

WRITING

ADVENTURE GAMES
ON THE AMSTRAD

WRITING

ADVENTURE GAMES

ON THE AMSTRAD

Mike Lewis ond Simon Price

MELBOTIN,NE HOUSE
PTIBLISHER,S

O1985 Mike Lewis & Simon Price

All rights reserved. This book is copyright and no part may be copied
or stored by electromagnetic, electronic, photographic, mechanical or
any other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM _
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA _
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

tsBN 0 86161 196 I

Printed and bound in Great Britain by
Mackays of Chatham Ltd, Chatham, Kent

Edilion
Printing:
Year:

7654321
FEDC8A987654321
90 89 88 87 86 85

AKNOWLEDGEMENTS

To Andy Tyson and Doug Walker for playtesting
To Lesley Boxer for the artwork

and Tim Harrison - the "Printer Driver".

CONTENTS
SECTION ONE - ADVENTURE GAMES 1

J
7
7

Chapter 1

Chapter 2
Chapter 3
Chapter 4

Chapter 5

rNTRODUCTrON.............
HISTORY OF ADVENTURE GAMES......
PLOTTING AN ADVENTURE GAME......
THE STRUCTURAL ELEMENTS OF AN
ADVENTURE GAME
SAVING SPACE

SECTION TWO _ THE ADVENTURE KERNEL . .

Chapter 6 WHAT lS AKS?
Chapter 7 ACTIONS lN AKS
Chapter B TRIGGERS lN AKS
Chapter I LOCATIONS, OBJECTS AND EVENTS

IN AKS
Chapter 10 EXPRESSIONS lN AKS

Chapter 15 WITCH HUNT PLOTAND DESIGN
Chapter 16 BREAKDOWN OF WITCH HUNT..

Appendix A LISTING OF AKS AND WITCH HUNT
AKS Chexsum

59
63

25
37

45

47
5'l
55

9.1

97

131
155

SECTION THREE - IMPLEMENTING AKS ON THE AMSTRAD . 67

Chapter 11 PROGRAMMING TECHNIQUE
Chapter 12 STRUCTURAL OVERVIEW OF AKS
Chapter 13 IMPLEMENTING THE EXPRESSION EVALUATOR
Chapter 14 EXTENDING AKS.....

SECTION FOUR - WITCH HUNT _ AN EXAMPLE SCENARIO . 89

69
73
79
B5

Appendix B BIBLIOGRAPHY 165

sEcTrolr 1
ADVENTURE GAMES

1

¿

1
INTRODUCTTON

The arcade shoot-'em-up style of computer games is the one most
associated with home computers. They are games of skill, involving
fast reflexes and goo<j hand{o-eye coordination. While there are some
elements of strategy in arcade games, it is more along the lines of
"which baddy do I shoot first?" than any complex planning. These are
games of action; adventure games are games of thought, of planning,
of strategy. Fast reactions will not help you in a standard adventure
game - you must use your brain, not your joystick.

There are many different forms of adventure game, as we shall see
in the next chapter, but they can all be considered to ultimately be the
same type of game. They are all linked at the basic level by a game
format which involves the player interacting with the computer in order
to solve puzzles, collect objects, and perhaps kill monsters. The player
takes the part of a character, who is free to roam around an imaginary
world, within his computer, and whose actions are controlled by the
player through the computer. The best adventure games give you the
opportunity to get lost in their worlds, to take on roles which allow you
to escape from mundane, ordinary life and become an adventurer, an
explorer. Adventure games can give you the same feeling of enjoyment
and involvement which is available from a well-constructed, well-paced
novel; or from a well-run roleplaying game session. Of course, not all
adventure games are good, far from it, many lack atmosphere, ideas
or even a vaguely logical plot. They can reduce the whole adventure
playing process to a simple game of guessing which word to use,
which object to pick up, etc rather than an exploration of the author's
world. Playing a poorly designed adventure game is mechanical at
best, if you even bother to play it, that is.

3

WHY READ THIS BOOK?
With the growth in popularity of adventure games, and the realisation
by computer games companies that a good adventure game can sell
as well as a good arcade game, there has been a boom in the number
of adventures being produced. There has also been a comparative
boom in utilities such as The Quill, which allows you to write your own
adventures without knowing any programming techniques. This has
led to a lot of Quilled adventures, some of which are very good - a
lot of which are quite dire. There seems to be a similar expression to
"Everyone has at least orìe novel in them" - with computers, everyone
seems to have at least one adventure in them. These utilities allow
them to produce their one (or even more) adventures.

There has also been a boom in adventure game books, which purport
to show you how to write an adventure game easily and simply. Un-
fortunately, beyond giving you some form of programming knowledge,
which can be picked up by typing in listings, these books have very
little to offer. The standard format is to show how to write one adventure
game, which is produced by directly coding the adventure in the form
of BASIC, and to then claim that this will enable you to write your own
adventures. Sadly, it doesn't do this at all; because of the adventure
format chosen. The adventures presented as examples are directly
coded programs which only apply to their adventure game alone; if
you wish to write your own adventure, you have to code your game in
the same way, from scratch. What is more, you will have to code each
adventure game you write subsequently, in the same way, program-
ming it directly. Far from allowing you to write adventures easily and
quickly, this technique wastes a lot of your time, and produces fairly
standard adventures, as well as teach¡ng you very little.

That is the conclusion which we came to, after tiring of reading the
same material time and again in adventure game books and articles.
There are so many computing techniques and methods which can be
applied to adventure games, and they seem to remain the secrets of
large software houses. Well, this book sets out to outline some of the
techniques which you can employ to write your own adventures, some
of them fairly advanced; techniques which will actually teach you some-
thing new about computing. We have also set out to provide a complete
adventure generating system which can be used to design any number
of adventure games, without direct coding, or any programming being
necessary. The Adventure Kernel System is easier to modify and more
flexible to use than most commercial adventure designers as well, as
it enables you to see the structure of your adventure game, in a way
which mehu systems cannot.

4

WHY WRITE ADVENTURE GAMES?
You may be wondering why anyone would want to write their own
adventure games. The simple, and short, answer is for enjoyment and
a feeling of satisfaction. A large adventure game is very similar to a
novel, in the way it must be designed, plotted and finally written; and
there is the same feeling of achievement when you finally finish an
adventure as you get from writing a book. Designing and implementing
adventure games is fun, as well. Your imagination has complete free-
dom to produce whatever strange ideas and puzzles you want, and
you are able to stamp your own personality and feelings on an ad-
venture game in a way which is not possible with an arcade game.
There is also the enjoyment which can be had from watching other
people play your adventure game, trying to puzzle through all those
problems you carefully designed. ln fact, it is often more fun watching
people play your game than playing other peoples' adventures - an
inside view gives you a wonderful perspective on the player's actions.

Besides the enjoyment derived from writing an adventure game, you
can learn new programming techniques, something which isn't possible
with a novell An adventure game is easier to construct and write than
a novel, as well, which may be why so many adventure games writers
appear to be frustrated novelistsl lf you are creative and as much of
a technophile as we ai'e, it also gives a chance to do something useful
and constructive using your treasured computer for a change. No
longer will people be able to say that you are wastrng your time playing
silly games - you are creating them insteadl

5

I

2
THE HISTORY OF
ADVENTURE
GAMES

THE DEVELOPMENT OF ROLEPLAYING
Roleplaying games grew out of the hobby of wargaming in the late
sixties and early seventies. Wargames take the form of battles fought
on table tops with miniature figures. Each figure represents ten, twenty
or more men and the gamers move the armies according to a complex
series of rules which govern movement, terrain, and the like - with
combat being resolved through the use of dice; wargames recreate
many different periods of warfare, from ancient Rome through Napo-
leonic battles to the conflicts of the 2Øth century. Wargames themselves
developed from chess and the military strategic games played by the
Prussian Military Command at the end of the 19th century.

The first factor which influenced the development of Roleplaying
Games, (RPGs as they are known today) was without doubt the pub-
lishing of JRR Tolkein's LORD OF THE RINGS in paperback in 1967.
This fired the imagination of a vast audience of young people, the idea
of recreating the battles between men, dwarves, elves and orcs ap-
pealing to the fantasy fan and wargamer alike. Because of the demand
for rules which could cope with the magic and creatures depicted in
the books, the publishers of medieval wargames rulebooks had ap-
pendices added to include the use of fantasy elements such as Dragon
Fire and magic swords.

ln Lake Geneva, Wisconsin, USA a small group of wargamers pub-
lished a book for medieval combat called Chainmail through Gary
Gygax's small press games company Tactical Studies Rules, which

7

had previously published other wargames rUles. While this essentially
covered the medieval period, it also had a large fantasy element, with
giants, spells, trolls and dragons. The game was reasonably popular
due to these added fantasy elements.

From here, the game grew with Dave Arneson - a member of the
group - creating a dungeon beneath the castle in his campaign. Here
individual characters adventured, governed by the rules in CHAIN-
MAIL. The new concept of playing a unique character proved very
popular and this idea was developed by Arneson and Gygax into the
game Dungeons and Dragons (D&D)which was published by Gygax's
Tactical Studies Rules company.

D&D sold extremely well and vast numbers of supplements were
soon added to the game to cover the inconsistencies present and the
problems that 'combat according to the rules in CHAINMAIL' (as the
original rules stipulated) caused.

