if α  |<W β then Lemma 4.12 proves that α  |< β. We conclude that W defines a consequence
relation that is exactly |<.
For an empty consequence relation put W=∅ . ≈

In this section we have studied axioms and semantic characterisations for explanatory induction. I have
proposed a novel definition of explanatory hypothesis formation in terms of preservation of explanatory
power with respect to an explanation mechanism. A representation theorem has been obtained for the
special case of a monotonic explanation mechanism. Characterisation of explanatory induction with
respect to other (e.g. preferential) explanation mechanisms is left as an open problem.

5. Confirmatory induction

We will now switch from the explanatory (classification-oriented) viewpoint to the confirmatory (non-
classificatory) perspective. Throughout this section α  |< β  is to be read as ‘evidence α  confirms
hypothesis β’. Our goals will be to find reasonable properties of |< under this interpretation (for which we
have a good starting point in Hempel’s adequacy conditions), and to characterise particular sets of
properties by a suitable semantics.

5.1 Properties of confirmatory induction

In this section I will translate Hempel’s set of adequacy conditions for confirmation (section 2.2) into
rules for confirmatory consequence relations. The conditions will be slightly modified, in order to keep
the treatment of inconsistent evidence and hypothesis in line with the explanatory case: inconsistent
evidence does not confirm any hypothesis, and inconsistent hypotheses are not confirmed by any
evidence.

Entailment condition (H1) is translated into two rules:

Admissible Entailment
=α→β  , α |< α

α |< β

Confirmatory Reflexivity
α |< α , α  |</  ¬β

β |< β

Admisible Entailment expresses that admissible evidence (i.e. evidence that is consistent with the
background knowledge) confirms any of its consequences. In other words, consistent entailment is a
special case of confirmation. Confirmatory Reflexivity is the confirmatory counterpart of Explanatory
Reflexivity encountered in the previous section. It is added as a separate rule since, in its original
formulation, (H1) includes reflexivity as a special case. As with its explanatory counterpart, Confirmatory
Reflexivity is best understood when considering its contrapositive: if β is inadmissible, i.e. too strong a
statement with regard to the background knowledge, its negation ¬β  is so weak that it is confirmed by
arbitrary admissible formulae α.

Consequence condition (H2) cannot be translated directly, since in the language of consequence
relations as defined here we have no means to refer to a set of confirmed sentences. However, a
translation of the special consequence condition (H2.1) and the conjunction condition (H2.3) will suffice:

Right Weakening
=β→γ ,  α |< β

α |< γ
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Right And
α |< β , α  |< γ

α |< β∧γ

LEMMA 5.1. If |< is a consequence relation satisfying Right And and Right Weakening, then
α |< β∧γ  iff α |< β and α |< γ,.
Proof. The if part is Right And, and the only-if part follows from Right Weakening. ≈

Right Weakening expresses that any hypothesis entailed by a given hypothesis confirmed by α is also
confirmed by α. Notice that Admissible Entailment is an instance of Right Weakening (put β=α).

LEMMA 5.2. The combination of Right Extension and Right Weakening is equivalent to the
following rule:

Predictive Right Weakening
=α∧β→γ  , α |< β

α |< γ

Proof. In order to derive Predictive Right Weakening, suppose =α∧β→γ  and α  |< β, then
by Right Extension α |< β∧γ , and the result follows by Right Weakening.
Predictive Right Weakening implies Right Weakening, since =β→γ  implies =α∧β→γ .
Predictive Right Weakening implies Right Extension, since =α∧β→γ  implies =α∧β→β∧γ .

≈

In words, Predictive Right Weakening expresses that given a confirmatory argument, any predicted
formula is confirmed by the same evidence. Notice that by putting γ=α in Predictive Right Weakening we
obtain Left Reflexivity.

Right And states that the set of all confirmed hypotheses (interpreted as a conjunction) is itself
confirmed. The combination of Right And and Right Weakening implies Hempel’s general consequence
condition (H2): if E confirms every formula of a set K, then it also confirms the conjunction of the
formulae in K  (by Right And), and therefore also every consequence of this conjunction (by Right
Weakening)16. It has already been remarked that Right And is probably too strong in the general case, if
we have inconclusive evidence that is unable to choose between incompatible hypotheses. In this respect
it is perhaps appropriate to point at a certain similarity between Right And and Right Extension: the latter
rule requires γ to be predicted rather than being confirmed by α.

Like the general consequence condition (H2), general consistency condition (H3) cannot be translated
directly into a rule, since we have no means to refer to the set of confirmed formulae. However, in the
light of Right And the conjunction of the formulae in this set is itself confirmed, and therefore it is
sufficient to formulate a rule expressing the special consistency condition (H3.1), which is the rule of
Consistency previously encountered:

Consistency
α |< β

=/ β→¬α

Condition (H3.2) expresses that for any formula β, if β is in the set of confirmed hypotheses then ¬β  is
not. This principle is expressed by the following rule:

Right Consistency
α |< β

α |</  ¬β

LEMMA 5.3. In the presence of Admissible Entailment and Left Reflexivity, Right
Consistency implies Consistency.
Proof. Suppose =β→¬α , i.e. =α→¬β . Now, either we have α |< α , or else α  |</  α . In the
former case, α  |< ¬β  by Admissible Entailment, and we conclude by Right Consistency. In
the latter case, we have α |</  δ for any δ by Left Reflexivity. ≈

Clearly, Consistency implies Right Consistency in the presence of Right And. As a corollary to Lemma
5.3, we have that Right Consistency and Consistency are equivalent in the presence of Left Reflexivity,

16This holds only for finite K, an assumption that I will make throughout.
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Admissible Entailment, and Right And.
Finally, the equivalence condition for observations (H4) is translated into

Left Logical Equivalence
=α↔β ,  α |< γ

β |< γ

We now turn to the question of devising a meangingful semantics for Hempel’s conditions as re-
expressed in our framework of inductive consequence relations.