While the game of D&D was the first, it was obviously incomplete
and in many ways had flaws as a games system. There were a number
of individuals around who felt that they could do better and soon several
rival roleplaying games sprung up. These were games such as Tunnels
and Trolls, a very simple level game developed by Ken St. Andre, and
published by Flying Buffalo with different rules for magic and combat
but still drawing on the fantasy background of elves, dwarves and trolls
as inspiration for adventures.

THE GROWTH OF ADVENTURE GAMES
Back in the dim and distant days of '1973, when roleplaying games
were first invented, computers were still immense mainframes filling
rooms, and while computer games did exist they consisted of Noughts
and Crosses and games like Star Trek. While many computer pro-
grammers played D&D, they never thought of implementing the game
on a computer system. Roleplaying and computers remained very
separate entities until two bright students by the names of Crowther
and Woods created ADVENTURE.

The game ADVENTURE was created on one of these large main-
frames and coded entirely in FORTRAN and Crowther and Woods were
clearly D&D fans, for ADVENTURE contains many of the elements found
in roleplaying games. lt is set in a vast underground complex of caves
which are populated with monsters to be fought, puzzles to solve and
treasure to win. The player moves his 'character'around the caves by
giving two word instructions describing his actions. ïhese consist of
a verb and a noun pair such as'GO NORTH', 'KILL DWARF', etc. Thus
he is able to manipulate objects, attack monsters and solve puzzles
via simple commands. The game was tremendously innovative at the
time, and doubtless many hours of hideously expensive computer time

8

were spent trying to unravel its mysteries. The player receives a score
out of 35Ø when he dies and the aim of the adventure is to win by
completing all the actions possible and to thus score 35Ø.

ADVENTURE remained unavailable to all but a select few due to the
scarcity of mainframe facilities to those other than students or com-
puting specialists. The game might have remained a minor diversion
for computer scientists, but for one person - Scott Adams. Scott had
played the game at work, and had found it fascinating, he wanted to
be able to show it to his friends, but couldn't take them into work. So,
the obvious solution was to bring the adventure to them! This he did
by programming the game in BASIC on the 16K TRS-80 Model 1 , despite
his colleaguest assurances that it couldn't be done!

Once it had been shown that you could reproduce an adventure
game on a microcomputer in just .16k (the original adventure used over
64k of main store) other programmers cauglrt on, and soon other ad-
ventures began to appear.

Adventure games consisted of the same basic elements: the two
word input, puzzle solving and limited character interaction until rela-
tively recently, when the lnfocom games appeared. These grew out
of experiments with a parsing system, and as such allow very complex
input and output. Zork was the first of the new breed of games, and
it provides a surprisingly user-friendly game with some very intricate
and subtle puzzles.

Unfortunately, due to the large amounts of memory and disk space
required to run ZORK it is only implemented on a few machines. How-
ever, some of the techniques shown in ZORK can be reproduced in
any adventure games system extremely effectively and easily.

Nowadays, adventure games are a very common piece of computer
software, and there are several different types available on all of the
small home computers, the Amstrad having its fair share of innovative
adventures.

While all adventure games have essentially the same structure -in that they are composed of an interaction between the player and
the game, during which the player attempts to solve puzzles and over-
come obstacles - they can be sub-divided. These divisions can be
based on the style of input and output and how these two are linked
through the game.

DIFFERENT ADVENTURE TYPES

Text Adventures
This is the original type of adventure game, and the text adventures
available on the Amstrad differ very little in format from the original
ADVENTURE on a mainframe computer. The game consists of plain

9

text input and output on a normal screen with no graphics, sound and
normally no use of colour.

The original Crowther and Woods Adventure is available on the Am-
strad as Colossal Caves from Level 9, which not only includes the
original 2ØØ locafions, but adds 7Ø more! Quite a programming feat
for just a small home computer!

The game includes all the elements of the original and more. You

start the game on a road near a building, with a forest to the north and
a valley to the south. Commands are entered by typing in a two word
command consisting of a verb and a noun. Thus, "Enter building" will
take you into the building, where the program describes the location
AS:

You are in a small building with a well in the middle of the only
room. A rusty ladder leads down the well into darkness.
There is a bunch of keys here.
There is a small brass lamp here.
There is an empty bottle here.

Typing "Get Lamp" will enable you to pick up the lamp and typing
"lnventory" will list all the objects you are carrytng. The adventure
recognises the standard abbreviations for directions, such as "S" for
"South", "D" for "Down", "E" for "East" and so on. The two word input
is limited compared to some games that allow full sentence input, but
it is sufficient to play the game (and indeed to play most adventures).

Graphics Adventures
Text adventures with added pictures showing what the locations looked
like have been around for a while on computers such as the Apple

- the use of discs enabling fast access to picture data. The graphics
adventure boom on small computers, however, was really sparked off
by the release of The Hobbit adventure lrom Melbourne House. This
led to a lot of other graphics adventures, which attempt to add at-
mosphere to the game by showing each of the locations you can visit
in glowing colour.

The major problem with any graphics adventure is that the addition
of graphics to the program eats up the available memory at a ferocious
rate! This means that there is less space for locations, objects and
actions, and thus the adventure has to be smaller with fewer puzzles
and they generally prove to be less of a challenge. While the graphics
do add a certain feeling of atmosphere to the game, they can never
be detailed enough to accurately represent your location, and thus
add little to the adventure element of the game. Most "committed"
adventure games players tend to prefer text based games, as they
offer a greater challenge.

10

Arcade Adventures
Thls type of adventure game bears the least resemblance to the original
ADVENTURE, as it is entirely graphical in naiure, with very little (if any)
text The character in the game is controlled by a joystick, or via cursor
keys, and is moved around the screen collecting objects and fighting
monsters. The screen generally depjcts a set of corridors ot a maze,
which must be negotiated, and the monsters are overcome by firing
at them - as in arcade games.

Because the action is purely graphical and the standard of animation
of the characters in the game has to be high, the graphics will take up
even more memory than with the Graphical Adventures. Thus, the
actual adventure element of the game tends to be reduced to just
picking up or dropping objects, fighting monsters and so on. Allthings
which require skill on the joystick and good reflexes rather than the
complex thought and calculation required by the traditional puzzle
adventure. However, Arcade adventures may appeal to people who
like a little more storyline to their blasting of aliens than in the standard
shoot'em up.

Adventure Simulations
Although The Hobbit falls into this category in many ways, with its
interactive characters and their unpredictable behaviour, as do the
lnfocom games, the only real program to live up to the name is Valhalla
from Legend (sadly, only available on the Spectrum and Commodore
64 at the time of writing.).

The world of Valhalla is that of Norse legend and myth, with the gods
and goddesses, giants and dwarves, wolves and dragons. You take
the part of a character in this world and you interact with the other
characters present. Each of these characters has a unique personality
and acts with complete independence from you or the other characters
around them. The thing that makes Valhalla very different from The
Hobbit or any other game available is that all this action takes place
graphically on the screen. When you type in the command "Drink
Wine", one of the little characters on the screen will raise a wine bottle
to his lips and take a drink!

Each location is shown as a fairly detailed and colourful picture, with
the terrain varying from plains to marsh or forest, and with castles and
huts dominating the skyline. The characters are shown as little figures
who walk about the central strip of the screen, drop food, pick up
weapons, fight, etc, All this while you can stand and watch.

ln fact, one of the fascinations when you start to play the game is
just to sit and watch the other 36 characters in the game interact with
one another while you don't do a thing! You can join in this world
through a fairly complex sentence input which enables you to ask the

11

other characters for things, ask them to do things and move around
the world.

Due to the graphics again, the adventure element is rather limited
because of the sheer complexity of handling the animation and in-
dependence of the characters. You are really limited to just eating/
drinking (a vital necessity to avoid dying of hunger), buying/selling,
fighting and handling objects. The commands for such actions can be
very complex in structure though, such as: "Sell the axe to Thor for 3Ø

crowns".
The purpose of the game is to find the six magical items scattered

throughout the world, which must be collected in order. To achieve this
you will need the help of the other characters and this can only be
gained by impressing them with your prowess at fighting etc.

Quite clearly, the adventures currently available on home computers
are a massive improvement over the original Adventure, both in terms
of complexity and playability, while still owing their format to the original
game.

MACHINE REOUIREMENTS AND
PROGRAMMING LANGUAGES
The resources required by an adventure game really depend on the
type of game (as classified above) and on the aims of the game. All
adventure games require a reasonable size of computer memory and
they can be greatly enhanced if some form of disk storage is available.

ldeally an adventure game should have at least 4BK available for
the data and the driving routines. lt is possible to get away with less
than this, especially if some form of text compression is used, but the
adventure game which can be fitted into a 16K machine pales into
insignificance beside a 4BK game! When available memory is limited,
you are forced into using compression techniques and machine code,
to create a useable adventure. This distracts you from the game itself,
as far more time is devoted to perfecting coding techniques than de-
veloping the adventure game. There is a lot to be said for using a high-
level language rather than machine code, and getting on with the game
itself.

Which high-level language is most suitable for writing adventure
games? Well, the major task which an adventure game performs is the
manipulation of large amounts of text, usually in the form of strings; so
any language which provides good string handling functions can be
used. The original ADVENTURE was written in FORTRAN, simply be-
cause that was the only language available, however it is really de-
signed for scientific number crunching, not for text manipulation. The
most commonly used language for writing adventure games on micro-

12

computers is, of course, BASIC, Most BASICs have good string hand-
ling, it is a relatively simple language to learn to program in, and it is
widely available, all good reasons for using it.

The major problem with using BASIC is that the larger the program,
the slower it will run. For most adventure games this is not too much
of a problem, as the response times to the player's input are still fast
enough to be acceptable. The response delay only becomes a real
problem when you are attempting to produce a more advanced ad-
venture game, which will allow complex sentence input. The parsing
of sentences takes time, and the delays can easily become totally
unacceptable. No player wants to wait thirty seconds between inputting
a command and the program responding ! Thus, as the games become
more ambitious and complex, you are forced to abandon BASIC in
favour of machine code, or a compiled language.

As we have already mentioned, resorting to machine code will slow
down the development of the adventure game by a significant factor.
Machine code takes longer to learn initially, as it requires a totally
different programming approach to a high-level language, and this can
put the development of an adventure game even further back. Once
you have written your adventure game in machine code on one
machine, you are then faced with the problems of implementing the
same game on a different machine. With a BASIC adventure game,
transferring the game to a new machine is simply a matter of translating
the program into the new dialect of the BASIC. Despite the lack of
standards in BASIC, this is a fairly straight forward task, and it will
certainly take you far less time than rewriting the game from scratch
on the new machine. lf your game is written in machine code, then this
is exactly what you will have to do - rewrite the whole game! Even
assuming that the new machine uses the same machine language.
(e.9. both the Amstrad and the Spectrum useZBØ machine code), you
cannot simply copy the program across. The routines for printing out
text to the screen, inputting commands from the keyboard, drawing
pictures, all the things BASIC does for you, will have to be completely
rewritten.

BASIC has the advantages of making your adventure game portable,
so it can run on another machine with minimal changes, yet it is not
the only language you can use. We mentioned compiled languages,
and PASCAL is such a language, which is becoming widely available
on a lot of micros - the Amstrad included - for a relatively small
price. The advantages of compiling a language are that you can write
the game in a high-level language which is as easy to use as BASIC,
yet it will run at almost the speed of machine codel Unfortunately,
standard PASCAL is not very suitable for adventure games program-
ming, as it lacks even elementary string handling functions, making
text manipulation a difficult and complex problem. Fortunately, the

13

people developing the new micro-based versions of PASCAL have
realised that the language does have some severe limitations, and they
have taken steps to overcome them. The most common addition to the
language, and the one feature we really need, is string handling, so
you can manipulate text in the same way as BASIC.

lf you write your adventure game in PASCAL, implementing it on a
new machine is simply a case of putting the same program on the new
machine and then compiling it, using that machine's version of PASCAL.
Your adventure is then ready to run, without any alteration! There are
disadvantages to using a compiled language like PASCAL, as it is not
as fast as machine code, and the compiled code is not as compact
as machine code; but these are outweighted by the ease of use, the
portability, and the fast development time.

The other problem, of course, is being able to afford a PASCAL
compilerl While they are becoming more widely available, not everyone
can afford to buy one, and thus we will stick with BASIC in this book

- every Amstrad has BASIC built into itl

THE FUTURE OF ADVENTURE GAMES
As all of computer technology and computer games are constantly

developing, so is the adventure games genre. There are always new
ideas to be tried and new complexities of programming to be reached.
The future of adventure gaming looks very healthy, with a wealth of
new technology and knowledge to draw on.

We have already seen the use of video disks in the computer games
field with arcade games such as M.A.C.H. 3 and the adventure game
Dragon's Lair (DL). ln these games, the computer projects images from
the video-disk which correspond to the players actions. Thus, in
Dragon's Lair, you control Dirk the Daring, a fearless fighter, and all
the action is shown on screen in the form of an animated cartoon.
Unfortunately, games such as DL bear little resemblance to the ad-
venture games we know, because the action is so limited. The computer
cannot access frames continuously from the disk, in response to the
players actions, and thus the game comprises of a number of scenes,
which are "jumped" between. ln DL the player moves Left, Right or
waves his sword at the appropriate point. There is very little interaction.

However, the technology is coming here, and it should soon be
possible to have a fully interactive use of Video. The adventure would
now take the form of a live "film" in which the player takes an active
part. The characters in the film will respond to you, and the character
representing you will act out the actions you dictate. Thus it will be like
Valhalla in some ways, but far more realistic and with the storage
capacities of Video Disk, the true adventure element can be preserved.

14

Developments in the field of Artificial lntelligence research will also
have a great effect on future adventure games. There is not only the
concept of using the logic and knowledge processing techniques that
have appeared in games such as Sherlock from Melbourne House and
the lnfocom games, where the other characters in the game appear
to be intelligent, and thus you can order them around, hold conver-
sations with them, etc. There is also the work in the field of natural
language processing which has obvious applications to adventuring.
One of the most frustrating aspects of playing an adventure game is
the limited vocabulary available to you, and the problems often en-
countered when trying to find just the right word for a desired action.
However, if you could type your commands into the computer in your
natural language, in English, there would be no problem;you are freed
from the restraints of an artificial language and able to concentrate on
the adventure and absorb its atmosphere, without distraction.

Typing in commands is always a problem, especially when you want
to use a long sentence and are a poor typist. Here, Artificial lntelligence
research can help as well, in the field of Speech recognition. A truly
interactive film could be produced if you were able to physically speak
to the characters in the game, and to hold a spoken conversation with
them!

Multi-user adventures are already starting to appear with the most
famous of these being MUD, which is run on a small minicomputer.
The acronym standing for Multi-User-Dungeon. MUD enables the
player to not only enter a large, and complex adventure world, but to
do this in the company of other players! Thus, the characters you meet
while playing the game will not obey simple rules devised by the pro-
grammer - these characters have exactly the same potential for un-
expected behaviour as you do as their controllers are human. While
MUD is a fairly limited adventure game, bigger and better versions are
already being worked upon with hundreds of locations, objects and
playersl ïhe concept of multi-user games, either on large mainframes,
where the players take part via a modem and a phone line, or via a
large multi-user local network system, each player using one system
terminal, offers almost infinite possibilities for expanding the present
day adventure game and increasing the realism.

Fairly obviously, most of these ideas are a long way from becoming
reality, yet they do show that there are many areas of computing which
can be applied to adventure games and adventure game program-
ming; areas which are on the forefront on computing research. Con-
sidering the growth of computing and computing techniques over just
the last ten years, they could be here sooner than you think.

15

9t

3
PLOTTING AN
ADVENTURE

THE IMPORTANCE OF A GOOD PLOT
When first confronted by a new adventure game what is it that attracts
a player? ls it the style of presentation, the colour the text is printed
in or even the packaging? Most adventures on the computer market
bear a very close resemblance to each other, especially with text
adventures; there is only so much you can do with plain text output
and input. Packaging may affect a buyer's choice, but it cannot hide
a terrible adventure game beneath it.

When you cons¡der any adventure game and the intitial appeal it has
to a player, indeed the whole appeal of playing it - you realise there
is one over-riding factor. The plot. Above everything else the adventure
game must have a good plot. The plot idea is the game, all else is just
trimmings to improve presentation rather than contents. Yet, it isn't
enough to just have a good plot, even a well thought out plot with
multitudes of twists and turns can bore a player very quickly - if he's
seen it all before.

The plot is the very heart of your adventure and as such should be
strong and well-defined. The best adventure games have plots which
lead the player in stages through the game, until the eventual climax.
lf the plot meanders along, the player is going to be left wondering
what he is supposed to be doing, and is going to lose interest in the
whole thing. There must always be a firm goal in the player's mind as
to what the adventure game is about, and what he is trying to achieve

- of course, he may find out that he is totally wrong I But that is just
one possible twist in the adventure.

The plot of an adventure game is composed of two elements, the
actions and puzzles which make up the plotline and the background
to the adventure - the setting in which everything takes place. We'll

't7

look at the background in a moment, but for now let's consider the
basic elements of an adventure game plot.

(a) The Map

This is the very lowest basis of any adventure game and it will show
the area over which the player can move and where all the action takes
place. While it may seem that the map in an adventure game is really
only a list of locations and theirconnections which has no direct bearing
on the plot, this really is not true. As the map is the basis of your
adventure game so it is the basis of your plot, and a good, well thought
out map can improve an adventure immensely.

The basic map will contain all the locations necessary for the action
in your game to take place, each location might be used for an object,
or an action to take place or even just as a red herring. The problem
when designing an adventure game is deciding on how detailed the
map should be - should you describe each room in a house, or simply
have one location representing the whole house? Should you represent
a road on your map as a series of (similar) locations, or just ignore it
with the player moving from one end of the road to the other in one
turn?

These difficulties can only be overcome by considering just how
important each of these locations is in your game, and how each relates
to the main plot and purpose of your game. lf the only part the house
plays in your game is to provide somewhere for a knife to be found,
then why bother with more than one location - or perhaps two with
a kitchen? The extra rooms in the house serve no useful purpose and
will either bore the player or side track him from the main part of the
game if he tries to find out what use they are. ln any adventure game
the number of irrelevant locations should be kept to a minimum -youdo need them to keep the atmosphere of the game flowing properly.
lf your player is on foot, making locations long distances apart will only
make the game seem unrealistic - either provide him with a means
of transport or separate the locations with intermediate ones.