5.2 Simple confirmatory structures

It has been suggested in section 2.5 that a semantics for confirmatory reasoning be expressed in terms of
satisfaction by an appropriately constructed model or set of models. More precisely, a confirmatory
semantics is conceived as one in which certain regular models are constructed from the premisses, such
that a hypothesis is confirmed if it is true in all those regular models. Since this requires some
completeness assumptions regarding the evidence we may call this a closed confirmatory semantics. In
section 5.4 I will consider a variant which relaxes the assumptions regarding the evidence (open
confirmatory semantics).

DEFINITION 5.4. A confirmatory structure is a triple W  = 〈S,[⋅],[⋅]〉 , where S is a set of
semantic objects, and [⋅]: L→2S and [⋅]: L→2S are functions mapping formulae to sets of
semantic objects. The closed confirmatory consequence relation defined by W is given by:
α |<W β iff (i) [α] ≠ ∅ , and (ii) [α] ⊆  [β].

Intuitively, [α] denotes the set of regular models constructed from premisses α, each of which should
satisfy hypothesis β. A similar semantics has been considered by Bell [2], who calls it a pragmatic model.
There are however two differences between Bell’s approach and mine. First, in order to rule out
inconsistent premisses I have added condition (i) in the definition of |<W. Furthermore, I allow the
possibility that some of the regular models may not satisfy the premisses (i.e. [α] ¤ [α ]). The rationale of
this possibility is further discussed in section 6. However, the characterisation of such anti-reflexive
logics of confirmation is left as an open problem, and the results obtained below are based on the
assumption that [α]⊆ [α] for all α∈ L. These results differ from those reported in [18, 2] because of the
additional condition (i), as will be detailed in the present section and the next.

Bell proves [2, Theorem 4.8] that his pragmatic models, including the condition [α]⊆ [α], are
axiomatised by the rule system B consisting of Reflexivity, Right Weakening, and Right And, if one
additionally assumes that [⋅] is well-behaved with respect to the logical connectives and logical
entailment:

[α∧β ] = [α] ∩ [β]
[¬α ] = S – [α]
[α] = S   iff   =α

Let us call confirmatory structures which satisfy these conditions, as well as [α]⊆ [α] for all α∈ L, simple
confirmatory structures, defining simple (closed) confirmatory consequence relations. I will now
demonstrate that simple confirmatory structures are axiomatised by the following rule system.

DEFINITION 5.5. The system C S consists of the following rules: Predictive Right
Weakening, Right And, and Right Consistency.

Derived rules of CS include Right Weakening and Right Extension (Lemma 5.2), Left Reflexivity (an
instance of Predictive Right Weakening), Admissible Entailment (an instance of Right Weakening), and
Consistency (Lemma 5.3).

The soundness of the rules of CS is easily proved.

LEMMA 5.6 (Soundness of CS). Any simple closed confirmatory consequence relation
satisfies the rules of CS.
Proof. For Predictive Right Weakening, first of all we have [α] ⊆  [α] for all α∈ L, hence
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[α]∩[β] ⊆  [α ]∩[β] for all α ,β∈ L. Now suppose =α∧β→γ , then [α]∩[β]  ⊆  [γ], hence
[α]∩[β] ⊆  [γ]. Furthermore suppose α |<W β, then ∅⊂ [α] ⊆ [β], hence [α]∩[β] = [α] ⊆  [γ],
and we conclude α |<W γ.
For Right And, if [α] ⊆  [β] and [α] ⊆  [γ] then [α] ⊆  [β]∩[γ] = [β∧γ ].
For Right Consistency, if ∅⊂ [α] ⊆  [β] then [α]∩[β] ≠ ∅ , hence [α] ¤ [¬β]. ≈

In order to prove completeness we need to build, for a given consequence relation, a simple confirmatory
structure W that defines exactly that relation. The key concept is the following.

DEFINITION 5.7. Let |< be a confirmatory consequence relation. The model m∈ U is said to
be normal for α iff for all β in L such that α |< β, m = β.

For admissible formulae normal models will play the role of the regular models in the simple
confirmatory structure we are building (remember that, given a consequence relation |<, a formula α∈ L is
admissible iff α  |< α).

LEMMA 5.8. Suppose a consequence relation |< satisfies Right Weakening and Right And,
and let α be an admissible formula. All normal models for α satisfy β iff α |< β.
Proof. The if part follows from Definition 5.7.
For the only-if part, suppose α  |< α  and α |</  β; I will show that there is a normal model for
α  that does not satisfy β. Let Γ0 = {¬β} ∪  {δ | α  |< δ}; it suffices to show that Γ0 is
satisfiable. Suppose not, then by compactness there is a finite ∆⊆ {δ | α  |< δ} such that
=∆→β, i.e. =α→ (∆→β); by Right Weakening α  |< ∆→β. But by Right And α  |< ∆; using
Right And and Right Weakening we obtain α |< β, a contradiction. ≈

In the standard treatment of inconsistent premisses they have all formulae as consequences, hence no
normal models — since in our treatment inconsistent premisses confirm no hypothesis and thus have all
models in U as normal models, we have to treat them as a separate case. Given a consequence relation |<,
let W = 〈U,[⋅],[⋅]〉  be defined as follows:

(1) U is the set of models of L under consideration;
(2) [α] = {m∈ U | m is a normal model for α} if α is admissible, and ∅  otherwise;
(3) [α] = {m∈ U | m  = α}.

The following completeness result demonstrates that the consequence relation defined by W coincides
with the original one if the latter satisfies the rules of CS.

THEOREM 5.9 (Representation theorem for simple confirmatory consequence relations). A
consequence relation is simple confirmatory iff it satisfies the rules of CS.
Proof. The only-if part is Lemma 5.6. For the if part, let |< be a consequence relation
satisfying the rules of CS and let W be defined as above. We will prove that α |< β iff α |<W
β, i.e. |< is simple confirmatory.
First suppose that α |< β, then by Left Reflexivity α |< α  and by Right Consistency α |</  ¬α ,
so the proof of Lemma 5.8 constructs a model m normal for α, hence [α]≠∅ . Furthermore
any normal model for α satisfies β by Definition 5.7, hence [α] ⊆  [β]. We conclude that α
|<W β. Now suppose that α |<W β, then [α]≠∅  hence α is admissible by the definition of W.
Furthermore we have [α ] ⊆  [β], i.e. every model normal for α  satisfies β, and the
conclusion follows by Lemma 5.8 ≈

One may note that two of the rules obtained in the previous section have not been mentioned above,
viz. Confirmatory Reflexivity and Left Logical Equivalence. Each of these rules poses additional
restrictions on simple confirmatory structures:

(Left Logical Equivalence) If =α↔β, then [α ] = [β].

(Confirmatory Reflexivity) If [β] ≠ ∅ , then [β] ≠ ∅ .

Additional properties may be obtained by being more explicit about the construction of regular models.
The ILP methods referred to in section 2.5 suggest to take the truth-minimal Herbrand model(s) of the
evidence as the regular model(s). In the analysis of nonmonotonic reasoning it is customary to abstract
this into a preference ordering on the set of models, such that the regular models are the minimal ones
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under this ordering. We will work this out in the next section.

5.3 Preferential confirmatory consequence relations

The main result of this section concerns an adaptation of Kraus et al.’s preferential semantics, recast as a
confirmatory semantics. In other words, the regular semantic objects are those that are minimal with
respect to a fixed preference ordering.

DEFINITION 5.10. A preferential structure is a triple W = 〈S,l,<〉 , where S is a set of states,
l: S→U is a function that labels every state with a model, and < is a strict partial order17 on
S, called the preference ordering, that is smooth18. W defines a preferential confirmatory
structure 〈S,[⋅],[⋅]〉  and a preferential confirmatory consequence relation as follows: [α] =
{s∈ S | l(s) = α}, and [ α] = {s∈ [α] | ∀ s′∈ S: s′<s → s′∉ [α]}.

Note that preferential confirmatory structures are simple confirmatory structures, and that they also
satisfy the conditions associated above with Left Logical Equivalence and Confirmatory Reflexivity (by
the smoothness condition, if s∈ [α] then either s∈ [α] or there is a t<s such that t∈ [α] — hence [α] ≠ ∅
implies [α] ≠ ∅ ).

In comparison with the preferential semantics of [18], the only difference is that in a preferential
confirmatory argument the evidence is required to be satisfiable, in order to guarantee the validity of
Consistency. The intermediate semantic level of states is mainly needed for technical reasons, and can be
interpreted as the set of models the reasoning agent considers possible in that epistemic state.

The following set of rules will be proved to axiomatise preferential confirmatory consequence
relations.

DEFINITION 5.11. The system CP consists of the rules of CS, Confirmatory Reflexivity,
Left Logical Equivalence, plus the following rules:

Left Or
α |< γ , β  |< γ

α∨β  |< γ

Strong Verification
α |< γ , α  |< β

α∧γ  |< β

The first rule can be seen as a variant of Convergence, which is clearly invalid in the general case: if we
weaken the evidence, there will presumably come a point where the evidence no longer confirms the
hypothesis. However, Left Or states that pieces of confirming evidence for a hypothesis can be weakened
by taking their disjunction. The second rule is a variant of Verification, which states that a predicted
formula γ can be added to confirming evidence α for hypothesis β. Strong Verification states that this is
also allowed when γ is confirmed by α. The way in which Strong Verification strengthens Verification is
very similar to the way Right And strengthens Right Extension. The underlying intuition is that the
evidence is strong enough to have all confirmations “point in the same direction”, as it were.19