Making your locations and their descriptions interesting is an im-
portant part of the adventure writing process. Think about the back-
ground and basis for your game and come up with locations which
match the atmosphere and style of your game. A mystery/horror ad-
venture is best set in a spine-chilling mansion, not in the centre of town !

Location descriptions should be long and evocative as well, two liners
like "You are in the hall near the stairs and the kitchen" hardly convey
a rich atmosphere.

(b) The objects
Many of the points already raised about locations apply equally well
to objects. Try to avoid having too many objects in a game which are

1B

not useful. Just because a kitchen usually has pots and pans in it
doesn't mean you have to provide them if there is no use for them. The
objects and locations should tie together in some way, without ap-
pearing too contrived, and without the objects seeming out of place.

(c) Puzzles
These are the major component of an adventure game and are what
make the game a challenge to play. Poorly thought out puzzles can
make a game far too easy to solve and thus bore the player or make
the game impossible to complete, thus frustrating the player. The trick
is to balance your puzzles somewhere between the two extremes,
something which is not easy to dol

lf you have difficultythinking up puzzles of your own, then it is possible
to adapt puzzles from other adventure games and disguise them by
altering their circumstances and the objects used to solve them. For
instance, in the originalADVENTURE, you must capture a bird in order
to get past a large green snake. When you approach the snake, re-
leasing the bird causes it to drive the snake away. ln other games this
has been translated inio throwing Egyptian bird statues at a snake god
while exploring a pyramid, and so on! Disguising apuzzle is not always
easy and you cannot really rely on other adventure games for all your
puzzles!

Apuzzle should be both logicaland yet hard to see unless you strike
on the correct sequence of events. There is nothing more infuriating
in an adventure than totally illogical puzzles which have no basis on
any reality for their ideas. There must always be some way of solving
a puzzle other than wildly guessing which objects to use and in which
order and in which room! Because of this, it is important to try out your
puzzle ideas on other people, just to see that you haven't made a
logical jump from the solution to the problem which is impossible to
make in the correct order. Not everyone will think in the same way as
you, in fact very few people might have your knowledge about particular
situations and events, so rnake puzzles fairly general. A solution which
involves knowing a complex mathematical formula and how to apply
it is not going to be solvable by most people unless you give a lot of
clues!

BACKGROUND
The major pitfall that new adventure game designers (and several
experienced ones) fall into is the reliance on the same old standard
plot lines for their adventures. Game after game allows you to take the
role of a heroic fighter whose mission is to save someone, or thing,
from a horde of monsters. Just cast your mind over the games you
have played or seen which are based on quasilantasy lands populated

19

with Orcs, Trolls, Dwarves and Wizards - all eager to get at your
treasure. A lot of them, aren't there? All these games draw on the same
background, that of the fantasy roleplaying games such as Dungeons
and Dragons. Even the original ADVENTURE took this as an influence,
and other programmers have been doing it ever since!

So, the first aim behind any adventure game we design is that the
plot should attract the player into wanting to play the game, and avoid
giving him a feeling of deja vu as he reads the instructions! This means
constructing an original and thought provoking plot by using an un-

conventional background for our game or by using a standard plot in
a new and unusual way. What we must not do is fall back on the same
old ideas culled from the adventure games that we've seen - there
is no point in recreating some one else's game and ideas!

lf the fantasy genre is out, what can be used as a basis for the
adventure plot? The answer is everything else really! There are so many
sources for adventure game ideas that it would be impossible to even
begin to list them all! The following are a few areas that are worth
considering:

Historical
There are a large number of periods in history which could be drawn

upon in a successful and entertaining adventure game. The major
problems with using a historical period as the basis for your plot is that
of accuracy. You must stick to the period in detail, and avoid any
inconsistencies which a player might pick up, thus ruining the game.
For example, you cannot introduce modes of transport such as cars
or trains before the period they were available.

There is also the problem of recreating the atmosphere of the period,
so that the player feels as though they actually are playing a game set
in Victorian England, or wherever, rather than just a standard adventure
with a few oddities thrown in. The secret here is to use the small details
from the period to reinforce the feeling and mood of the adventure, for
example, the music from the period overheard in the street, details of
people's clothing, perhaps even the styles of characters' speech can
all add to the adventure's atmosphere.

Some periods are obviously more suitable than others for an ad-
venture game, as there is more happening, or a more interesting back-
ground for the adventure to take place against. Possibly the player
ðould take part in an historical occasion, where only their actions enable
history to come out as it should have done. Or perhaps they can alter
history, playing the part of a famous historical figure.

It is far harder to write a consistent and believable historical adventure
game than almost any other type, because of the little details needed
t,o create the atmosphere, but it is, or can be, one of the most rewarding
to write and play.

20

Fictional
Basing the plot for your adventure game on a book may seem a very

good idea - your plot has been written for you! All you have to do is
translate the book into an adventure - far simpler than creating a plot
from scratch. lndeed, there are a lot of books which would make quite
excellent adventure games and some have been used (for example
The Hobbit) as adventure games already.

The major problem with this approach is if your player has already
read the book when he comes to play your adventure. lf the adventure
bears any resemblance to the book, it is going to be relatively easy
to solve the adventure as all the actions and their correct sequence,
are already known. lf the book and adventure are different in content
and style it may make the game more of a challenge, but you are going
to lose the atmosphere of the book, which the player will be expecting.

A better approach is to base the adventure on the style and feel of
one of your favourite books, but without the exact plotline. This makes
the atmosphere of the game easier to put across and the game easier
to write - if you are happy with your game and enjoy the book, you
will find it easier to recreate that atmosphere than with an unknown
subject. Pick perhaps the best and most amusing bits from the book
and include these if you wish, slightly altered so that a reader will pick
up the reference without making the game too easy for him.

There are also the mercenary advantages of not basing your ad-
venture game directly on a book - if it should prove to be a saleable
product, you will need permission from the book's author/publishers
to use it. This means paying them a royalty and less money for youl
lf you are writing adventures purely for fun, however, this won't really
bother you.

Modern Day
There seem to be very few adventures based on modern day situations
as most people prefer to escape from the present not experience it on
their computersl For the adventure writer, though, the idea of setting
an adventure in the present is not only a challenge, it may prove to be
easier to write than you think. The advantages of such a plot is that the
player can be assumed to be familiar with the situation he finds himself
in which makes the explanation and background work you have to put
into the game so much easier and shorter!

While there may not seem much you can do with an adventure game
based on today, there is a whole world of excitement going on around
you! We are not suggesting that the adventure should be based on
travelling to work, etc - no one wants to play through the humdrum
things of everyday life. What about foiling terrorist plots, freeing kid-
napped people, etc? There is still plenty of scope to create novel and

21

interesting plots even with the limitations of an up{o-date and modern
setting.

SUPPORT MATERIAL

Adventure games can never create a complete atmosphere which
holds the attention of the player, and totally suspends his belief, be-
cause of their limited format. Any graphical adventure game will be let
down by the limited graphics available on home computers. This is
where adventures can be improved through the provision of additional,
non-computer based material.

Rather than waste vast amounts of memory on computer graphics
which generally fail to convey any real atmosphere, why not provide
a separate set of pictures tied in to each location. This idea has been
used by several commercial adventures, and enables the adventure
game to be more complex and absorbing by utilising the extra space,
as well as improving the quality of the art enough to allow extra clues
to be hidden in the picture information.

Another idea is to provide a map with the adventure game showing
the general area in which the adventure game takes place. This enables
the player to move around the area he is supposed to know, thus
making the game more realistic, while not giving away just which lo-
cations appear in the actual adventure game, or how they are con-
nected. A separately produced map can be made far easier to read
and more attractive than any produced on the computer screen. lt is
also far more practical if the player has to refer to the map while he
is playing!

There is no reason why you should limit the support material provided
with a game to just the graphical elements from an adventure. lf the
player starts with a number of items in his pocket then provide actual
physical counterparts for these items! You have to take a practical
approach to this of course, but such things as bus tickets, cinema
passes, small fragments of map and so on are easy to produce and
add so much more to the atmosphere of an adventure. Providing the
actual items cuts down on the detailed descriptions needed and en-
ables the player to examine them in far more detail than is possible
within the program.

Other ideas for source material which will improve and expand on
a simple adventure game include character portraits, if you have char-
acters in the game, these will enable the player to visualise just who
he is interacting with; object illustrations, which will show far more detail
than it is possible to include when the player examines the object.
Obviously this is only really necessary for important objects, rather than
the mundane, everyday things such as knives, etc.

22

The support material provided with Witch Hunt, the example scenario
detailed in later chapters should give you some idea of the type of
material which is suitable for an adventure game. One pitfall to try and
avoid is going over the top on support material, to the detriment of the
adventure itself. lf your support material contains far more information
and details than are in the actual adventure game, you are going to
reduce the players' enjoyment of the game, rather than enhancing it.
Once this happens, the aCventure becomes less of a computer baõed
game, and more of a computer assisted game, where the computer
adds to the main adventure, rather than controlling it.

23

v¿

4
THE STRUGTURAL
ELEMENTS OF AN
ADVENTURE GAME

As we have already seen in chapter 3, an adventure game breaks
down into elements such as locations, objects and puzzles: Each of
these structural elements can be implemented in a number of different
ways, and in this chapter we will describe some of the methods which
are possible, though we will leave the actual programming implemen-
tation details until we discuss AKS in later chapters.