LEMMA 5.12 (Soundness of CP). Any preferential confirmatory consequence relation
satisfies the rules of CP.
Proof. The proof only needs to be carried out for the two new rules.
For Left Or, note that [α∨β ] = [α] ∪  [β]; thus, if [α ] and [β] are non-empty then so is
[α∨β ], hence [α∨β ] ≠ ∅ . Furthermore, [α∨β ] ⊆  [α]∪ [β] ⊆  [α∨β ], since a state cannot be
minimal in [α∨β ] without being minimal in at least one of [α] and [β].
For Strong Verification, suppose that [α] ≠ ∅ , [α] ⊆  [γ] and [α] ⊆  [β] — clearly, [α∧γ ] is

17I.e., < is irreflexive and transitive.
18I.e. for any S′⊆ S and for any s∈ S′, either s is minimal in S′, or there is a t∈ S′  such that t<s and t is minimal in S′.
This condition is satisfied if < does not allow infinite descending chains.
19In the context of nonmonotonic reasoning, Strong Verification is known as Cautious Monotonicity. For the
purposes of this paper I prefer to use the first name, which expresses more clearly the underlying intuition in the
present context.



Peter A. Flach: On the logic of induction (submitted, June 5, 1996)

22

non-empty, hence [α∧γ ] ≠ ∅ . Now, let s∈ [α∧γ ], then s∈ [α ]; I will prove that s∈ [α].
Suppose not, then there is a t∈ [α] such that t<s and t∈ [α] ⊆  [γ], hence t∈ [α∧γ ]. But this
contradicts the minimality of s in [α∧γ ], hence s∈ [α] and thus s∈ [β]. ≈

In order to prove completeness, we need to build a preferential structure W from a given consequence
relation |< satisfying the rules of CP, such that α |< β iff α |<W β. This structure W = 〈S,l,<〉  is constructed
as follows:

(1) S = {〈m,α〉  | α is an admissible formula, and m is a normal model for α};
(2) l(〈m,α〉 ) = m;
(3) 〈m,α〉  < 〈n,β〉 iff α∨β  |< α and m =/  β.

Thus, states are pairs of admissible formulae and normal models. The labelling function simply maps a
state to the model it contains. Condition (3) defines the preference ordering between states: note that β |<
α is a special case of α∨β  |< α by means of Left Or, and the fact that α is admissible. The condition m =/  β
is added to make the ordering irreflexive; note that as a consequence any 〈m,α〉∈ S is minimal in [α].

The main difference between the preferential consequence relations of Kraus et al. and my preferential
confirmatory consequence relations is the way unsatisfiable formulae are treated. In Kraus et al.’s system
P unsatisfiable formulae are characterised by the fact that they have every formula in L as a plausible
consequence, which means that they don’t have normal models. In my framework, unsatisfiable formulae
confirm no hypotheses, and have all models in U as normal models. In both cases, the structure W that is
used to prove completeness contains only satisfiable formulae in its states. This means that we can
replicate most of Kraus et al.’s results about the structure W.

PROPOSITION 5.13. (1) [18, Lemma 5.13] The relation < is a strict partial order.
(2) [18, Lemma 5.15] The relation < is smooth: for any s∈ [α], either s is minimal in [α] or
there exists a state t<s minimal in [α].
(3) [18, Lemma 5.11] If α∨β  |< α and m is a normal model for α  that satisfies β, then m is a
normal model for β.
(4) [18, Lemma 5.14] 〈m,α〉∈ [β] iff m = β  and α∨β  |< α.

The first two statements express that W is a preferential structure. The remaining two are used in the
proof of the following lemma.

LEMMA 5.14. Let |< be a consequence relation satisfying the rules of CP, and let W be
defined as above. If α |< β then α |<W β.
Proof. First suppose that α |< β, then by Left Reflexivity α |< α  and by Right Consistency α
|</  ¬ α , so the proof of Lemma 5.8 constructs a model m normal for α , hence [α ]≠∅ .
Furthermore suppose s=〈n,γ〉∈ [α], then γ is an admissible formula, n is a normal model for
γ that satisfies α, and γ∨α  |< γ by Proposition 5.13 (4). By Proposition 5.13 (3) n is a normal
model for α and thus satisfies β by Definition 5.7, hence s∈ [β]. We conclude that ∅⊂ [α] ⊆
[β], hence α  |<W β. ≈

The following lemma proves the converse of LEMMA 5.14, and completes the proof of the representation
theorem.

LEMMA 5.15. Let |< be a consequence relation satisfying the rules of CP, and let W be
defined as above. If α |<W β then α |< β.
Proof. Suppose α  |<W β, i.e. ∅⊂ [α ] ⊆  [β]; we will first prove that α  is admissible. Let
〈n,γ〉∈ [α ], then γ |< γ and n is a normal model for γ. If α  |</  α , then by Confirmatory
Reflexivity γ |< ¬α  and thus n =  ¬α , contradicting the assumption that 〈n,γ〉∈ [α] — so α is
admissible. Furthermore, given any model m normal for α , 〈m,α〉∈ [α ] ⊆  [β], hence m
satisfies β, and the conclusion follows by Lemma 5.8. ≈

We may now summarise.