A. LOCATIONS
Let's leave the methods of storing and accessing the location text until
later, when we will consider all the text the game requires as a whole.
For the moment, the major thing we are concerned with is how to link
each of the locations with its neighbours and how to tie these links in
with the commands the player will use to move around. We will use the
small adventure map shown below as an example. Each of the locations
is shown as a box, and the directions the player can move are indicated
by the arrows.

25

FIGURE 4.1

Each of the locations in an adventure is connected to others via a
link, and the structure we use to represent this is known, reasonably
enough, as a link map. The simplest form of a link map is a straight
forward table. The link map for our example is shown belou¡:

LOCAT¡ON
NUMBER North

DIRECTIONS
South East West

4
Ø

Ø

Ø

Ø

Ø

Ø

4
1

Ø

3
1

Ø

Ø

2

2
5
1

2
Ø

.1

2
3
4
5

Each of our locations is represented by a number, these running down
the table. For each location we then show which location we will be
taken to if we take one of the four directions. Thus, in the above example,
assuming we start at location 1, moving South, then East will take us
to location 4. Note, if there is a Ø shown for the direction it indicates
that we cannot move from that location in that direction. e.g. there is
nowhere to go to East of location 1. Obviously, there is no reason why
we should limit ourselves to just the four basic directions, and most
adventures include the other compass directions NE, NW, SE, SW as
well as UP and DOWN.

Using this method, we just need to store a series of numbers for
each location, giving details of the links to other locations, and these
are checked each time a movement command is entered. lf it is possible
to move in that direction, the player's location is altered to become that
of the link entry, otherwise the "You cannot move in that direction"
message is printed.

While the basic design of link map is fine for simple adventures, it
limits what you can actually do during the adventure to fixed move-
ments. The possible directions you can move in from on location never
vary. However, there will be times when you want the player to perform
an action before he is allowed to go in a certain direction. To return
to the snake and the bird problem mentioned earlier, the player's way
is blocked by a giant snake unless he has the bird and releases it to
drive off the snake. Once he has solved this particular puzzle, he is
free to move in the direction the snake blocked, and onto a new location.
Thus, we need some method of representing this type of conditional
move; the answer is to add a link condition to the link map.

This is done by adding a condition to each directions information,
which must be true before the player can move in the direction. ln a
lot of cases the condition will simply be TRUE, meaning the player is
able to move in that direction any time he wishes to; for some it will be

26

FALSE, meaning there is nowhere to go in that direction, while a few
will have condition to be evaluated. ln the case of the snake and bird
puzzle, the player can only move once he has released the bird and
there are a couple of methods of testing this. We could simply test if
the bird is present in this location, if it is, the player has dropped it and
we have already dealt with the snake. This presents problems, as if
the player picks the bird up again, he will meet the snake againl A
better solution is to use a flag - a variable which can be TRUE or
FALSE - and test this to see if the player has released the bird yet.
It will have an initial value of FALSE, so the player will not be able to
get past the snake, when the bird is released, it is set to TRUE, and
the way is now free.

The úse of conditions can also apply to location descriptions, and
it enables the adventure to produce different location descriptions
depending on which condition is true. Most adventures use this facility
to provide a long description the first time you visit a location, with a
shorter, compact description for subsequent visits. The conditions need
not be limited to flags alone, and they can include tests to see if you've
visited a certain location, are carrying an object, wearing an object,
or an object is present at the location.

B. OBJECTS
The first requirement for objects is to have some form of Object Char-
acteristics, which will describe each object, and its details. The objects
have to be manipulated by the player, and thus we will need some way
of limiting the number of objects a player can carry at any one time.
One simple and commonly used technique is simply to limit the number
of objects to a fixed total, usually around 4 or 6 objects. Yet, this is
unrealistic, as objects will have different properties and weights, and
the player should be able to carry more of one type of object than
another due to these properties, The Object Characteristics Vector is
a simple table with an entry for each object, which gives the value for
that object for each of the designer's chosen properties. Let us just
consider one property, that of weight: each object can be assigned
a weight value, which will represent a proportion of the total weight a
player can carry. Thus, deciding if the player can carry an object is
a simple matter of comparing the object's weight with the weight the
player is capable of carrying.

This approach allows the player to carry a variety of objects and
forces him to balance objects against each other - do you carry
around one heavy object you think you need soon, or a number of
lighter ones? lt is also possible to stop players picking up objects which
should be immovable, simply by setting their weight to more than the

27

total carrying capacity of the player. lf they attempt to lift them, they
are then told that the object is too heavyl

Only certain actions can be performed on each object, after all you
can't ride a brick or eat a mirror, or whatever, and we need some way
to represent these facts! The solution is to use Action Suitability codes for
each of the objects, which explicitly state which actìons can be
performed on each of the objects. Thus, the entry for a hat might allow
the actions: GET, DROP, WEAR, REMOVE, and EXAMINE to be per-
formed on it. lf the player attempts to say something like "EAT HAT",
he will just get a standard "YOU CAN'T EAT THATI" reply!

As well as needing to know how much objects weigh, and what
act¡ons the player can perform on them, we also have to know just
where they arel The object's location is represented by a number,
which simply shows at which location the object is present. When the
location description is printed, the program then scans the Object
Location Pointers and prints out the description for all the objects whose
location matches the current player location.

There are a few special location numbers which can be used to show
where objects are when they are not in a physical location. Objects
may also be carried by the player, or possibly worn or they might not
even exist yet! This requires the program to have a standard set of
numbers to represent this. For example, we might use:

Ø : object does not exist
254 : object carried
255 : object worn

Thus, if a player picks up an object, its location pointer is altered from
pointing to the current location, to being 254 to indicate it is being
carried. Occasionally, when an object has been used by the player to
solve a puzzle, we might want that object to be used up, or if the player
eats some food, we have to take the food off hím. This is done by
setting the object's location pointer to Ø, which "destroys" the object.
Resetting an object's location pointer fromØ has the effect of "creating"
it.

When programming, it is more efficient and safer to use all data
structures in a consistent way - programs are easier to debug and
understand. The use of special location numbers is a "dirty" technique,
in this respect, as we are using a straight forward data structure in a
messy way. lf you can avoid this approach (and it is really a hang-over
from the early days of adventure games programming) then so much
the better. The alternative is to have an array representing the objects
worn, which point to the object descriptions.

28

C. ACTORS
These are the player himself and the non-player characters which may
inhabit the adventure, and with whom the player can interact. There
are several ways in which to implement actors, some of which involve
very complex and time-consuming techniques. One of the simplest
ways of dealing with actors is to regard them as a type of pseudo
object. lf this approach is taken, the player can be moved from one
location to another and manipulated in exactly the same way as any
ordinary object. The difference being that the pseudo objects are not
described along with the normal objects when the location description
is given. Thus, the pseudo objects may only be manipulated by actions
from within the program, not by the player himself. This avoids the
problems inherent in the player picking himself up!

One slightly more advanced way of implementing non-player char-
acters (NPCs) is to regard each of them as a player in their own right,
with a predefined set of commands and desires. Thus, interrupts are
used to share the processing time between all the actors, with each
taking their turn to perform an action if they desire. This enables the
NPCs in the game to have an appearance of true independence and
lets them perform all of the actions the player is capable of performing.
The programming implementation of such a system is harder to pro-
duce, and it requires careful calculations on timings to ensure that the
player cannot be "locked out" of the game by hyper-active NPCs!

D. ACTIONS AND EVENTS

Actions are the result of commands from the player and they cause
objects to be moved around and things to occur. An example of this
is the movement verbs, which will cause the player to change location
according to the links in the link map for the current location.

Events are actions which are triggered independently of a command
from the player. This is usually implemented using a condition, which
is tested each time the player inputs a command, to see if it has been
triggered yet. When the condition evaluates to TRUE, the relevant event
is set into motion. This approach allows you to implement events which
will occur after a set number of turns have passed. For example, if the
player drinks some poison, he may have a number of turns in which
to find the antidote, after which the poisoned event will trigger and he
will be informed he is dead! Alternatively, events can be used to regu-
larly trigger an action after every few turns. This might be used to
implement hunger, for example, so the player becomes hungry after
every 20 turns have passed and then has 5 turns in which to find food;
but the effect wears off and thus he has to find food again, and so on.

29

E. VOCABULARY
The vocabulary of an adventure game consists of the commands avail-
able to the player, which can be used while interacting with the ad-
venture game. lt is not only the actions and objects which make up the
vocabulary (as in "GET LAMP"), even in a simple game. Sherlock has
a vocabulary of BØØ words, and the lnfocom games have a similar
range of words, which allow you to construct very complex sentences
such as "Get all the boxes except the yellow one and put the blue box
under the bed"l

. while the storage of vocabulary as data statements is fairly straight
forward, a decision has to be made about where the player can access
that part of the vocabulary. Often, during an adventure game, the player
will reach a location where a special command is neéded to sblvó a
puzzle; this command only works in the one location and it has no
effect elsewhere. lf the vocabulary is stored globally, that is all the
words are available throughout the adventure, the entire vocabulary
will have to be searched each time a command is input. Even if thé
vocabulary is reasonably simple, searching all of it is going to take a
fair amount of time, and reduce the response time io thè player,s
commands even further. Obviously, the number of words to be
searched through can be reduced considerably if the ,,special,' com-
mands are stored separately.