THEOREM 5.16 (Representation theorem for preferential confirmatory consequence
relations). A consequence relation is preferential confirmatory iff it satisfies the rules of
CP.
Proof. The only-if part is LEMMA 5.12. For the if part, let |< be a consequence relation
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satisfying the rules of CP and let W be defined as above. Lemma 5.14 and Lemma 5.15
prove that α |< β iff α |<W β, i.e. |< is preferential confirmatory. ≈

We end this section by noting that CP represents a more restrictive form of reasoning than Kraus et
al.’s system P, even though neither system entails the other (Reflexivity, a rule of P, is invalid in CP,
while Consistency, a rule of CP, is invalid in P). This is so because from every preferential consequence
relation |~ we can construct a preferential confirmatory consequence relation by removing all arguments
{α |~ β | α |~ δ for all δ∈ L}, i.e. all arguments with a left-hand side that is inconsistent with respect to the
background knowledge. The resulting preferential confirmatory relation is the largest one contained in |~;
furthermore, all preferential confirmatory relations can be constructed in this way from a preferential
relation. Thus, CP is more restrictive than P in the sense defined at the end of section 3.3.

5.4 Weak confirmatory consequence relations

Any semantics that is to obey rules like Right And and Strong Verification must be based on
completeness assumptions with regard to the evidence. On the other hand, such strong assumptions
cannot be made for all induction tasks. It seems reasonable, then, to investigate also an alternative
approach, in which a confirmed hypothesis is required to be true in some of the regular models.20 It is not
difficult to see that such an alternative semantics, based on some notion of consistency, would invalidate
both Right And and Strong Verification. On the other hand, by not making completeness assumptions one
may again have the desirable property of Convergence.

DEFINITION 5.17. Let W = 〈S,[⋅],[⋅]〉  be a confirmatory structure. The open confirmatory
consequence relation defined by W is given by: α |<W β iff [α]∩[β]  ≠ ∅ .

We will characterise an extreme form of open confirmatory relations, which arises when [⋅] is identified
with [⋅], which in turn is well-behaved with respect to the connectives and entailment.

DEFINITION 5.18. A classical confirmatory structure is a simple confirmatory structure
〈S,[⋅],[⋅]〉 . A consequence relation is called weak confirmatory iff it is the open consequence
relation defined by a classical confirmatory structure.

From this definition it is clear that weak confirmatory consequence relations satisfy both Right
Weakening and Left Weakening (i.e. Convergence), as well as Consistency. One additional rule is
needed.

DEFINITION 5.19. The system C W  consists of the following rules: Predictive
Convergence, Predictive Right Weakening, Consistency, and

Disjunctive Rationality
α∨β  |< γ , β  |</  γ

α |< γ

Disjunctive Rationality has not been considered before. The name has been borrowed from Kraus et al.,
who identify it as a valid principle of plausible reasoning. In the context of confirmatory reasoning,
Disjunctive Rationality is a rather strong rule, which states that if a hypothesis is confirmed by
disjunctive observations it is confirmed by at least one of the disjuncts.

The following theorem proves the equivalence of weak confirmatory structures and the system CW.

THEOREM 5.20 (Representation theorem for weak confirmatory consequence relations). A
consequence relation |< is weak confirmatory iff it satisfies the rules of CW.
Proof. The only-if part involves demonstrating that |<W, as defined in Definition 5.18,
satisfies the rules of CW, which is trivial.
For the if part, let |< be an arbitrary consequence relation satisfying the rules of CW, and
consider the weak confirmatory structure W = 〈S,[⋅],[⋅]〉 with:

20This is sometimes called credulous inference, in contrast with skeptical inference which requires truth in all regular
models.
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S = {m∈ U | for all α,β∈ L such that m = α∧β : α |< β}

[α] = {m∈ S | m = α }

We will prove that α  |< β iff α  |<W β. The if part follows directly from the construction of
W. Suppose that α  |< β, we will show that there exists a model m0∈ S that satisfies α∧β .
Define Γ0 = {α} ∪  {δ | ¬δ |</  β}; we will first show that Γ0 is satisfiable. Suppose not, then
by compactness there is a finite ∆⊆ {δ | ¬δ  |</  β} such that =¬ (∆∧α ), i.e. =β→¬(∆∧α ); by
Consistency ∆∧α  |</  β. Furthermore, since ¬δ |</  β for δ∈∆ , we have ¬∆  |</  β by Disjunctive
Rationality and ¬∆∧α  |</  β  by Convergence. Combining this with ∆∧α  |</  β  we obtain
(¬∆∧α )∨ (∆∧α ) |</  β by Disjunctive Rationality and α |</  β by Incrementality. Contradiction,
so Γ0 is satisfiable.
Let m0 =  Γ0; clearly m0 =  α and, since by Consistency β∈Γ 0, m0 =  β. It remains to prove
that m0∈ S; i.e., that for all ϕ, ψ such that m0 = ϕ∧ψ  we have ϕ  |< ψ. Let m0 = ϕ∧ψ , then
¬ (ϕ∧ψ )∉Γ 0, hence ϕ∧ψ  |< β; by Predictive Right Weakening ϕ ∧ψ  |< ψ∧β , by
Convergence ϕ |< ψ∧β , and by Right Weakening ϕ |< ψ. ≈

The system CW thus provides an axiomatisation of the relation of logical compatibility.
In this section we have studied abstract properties and semantics for confirmatory induction. In the first

part of this analysis I have demonstrated that Hempel’s original conditions axiomatise a rather general
form of confirmatory inference, characterised by truth in the regular models of the evidence. A close link
with nonmonotonic or plausible reasoning is obtained by identifying the regular models with the minimal
models under a preference ordering. Finally, I have proposed a more liberal form of confirmatory
reasoning based on some notion of consistency, which is more appropriate if the evidence cannot be
considered complete. This more liberal form of confirmatory reasoning invalidates the strong rule of
Right And. A new representation theorem has been obtained for the extreme form of logical
compatibility. Open problems include dropping the condition that regular models be models of the
premisses, and more meaningful forms of open confirmatory reasoning.

6. Discussion

In this paper I have combined and extended old and recent work in philosophy, logic, and Machine
Learning, in an attempt to gain more insight in induction as a reasoning process. I believe that the
approach followed has implications for each of these three disciplines, which I will address separately
below.

6.1 Philosophy

Induction is one of the traditional problems of philosophy. In spite of this it is perhaps also one of the
least understood, and certainly one that hasn’t been satisfyingly solved. From the perspective from which
this paper is written there is not one, but two ‘problems of induction’: one concerned with the justification
of accepted hypotheses, and one concerned with the formation of possible hypotheses. Traditionally
philosophers have been concerned with the justification problem:

‘Why is a single instance, in some cases, sufficient for a complete induction, while in others, myriads
of concurring instances, without a single exception known or presumed, go such a very little way
towards establishing an universal proposition? Whoever can answer this question knows more of the
philosophy of logic than the wisest of the ancients, and has solved the problem of induction.’ [21,
Book III, Chapter VIII, p.314]

No attempt has been made, in the present paper, to solve this problem of induction. As I have argued in
section 2.1, I don’t think the justification problem manifests itself exclusively with inductive
generalisations, but rather with all forms of nondeductive reasoning.

Furthermore, I don’t think that the justification problem is a problem of logic. What I perceive as the
logical problem of induction, and what has been the central problem of this paper, is the problem of
finding a sufficiently accurate description, in logical terms, of the process of inductive hypothesis
formation. As Hanson observes, this logical problem of induction has been mostly ignored:
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‘Logicians of science have described how one might set out reasons in support of an hypothesis once
it is proposed. They have said little about the conceptual considerations pertinent to the initial
proposal of an hypothesis. There are two exceptions: Aristotle and Peirce. When they discussed what
Peirce called “retroduction”21, both recognized that the proposal of an hypothesis is often a
reasonable affair. (…)
Neither Aristotle nor Peirce imagined himself to be setting out a manual to help scientists make
discoveries. There could be no such manual. Nor were they discussing the psychology of discoverers,
or the sociology of discovery. There are such discussions, but they are not logical discussions.
Aristotle and Peirce were doing logic. They examined characteristics of the reasoning behind the
original suggestion of certain hypotheses.’ [12, pp.1073–4]

The first philosophical contribution of this paper, then, has been to reinforce the point that inductive
hypothesis formation is a logical matter (and hypothesis selection is not). The second contribution lies in
the distinction I have drawn between explanatory induction and confirmatory induction. More generally, I
believe that a logical characterisation of inductive hypothesis formation is impossible unless one takes
into account the goal which the hypothesis is intended to fulfil. Possible goals include providing
classifications like in concept learning, or making implicit regularities explicit like in knowledge
discovery in databases. Different goals lead to different forms of induction with different logical
characteristics. For this reason I have taken a somewhat relativistic viewpoint, by setting up a general
framework in which various logics of induction can be set up, analysed, and compared, instead of fixing a
particular logic of induction.

Two main families of logics of induction have been singled out, one portraying induction as
explanation-preserving reasoning, the other as inference of confirmed hypotheses. As these families
should be taken as starting points for further technical research, let us consider a number of possible
improvements here. First of all, it has been remarked earlier that the restriction to a propositional object
language L is counterintuitive in the context of induction, where the distinction between statements about
individuals and statements about sets of individuals appears to be crucial. Upgrading the results of this
paper to predicate logic is certainly an important open problem. On the other hand, the propositional
analysis of this paper is not meaningless for the predicate logic case. First of all, in finite domains
statements of predicate logic can be encoded in propositional logic.22 Furthermore, I would expect each
of the predicate logic rule systems to include the corresponding propositional rules, and the predicate
logic semantics to be refinements of the propositional semantics.

A related point concerns the (restricted) reflexivity of the logics proposed here, which again runs
counter to the intuition of induction as generalisation from instances to populations. We expect names of
individuals to be present in the inductive premisses, and absent from the inductive hypothesis. As a
consequence, changing the names in the premisses (in a way that does not distort the information they
convey) would not invalidate the hypothesis. For instance, consider the observations

Raven(a)∧ Black(a) ∧  ¬Raven(c)∧ Black(c) ∧  ¬ Raven(d)∧¬ Black(d)

Given these observations ∀ x: Raven(x)→Black(x) is a possible hypothesis. In the confirmatory setting
this can be formalised by constructing a regular model from the evidence, and stipulating that any
hypothesis be satisfied by that model. However, from that model we can construct another model by
replacing a, c, d with (say) e, f, g. It makes sense to say that this constitutes another regular model that is
to satisfy any hypothesis — this would rule out any hypothesis that talks about a, c or d, including the
observations. In terms of the confirmatory structures of section 5.2 this would mean to drop the condition
that [α]⊆ [α] for all α∈ L. In this way the perception of induction as reasoning from the particular to the
general would be realised, not by posing syntactic restrictions (which is logically unattractive), but by
wiring it into the semantics. I am currently working on such a logic of generalisation.