Within each location, we store a list of special commands which can
be used here, and when a command is input, these are checked before
the global vocabulary. While saving time, this approach does mean
that words will generate very different messages depending on which
location you are in, as the "special" commands will result in ã standard
"YOU CANNOT DO THAT" message unless you are at the pertinent
location. The error reporting could be greatly enhanced if messages
such as "YOU NEED THE WAND TO DO THAT" coutd be output. tt is
a question of balancing the user-friendly responses with the reaction
time you want.

Once we have decided where to store our text, we have to consider
the method of storage. The easiest approach to implement and under-
stand is that of a serial list. This is usually just a series of data statements
which contain the commands available, one after the other, with details
of which actions to perform for each command. Thus, if we want to
have a command PICK UP, and we already have an action GET, we
might define it as:

IF ACTION : PICKUP THEN PERFORM GET, PRINT OKAY

which would perform a GET and then print out the message "OKAY".
We will see more about this when we examine AKS in later chapters.

30

While the serial list approach is fine for small vocabularies, if the
vocabulary is large it will require a long time to search through it all,
especially if the word to be matched occurs near the end of the list.
A more effective approach, but requiring more memory, is to store the
vocabulary alphabetically, with pointers to the start of each letter of the
alphabet. While this could be implemented using simple data state-
ments, the mostefficient method uses LINKED LISTS and what is known
as an ILIFFE vector. For those of you who have never come across list
structures, we'll explain them before demonstrating how they can be
used in adventure games.

Linked Lists
A normal list is a straight forward, sequential list, which starts at one
end and which can be followed to the other. This can be implemented
using a normal one-dimensional array, as shown below:

1234567

vo

FIGURE 4.2

The array V has seven elements, of which six contain a letter of the
alphabet. The seventh element is empty. lf we wish to search through
the list V for a letter, we simply start at the first element V(1), and
continue through the elements until we reach V(7), or find what we are
looking for. lf we wanted to add a new element, D to the array, we cah
either place it in V(7), or if we wish to retain our alphabetical order, we
have to place it in V(4), which means moving the elements E to G along.
With a small array, as in our example, having to move the elements to
make room for a new entry is no problem, but if you have an array
which has several hundred elements it is time consuming!

Let's now look at simple linked lists. These are similar to normal lists,
except that each of the elements has a pointer to the element after it
in the list. A pointer is simply a variable which contains a value cor-
responding to a location in the array. Thus, a linked list version of V
would look like this:

Vrl

ST
.).)
FIGURE 4.3

.) .)+

So, each element has a pointer to the element which immediately
follows it. We also have two special pointers, outside of the array. These
are a pointer to the start of information in the array, and a pointer to

31

ùRT'
.) ì

F E

GFEcBA

GFEcBA

the start of the free space - i.e. the first element of the array which
is empty.

lf we wish to add the new element D to the linked list V, there are
a number of steps to be followed. Firstly, we put the new element into
the first free space, as indicated by the Free Space pointer, this gives
US:

vo

ST RT FREE
FIGURE 4.4

We now have to find out where in the list D should be put, this is done
by searching down the list from the element the Start Pointer points at.
We then follow the pointers from each element to its successor, until
we find that D should go between C and E. We now have to insert D
so that it is pointed to by C and it points to E.

We set the D's pointer to point to E, which will give us:

v(l

FIGURE 4.5 FREE

We can now set C's pointer to point to D

FIGURE 4.4

vo

ST T FIGURE 4.6
FREE

This has now linked D into the list, without shuffling any etements
around. lf you follow the pointers from the start, you can see we will
go from A to B, to C, to D, and E and so on. The last thing we must
do is adjust the Free Space Pointer, otherwise we will overwrite D if we
add a new element. So, we set the Free Space Pointer to the next
element after D. ln our example, D is the last element of the array, and
thus the Free Space Pointer will be set to a . indicating that the list is
now full.

That is only a brief overview of linked lists, a very useful technique
for manipulating data, and one which can be much more complex with
two-way lists, circular lists, etc. lf you are interested in more examples
and explanations of how linked lists work, we recommend you look at
any computing book on data structures or algorithms,

32

T

DGFEcBA

DGFEcBA

DGFEcA

Right, you now know what a linked list is, and must have already
realised how useful they can be in adventure games for storing data.
lf you wish to add an element to a list, you simply need to rearrange
a couple of pointers, and avoid the problem of shifting large amounts
of data to keep everything in order. For storing vocabulary in such a
way, that it can be accessed quickly and simply, we require 26 linked
lists, one for each letter, and a method of pointing to them. The pointer
to each linked list is known as an IFLIFFE Vector, and is simply a linked
list whose elements point to other linked lists. The only major problem
with this method being the overheads of storage needed for all our
pointers. Thus, the arrangement we will have is shown in FIG 4.7.

VOCABULARY LINKED LIST

POINTER
TO "C"

POINTÊR TO
THE START OF

,,A" WORDS

ILIFFE VECTOR FIGURE 4.7

Now, when we have a command we wish to find, we take the first letter
of the command and then follow the appropriate pointer from the ILIFFE
Vector to the start of the commands beginning with that letter. For
example, if the command was "KlLL", we would take the K, which is
the 12th letter of the alphabet. This means that the 12th element of the
ILIFFE Vector points to the start of the commands beginning with K.
We follow the pointer and can then scan down the list of "K" words.
This ability to go directly to the section of the alphabet we require
makes the list scanning very much faster, and thus the response time
quicker.

The ILIFFE Vector arrangement shown in FIG 4.7 is relatively simple,
for very big vocabularies, there is no reason why you shouldn't have
an ILIFFE Vector which points to a series of ILIFFE Vectors, which then
point to the word list. This enables you to split the words up even more,
using the first letter to find the appropriate ILIFFE Vector, and then the
second letter to find the start of such words in the command list! lt
really depends on the space you have available and the size of your
vocabulary.

Simple Parsing Techniques
Now that we have considered how to store your vocabulary, the next
step is to look at methods of interpreting the input you receive from the
player, and matching this up with the vocabulary. The process of an-
alysing an input string and breaking it down to the individualcommands

33

is known as parsing, and we'll look at a few basic methods of achieving
this.

The simplest, most basic form of command input is the one used by
the original ADVENTURE and a lot of adventure games since - the
two word command. This consists of a verb, which denotes an action,
followed by a noun, usually an object. Thus commands along the lines
of "GO SOUTH", "GET LAMP", "ENTER BUILDING", etc are all that
are accepted by the program.

The two word command does have a lot going for it, in that it is
extremely simple to parse. The command string can be split easily into
the two words, by taking the space (or spaces)between the two words
as a separator, and assuming that the first word is an action and the
second an object. The action is compared with the list of possible
actions, and control is passed to the action routine it matches with.
This routine will then compare the object section of the command string
with the list of objects it expects, and will perform the action if it matches.
Error reporting is fairly straight forward, if the action is not found, the
program replies with a "l DON'T UNDERSTAND."; if the object cannot
be found, it simply says "YOU CANNOT action WITH object". Very
basic, but effective.

The first complication which can be built into the parser is to make
it accept "and", "then", "the" and the use of commas. This allows the
player to say things like:

.,GET THE APPLE, GO SOUTH AND THEN THROW THE APPLE.''
It looks a fairly complex sentence, as the player is performing three

actions with just one command. Yet, it is really just three actions which
follow each other. The parser can ignore all uses of the word "the", as
this is just a {lowery addition to the sentence. The words "and", "then"
and "," are simply command separators. The player could have typed
in the above sentence as:

,.GET APPLE''
..GO SOUTH''
..THROW APPLE''

with exactly the same effects. The parser simply has to scan through
the input string from left to right, building up a list of commands. lt will
find "GET APPLE" first, and this is stored; the comma indicates the end
of one command and the start of the next so it can be ignored. "GO
SOUTH" is a straight forward command and can be stored as such.
The only complication comes with the use of "AND THEN" where the
player has to use two connectives. The parser has to take "AND" as
a connective between two commands, and then realise that "THEN"
is another connective, and thus ignore it, leaving "THROW APPLE" as
the final command. Very complex sentences can be parsed using this

34

method, and it speeds the game up, as the player doesn't have to wait
for the results of each input before typing in the next one.

Very complex parsing techniques can be used, which allow the user
to use adjectives, adverbs, etc in his commands. These techniques
require some very advanced Natural Language processing, a subject
which is a field of Artificial lntelligence Research ín its own rightl Even
in the most advanced Natural Language systems, these techniques
have not been fully implemented yet.

35

9e

5
SAVING SPACE

Adventure games can be developed very successfully in BASIC; the
Adventure Kernel System described in the next section is a good
example. lt is possible to create a game which contains most of the
elements of the original adventure or the commercial adventures avail-
able today. That is, you can create small games which contain these
elements - the moment you try to create a game the size of Adventure
(which had over 2ØØ locations) - you are going to run into problems.
The home computers available today simply don't have enough mem-
ory to contain that big an adventure. Even the Amstrad, with 64K
available, would be hard pushed to hold more than 1ØØ locations, and
even then, the descriptive text would have to be kept to a minimum.

So, how can you produce an adventure game with vast amounts of
flowing prose, and a large number of locations, puzzles and objects?
You can resort to programming your game in machine code, but this
will only save a small amount of space. The major part of any adventure
game is not the driving routines, the actual program, but the data which
makes up the adventure. Even using machine code, your data is going
to occupy the same amount of space. However, it is possible to produce
large, complex adventures on even a small machine, as Melbourne
House has proved with the Hobbit. So, how do they fit all that information
into the machine? Well, there are a couple of techniques employed by
commercial adventure games which can be used by anyone to produce
large adventure games. These are using discs as a backing storage,
and using text compression. We'll look at each of the methods in detail.

DISC ADVENTURES
As well as providing a fast storage medium for the initial loading of the
adventure, discs can be used during the game, to load in different
sections of the adventure game, as the player encounters them, thus

37

abolishing the problems of fitting the whole adventure into the computer
at the same time.

ln an adventure game, the player is only evef at one location at one
time - fairly obviously! This means that the location data for all the
other locations is not needed, and thus does not need to be in memory
at all. When the player moves from the current location to another one,
the new location data is loaded in from disc.

The technique of loading data in from disc, when it is required, is
known as PAGING, and is used by large computers to simulate a much
larger memory capacity than they actually have, ln the adventure game
situation, we can divide memory up into several FRAMES (typically 256
bytes long) which can each hold a PAGE of data from disc. All the
adventure data is stored in the form of pages, including objects, puzzles
and commands, and the relevant sections are loaded in when needed.
The drìving routine is the only part of the data to be permanently in

memory, and it searches all the frames of data, for the action, object
or location data it requires. lf the data is not currently present in the
computer, then a PAGE FAULT is generated which causes the required
page of data to be loaded.

lf we just loaded in new pages each time we needed the new data,
without considering the pages we were replacing, or even which page
we should replace, then we would soon run into problems. lf a page
has been altered in some way, and we do not store the alterations, the
next time the page is loaded, those alterations will have been forgotten
by the adventure. ln an adventure game, which relies on manipulating
object data and the player's location, this would prevent us doing
anything! The answer lies in developing a PAGE REPLACEMENT
POLICY, which will enable us to save pages which have been altered,
and to decide just which page to replace. The latter point is a very
important one, if we replace a page which is being accessed all the
time by the adventure - perhaps it contains the data for a command
the player is using a lot - then the number of page faults will increase
dramatically; slowing down the adventure game's response as it con-
stantly loads in new data from disc.

The best approach to the problem is to consider the data to be split
into three distinct types:

A. Resident Data
This is the data which will remain in the computer all the time the
program is running, and it comprises the main driving routines, and
sometimes the most important variables and counters in the game.

B. Pure Page Data
This is data which cannot be altered by the program, and thus
it will never need to be written back to disc before replacing it with a

38

new page. An example of pure data is the location data, where the
descriptions and connections never alter during the game.

C. lmpure Page Data

This is the data which may be altered, and thus must be written back
to disc before it can be replaced in memory. Each page contains a
special marker, which is set when the page is altered in any way. When
the page comes to be replaced, the marker is checked, and only if it
is set is the page saved to disc. This prevents time from being wasted
by saving pages which have not been altered.

The impure data consists of all the volatile, changeable parts of the
adventure game, and it is here that the object pointers, flags, counters
and variables would be stored. This also allows the adventure game
to be saved during a game by saving the impure data alone, and to
be restored by reloading the same data.

As well as saving pages before replacing them, we must consider
which pages to actually replace, as we have already noted, and this
has created a large number of very complex PAGE REPLACEMENT
ALGORITHMS within the world of mainframe computing. We won't
consider them all here, just take a brief look at one possible approach
to the problem. Fairly obviously, we do not want to replace a page
which is shortly to be used again, as this only means reloading it from
disc. But, how do we tell when a page is in use? Or whether it is no
longer required by the adventure game? There is little point in keeping
location data for a location the player can no longer reach, for example,
or object data for apuzzle the player has solved and no longer requires.

Well, in the case of impure page data, we can tell if the page has
been used by looking at the marker which says if it has been written
to; if this marker is set, then the page is in use. Thus, we replace the
pages which have not been accessed before the pageS which have
been written to. This is not an infallible approach, however, and useless
when it comes to considering pure page data. During the course of
an adventure game, data tends to be altered very rarely, it is read by
the program far more times than it is written to; thus we need some
way of telling if a page has been accessed by the program and when,
since all loaded pages will have been asked for by the program. This
requires the addition of a reference marker, which contains the last
time the page was accessed. This could be done by putting in the time

- if the computer has a real-time clock, or simply by storing which
turn of the adventure the page was looked at.

When we come to replace a page, we now only have to find the page
which hasn't been accessed for the longest time; if two pages contain
the same access date, we choose to replace the page which doesn't
have to be saved first. The overhead of a reference and written-to

39

markers in extra storage is offset by the time which can be saved, and
the reduction in page faults made possible by using them.

TEXT COMPRESSION
There are a number of text compression techniques, all of which are
designed to reduce the amount of space required to store text, by
coding it in some way. We will take a look at just two of the more
popular methods in this chapter. The advantage of text compression
is that it offers a method of reducing the size of your adventure data
base, thus allowing you to develop a much larger adventure; or for the
whole adventure to fit into the machine at once, rather than loading
sections in from disc.

The major disadvantage of text compression is that it requires you
to encode all your adventure data using a special encoding routine.
This can be time-consuming and drastically reduces the development
time if the adventure is so large you have to encode the data during
the testing stages, and every time you wish to alter part of the adventure.

3:2 Byte Gompression
This technique compresses three bytes worth of information into two
bytes - hence its name! Before we can begin to understand how the
technique works, let's look at how conventional text is stored on the
Amstrad.

Each character which makes up text has its own, unique character
code, this varies from machine to machine, but the Amstrad uses the
most popular form of coding - ASCII (American Standard Code for
lnformation lnterchange). Each character is stored in the form of a one
byte number, which contains the code for that character. Thus, in ASCll,
"4" is represented by the number 65, "8" by 66 and so on. The ASCII
codes run from Ø Io 255 (the maximum number you can fit into B bits),
and offers letters, numbers, special control codes and graphics. We
really don't need all of these symbols in an adventure game - indeed
we need very few characters.

Adventure game text very rarely uses much in the way of punctuation,
and really only requires the upper and lower case letters, space and
perhaps "," and "." for punctuation. This is a mere 55 characters, rather
than the 255 which ASCII provides - and we would only require 6 bits
to store the codes, rather than the normal 8 in a byte, as 6 bits can
represent the numbers Ø-63. This would allow you to reduce the text
to three-quarters of its original size. Ah, but wait a moment, do we
really need to have code for both upper case and lower case letters?
Why not simply have a code which means switch into upper case, and
a second code to switch into lower case? This would mean we only
needed 26 + 3 + 2 codes, or 3'1. This can be represented by just 5

40

bits, in the form of the numbers Ø-31, allowing us one spare code in
case we need it.

To understand how storing a character in just five bits instead of
eight can save us space, let's consider an example, where we wish
to store the word GOLDEN.

Figure 5..1 shows how the ASCII representation of GOLDEN's six
letters would look in terms of six bytes.

BYTESI23456
FIGURE 5.1

Now, if we assume that our 5-bit codes for our letters start at Ø to
represent "4", the "G", "O", "L", "D", "E", "N" would be represented
by the numbers 6, 14,11,3,4,13. The bit pattern for 6 can be stored
in the first byte of storage, as shown in Figure 5.2.

000000000000000000000000001 10 000

G FIGURE 5.2
We can consider the bytes of storage to be continuous, so we next
store the 5 bits which represent 14 in last three bits of the first byte,
and the first 2 bits of the second byte. This is shown in Figure 5.3.

10001 10 01 1

G o
FtcuRE s.3

The bit pattern for the third letter, "L", is then stored in the next 5 bits
available. This method of storage is then repeated for the last three
letters of GOLDEN, and it produces the pattern of bits shown in Figure
5.4.

GOLDEN
FIGURE 5.4

Notice that we do not use the last bit of the second byte, or the last
bit of the 4th byte. lf we did use this, it would cause problems when
we came to decode the text, as it would radically alter the bits a letter
could start at. ln our example, a letter starts at bit B of the first byte,
bit 2 of the first byte, and bit 5 of the second byte. This gives only three
cases to deal with. Using the last bit of the second byte would mean

NEDLoG

00 0 01 1 1 00001 00110 01011 0101001 10 1

41

that a letter could start at any one of the bits in a byte, making decoding
far more difficult.

Once your data is encoded using the 3:2 byte compression, you will
obviously need a decoding routine to uncompress itl This simply has
to step through the bit patterns, decoding the letters, translating them
into ASCIl, and then printing them out to the screen. This will have to
be a machine code routine, as BASIC is far too slow at this type of
thing, and doesn't provide the facilities to access individual bits like
machine code does.

Huffman Goding
Huffman coding is a text compression technique which is based on
the relative frequency of each letter. This means that if all the letters
occur with the same frequency, there will be no space saved I This
never occurs though, as the frequency of letters always varies in a
piece of text - with "e" being fairly frequent and "2" fairly infrequent,
for example.

The technique is to build up a dictionary tree, which can be used
to decode the encoded text. The dictionary which allows you to decode
the text is specific to one piece of text, and must be built up anew for
each fresh set of text. This can be very slow, and time consuming, but
the space savings which can be achieved by Huffman Coding more
than make up for this disadvantage. Besides which, you would normally
only compress your adventure text once - after each section has been
completely tested.