6.2 Logic

Mathematical logic has been at the focus of attention of logicians at least since the beginning of the
century. This has led to an underappreciation of other forms of reasoning. Work on commonsense

21Peirce’s translation of Aristotle’s term απαγωγη — only later Peirce introduced the term ‘abduction’.
22This may require a substantial background theory, limiting the practical feasibility of this encoding.
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reasoning in Artificial Intelligence has revived the interest in non-standard logics, but still most of the
map of reasoning forms is in darkness. The regrettable use of the term ‘nonmonotonic reasoning’ for
reasoning with rules that have exceptions23 is a symptom of this twilight: virtually all nondeductive
reasoning is nonmonotonic, yet reasoning with default rules constitutes but one possible mode of
nondeductive reasoning. Logic should also be concerned with the systematic study of reasoning forms
(deduction, induction, plausible reasoning, counterfactual reasoning, and so on).

From a logical point of view this paper can be seen as a contribution to the systematic study of
reasoning forms, by trying to nail down the essence of induction in logical terms. By employing
consequence relations as the central notion in this analyis, rather than, say, introducing non-truth-
functional connectives or modalities, attention is focused on the underlying inference mechanism.
Abstract properties of consequence relations can be used to classify reasoning forms: for instance, we
could say that a reasoning form is deductive if it satisfies Monotonicity, quasi-deductive if it satisfies
Cautious Monotonicity, explanatory if it satisfies (Admissible) Converse Entailment, and so on. These
properties can be used to chart the whole map of reasoning forms, just like the properties of [18] chart the
map of plausible reasoning. Thus, the present paper can be seen as a constructive proof of the thesis that
the method of analysis through consequence relations, pioneered by Gabbay [11], Makinson [20], and
Kraus, Lehmann & Magidor [18, 19], constitutes in fact a methodology, that can be applied to analyse
arbitrary forms of reasoning.

It is important to note that, by pursuing the analysis on the level of consequence relations, one is
studying a class of logics, i.e. a reasoning form, rather than a particular logic. The formal analysis of a
reasoning form is quite different from the material definition of a particular logic. The traditional picture
of the latter process is like this. One starts with the semantics, which is designed to provide a precise
meaning for the primitive symbols in the language, and formalises the relevant notion of consequence.
Only then the proof-theoretic axiomatisation follows, accompanied by proofs of soundness and
completeness. However, the abstract analysis of a class of logics may well proceed along different lines.
Usually, a number of material definitions of specific logics are available (e.g. default logic,
circumscription, negation as failure), and one tries to understand what these logics have in common. This
extraction of commonalities may start on the semantic level (e.g. each of the logics selects among the
models of the premisses) but also on the meta-theoretical level (e.g. each of the logics is nonmonotonic,
and closed under conjunction on the right-hand side). Semantics does not necessarily come first anymore:
the notion of Cautious Monotonicity may add as much to the understanding of plausible reasoning as the
idea of a preference ordering on models.

Another tendency that can be observed when moving towards more abstract characterisations of
reasoning forms is that semantics concentrates more on a characterisation of the notion of consequence,
and less on the meaning of the primitive symbols in the language. This raises the question as to what
constitutes a logical semantics. This is by no means a settled issue, but different authors have put forward
the notion of preservation as playing a central role in semantics. For instance, Jennings, Chan and Dowad
‘argue for a generalisation of inference from the standard account in terms of truth preservation to one
which countenances preservation of other desirable metalinguistic properties’:

‘(…) truth is not the only inferentially preservable property. A system of inference essentially
provides procedures by which a set Σ of sentences (for example, the set of one’s beliefs) having some
complex of metalinguistic properties can be unfailingly extended to a larger set Σ′ having the same
complex of properties. By all means, we may regard truth as one of the properties to be preserved,
but what other properties are to be preserved can depend upon our interests.’ [17, p.1047]

Furthermore, the view that abduction is the logic of preserving explanations has also been put forward by
Zadrozny, who calls an inference rule abductive ‘if it preserves sets of explanations’ [25, p.1].

These points underline that many open problems of contemporary logic are conceptual in nature, rather
than just technical. Motivated by problems from Artificial Intelligence, logic is widening its scope to in-
clude forms of reasoning that are less and less similar to classical deduction. This development is far from
nearing its completion. For instance, it seems commonplace among researchers studying consequence
relations to assume that any consequence relation should minimally satisfy Reflexivity, Right Weakening,
and Right And. Surely this makes sense if one limits attention to quasi-deductive reasoning, but the
explanatory consequence relations studied in section 4 of this paper satisy none of these properties. This
paper makes a case for a much more liberal perception of what is a consequence relation.

23A better term would be ‘plausible reasoning’.
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6.3 Machine Learning

Whereas the main contributions of this paper are logical and philosophical in nature, it also provides a
novel perspective on inductive Machine Learning. First of all, the framework of inductive logic
elaborated above provides a new logical foundation of inductive learning. As such, viewing inductive
learning through logic is of course not new, as is witnessed by the subdiscipline of Inductive Logic
Programming (ILP) [22]. However, the usual logical perception of inductive learning differs from the one
presented here. These two perceptions can be explained by considering the phrase ‘inductive logic
programming’. This phrase is ambiguous: it can be taken to mean — as it is usually done — ‘doing logic
programming inductively’, but it can also be parsed as programming in inductive logic — which
corresponds to the perception elaborated in this paper. Let me explain why these interpretations are
fundamentally different.

By identifying ILP with doing logic programming inductively, one effectively says that one’s main
goal is logic programming, i.e. answering queries by executing a declarative specification by means of its
procedural semantics; however, since this declarative specification is only partly known through a
number of examples, we should do some inductive patching before the real work can start. This results in
a somewhat subsidiary view of induction as a subproblem that needs to be solved before we can do the
main task. This can be seen from the problem specification (see section 2.5), which defines induction as a
sort of reversed deduction from positive examples p to hypothesis H. The slogan ILP = Inductive Logic +
Programming offers a different viewpoint, from which the inference from examples to a logic program is
the main step. That is, the examples (and background theory) provide the declarative specification of the
induction task, which is executed by applying the inference rules of an inductive logic (e.g. specialisation
or generalisation operators). The hypothesis is an inductive consequence of the examples.

An immediate advantage of the latter viewpoint is that it provides an independent definition of
induction, instead of defining it in terms of something else (e.g. reversed deduction). The following
analogy may clarify this point. In mathematics, many concepts are introduced as inverses of other
concepts: division as inverse of multiplication, roots as inverses of powers, integration as inverse of
differentiation, and so on. However, once such a concept has been introduced in this way, it usually gets
an independent treatment, providing further insight in and justification of the new concept. For instance,
the definition of a definite integral as the limit of a Riemann sum formalises the idea that a definite
integral calculates the area under a curve. The relationship between the new concept and previously
defined concepts is then obtained as a theorem (cf. the fundamental theorem of calculus), rather than a
seemingly arbitrary definition.

The framework of inductive consequence relations can be used to obtain soundness and completeness
proofs of particular sets of operators employed by a particular induction algorithm. As an illustration,
consider the inverse resolution operator absorption [23]: from p←q,r and s←q,r,t infer s←p,t. In
our framework, a soundness proof of this induction step is established by the derivation, from an
appropriate rule system such as EM, of the following statement:

=p←q,r 
s←q,r,t |< s←p,t

which should be read as follows: if p←q,r is known from the background knowledge, then s←p,t is
an inductive consequence of s←q,r,t.

The framework also provides a well-defined vocabulary for reasoning about induction tasks and
algorithms. Important notions like incrementality and convergence are  linked to the underlying inductive
consequence relation. This is important because, as we have seen, different induction tasks may have
different characteristics — articulating these characteristics is a necessary and important first step in
understanding the induction task at hand, and choosing or devising the right algorithm. Using such a
vocabulary we can construct a taxonomy of induction tasks. Two families of induction tasks have been
discerned in this paper: explanatory induction, aimed at obtaining classification rules, and confirmatory
induction, directed towards extracting structural regularities from the data. While explanatory induction
corresponds to typical classification-oriented inductive Machine Learning tasks such as concept learning
from examples, induction tasks belonging to the non-classificatory paradigm have only recently started to
attract attention [14, 6, 5]. The contribution of the present paper has been to propose Hempel’s notion of
qualitative confirmation as the unifying concept underlying these latter approaches. As Helft observed,
inductive conclusions may be obtained by closed-world reasoning if the evidence may be considered
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complete; however, above I have proposed to distinguish an open variant of confirmatory reasoning,
where the completeness assumptions on the evidence are considerably relaxed. While this may lead to an
increase in the set of inductive hypotheses not refuted by given evidence, it has the distinct advantage of
invalidating the rather strong property of Right And, and restoring the computationally attractive property
of Convergence.

7. Conclusions

This paper has been written in an attempt to increase our understanding of inductive reasoning through
logical analysis. What logic can achieve for arbitrary forms of reasoning is no more and no less than a
precise definition of what counts as a possible conclusion given certain premisses. Selecting the best
(most useful, most plausible, etc.) hypothesis is an extra-logical matter. The logic of induction is the logic
of inductive hypothesis formation.

There is not a single logic of induction. The logical relationship between evidence and possible
inductive hypotheses depends on the task these hypotheses are intended to perform. Induction of
classification rules such as concept definitions are based on a notion of explanation; an alternative logical
account of induction starts from the qualitative relation of confirmation. Other forms of induction are
conceivable. In this paper I have proposed a metalevel framework for characterising and reasoning about
different forms of induction. The framework does not fix a material definition of inductive hypothesis
formation, but can be used to aggregate knowledge about classes of such material logics of induction.

A number of technical results have been obtained. The system EM axiomatises explanation-preserving
reasoning with respect to a monotonic explanation mechanism. Characterisation of explanatory induction
with respect to weaker (e.g. preferential) explanation mechanisms is left as an open problem. The systems
CS and CP axiomatise the general and preferential forms of closed confirmatory reasoning, conceived as
reasoning about selected regular models. They represent variations of earlier, differently motivated,
characterisations by Bell [2] and Kraus, Lehmann & Magidor [18], with a different treatment of
inconsistent premisses. An important open problem here is the axiomatisation of confirmatory structures
where regular models may not be models of the premisses. Finally, the system CW represents an extreme
form of open confirmatory reasoning (i.e. compatibility of premisses and hypothesis). Finding more
realistic forms of open confirmatory reasoning remains an open problem.
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