The Huffman method represents different letters with a different num-
ber of bits, depending on their frequency. Thus, the most frequent
letters will be represented by 'l or 2 bits, with the least frequent being
represented by B or even more bits. Because the coding and decoding
technique doesn't use a fixed number of bits, it must ignore byte bound-
aries, as the bits representing a ietter can start in one byte and end .

in the next one.
The best way to explain the Huffman Coding technique is to give an

example of its use. As the technique is quitê long winded to do by
hand (in practice, we would write a coding routine to scan through text
and code it automatically), we will consider just one word, as an illus-
tration of compression. ln this case, we'll use minimum as the word we
wish to code.

The first step is to find out which letters occur in the word, and the
frequency of these letters. Using our example, we can build up the
table below: Letter Frequency

i

m
n
u

2
3
1

1

42

Having done this, we search through the list of frequencies to find the
two least frequent letters, and then pair these together, giving us:

i2
m3
n-u 2

We then repeat this pairing, with the next two lowest scoring letters,
to give us:

i-(n-u) 4
m3

And, finally, we pair up the last two frequencies, giving:

(m-(i-(n-u))) 7

Having built up this pairing of frequencies, we can now build up our
dictionary tree, as shown in figure 5.5

FIGURE 5.5

When we wish to encode a character, we start at the top of the tree
(known as the root - in computing, trees grow upside down!), and
work our way down the tree until we reach the desired letter. For each
time we take a left fork in the tree, we write down a Ø, and for every
right fork, we write a 1. This means that the letters in minimum will be
represented as follows:

m:Ø
i :1Ø

n :11Ø
u :111

lf you take the paths indicated by these numbers, you'll find that you
end up at the letter they represent, and that is all there is to decoding
a Huffman tree!

Now that we have calculated the dictionary tree for the word mini-
mum, we can now code it into bits. The resultant code is shown in
Figure 5.6.

FIGURE 5.6

43

0111001011010

1st BYTE 2nd BYTE

As can be seen from Figure 5.6, the representation for minimum is now
a byte containing Ø1Ø11Ø1Ø and 5 bits containing Ø111Ø. Thus, the
word now occupies just over one and half bytes. Using standard ASCII

representation, it would normally occupy seven bytes (one for each
letter). That is a reduction to just 23/" ol its original size - quite a
saving I Obviously, the Huffman Coding technique works especially
well witn a word like minimum, due to the large number of repeated
letters - the reason we chose it. The reductions in size for a normal
piece of text won't be quite so spectacular, but should be in the region
oÍ 5Ø-6Ø"/" of original size at the worst.

One way to compress text even further, using Huffman Coding, is
to use not just the frequency of letters, but also commq! phrases' Thus,
you can répresent phrases such as "A LARGE CAVERN"' which may
-be

quite common using just a few bits. This technique is used by a lot
of the commercial software houses, as it enables adventures with sev-
eral hundred locations to be fitted into most of the home computers
currently available.

44

sEcTlolt 2
TI{E ADVENTURE
KERNEL SYSTEM

45

9Þ

6
WHAT IS AKS?

This section of the book describes the use of AKS - the Adventure
Kernal System. This has been designed as a data driven adventure
games system which enables you to change the adventure scenario
data without needing any knowledge of programming and without hav-
ing to modify the main driving routines. Yet, it has been written in BASIC
so that you can understand and modify the data simply and easily, if
you so desire.

What can you use AKS for, and why would you want to use it? What
are the advantages over writing your own adventures? Well, we'll try
and give you an idea of the wide range of possibilities available with
AKS, and the uses to which it can be put.

The first and obvious use for the AKS system is to create and play
your own adventure games. This section outlines the commands avail-
able in AKS and gives examples of each of them. You will find that
very complex games can be created using the techniques and com-
mands shown and that they can be developed quickly and easily, as
there is no actual programming work involved. The advantage of not
writing your own adventure from scratch is that we have done all the
hard work for your already! There is little point in duplicating programs
when you can use the time creatively to design adventure gamesl

The fact that AKS is based on a data-driven structure means that
new adventures can be constructed simply by changing the actual
scenario data, without having to modify the program, or rewrite any
part of it. The approach most adventure game books have advanced
in the past is that of specific coding - each action and event in the
game is tied to a specific piece of code which deals with that one part
of the adventure alone. This is extremely inefficient, and a criminal
waste of time and effort as the basis of most adventure games is exactly
the same, although with different data components. The specific coding
approach requires you to rewrite the whole adventure game from

47

scratch each time you create a new scenario;the data-driven approach
simply means coding your scenario data each time.

Àpárt trom designing your own adventure games without resorting
to programming, the AkS system can teach you a lot of useful tech-
niques for adventure games writing, and careful study of the program

wili prove extremely helpful. After you have mastered designi.ng ad-
venture games usiñg AKS, you can then move on to expanding the

system, using your own programming skills. We will look at the ex-
pansion possibilities of AKS in a later chapter.'

We have included an example AKS scenario WITCHHUNT in the

book, and you might wish to buy the cassette tape version of AKS and

WITCHHUNT befóre you read through the relevant chapters on the
scenario, so that yotf can enjoy the game, and then study the plot

details after you have finished playing it.

DATA REPRESENTATION IN AKS
There are basically two approaches to representing the actual scenario
data for an adventure game, The first of these is to store the data as

straight forward BASIC DATA statements as any ordinary program data
might be stored; or to store the data in arrays, which are generated
by-a special data preparation program and loaded into the program
from tape or disk each time it is run. There are advantages and dis-
advantages to both of these methods, and the method we have chosen
to use w-ith the Adventure Kernel System is the first approach' Let's
look at the two methods and try to explain why we found our chosen
style of game the most suitable for AKS.

Advantages of readability over coding
With all the scenario information stored directly in the program itself,

all the data is immediately visible to the scenario designer, you can
easily list the locations or objects you are interested in, without having
to print out array values or load in separate programs. This advantage
will be immediately evident to someone who has tried to design any
adventure game using either commercial adventure creators, or other
programming methods. The adventure game data can be seen as a
whole using OATR statements, something which is not possible other-
wise; and ii you want to check just what object 16 is, there is nothing
more annoying than having to go through several menus, or printing

out an array.
Coding the scenario within the program does mean that data cannot

be easily edited or altered. Adding a location can mean having to
change a large chunk of the program as well as just the locations array.
Data statements mean the data can be easily added to and corrected
using nothing more than the Amstrad BASIC editor, which allows you

48

to simply alter lines of scenario data in the same way you would alter
any program line. This also avoids the necessity of having to write a
special editor for the data, or having to learn to use one!

Not only can the data be entered and corrected more easily using
this method of representation, but the whole process of debugging
and developing the adventure game is speeded up. lf the data is stored
separately from the main adventure program and has to be loaded in

to the machine each time, it is going to slow development work down
enormously. Each time you edit and correct an invalid part of the
adventure game, you will have to load in the data generator, load the
data, edit the data, save the data, load the adventure driver, and finally
load the edited datal With the AKS method you simply have to load
the adventure program and your data is already there. Simply edit any
data which is wrong and re-run the driver. The only time the program
has to be loaded or saved is at the start and end of the design session.
Clearly, the use of a separate data generator on a tape based machine
is totally impractical, as most of the time will be spent swapping tapesl

The other major advantage of using BASIC and a very readable form
of data is that the BASIC interpreter is already resident in the machine,
and avoids the necessity of loading in yet another program for eacil
session. This is a major failing with adventure design systems where
you have to load the programming "language" and the database every
time you wish to use them.

Disadvantages of readable data compared with coded data

Despite all the advantages listed above and the fact that we have
chosen this method for the AKS system, it is not totally perfect and can
cause some serious problems.

One problem on a lot of machines is that the data is in no way
compacted. Using text compression techniques can reduce the size
of the data by a significant amount. The problem is balancing the need
for space against the need for readability and ease of development.
Compressing text can take a lot of time, and you don't want to have
to do that each time you test a new part of the adventurel On a machine
with limited memory - say only 16 or 32K, the need for space is
extremely pressing if the game is going to have more than just a few
locations, or a reasonable number of locations and little descriptive
text. ln this case, text compression would probably be advisable,
though it may be possible to test at least part of the adventure game
before compressing the text for the final version. On a 64K machine
such as the Amstrad, this is not such a problem and you are unlikely
to find space a major concern while using AKS, unless you are trying
to write a truly enormous adventurel

The use of large amounts of uncompressed text also results in a
large program, which will slow the game down. The more data the

49

program has to scan through, the slower it will become and the use
of DATA and RESTORE can slow the program by a significant amount.

Adventure games are meant to be a challenge and they should keep
the player occupied for at least several hours, if not days or months.
However, players can often be driven to extremes by a puzzle they
cannot solve and thus they may be tempted to "cheat". This is not
possible on most games where the text messages and responses for
the game are coded - in order to find the solution to a puzzle you will
have to write a decoding routine of your own; and this can be a major
puzzle in itselfl However, with the AKS approach the whole idea is to
have adventure puzzles, solutions, etc as visible and as easy to find
as possible, so that the writer can easily debug and finish the game.
This will allow any player to cheat, simply by listing the program and
finding the pertinent DATA statement. On most machines this is a
problem, but there is a solution on the Amstrad. Develop your game
using the normal mode of files and tape handling. Once you are sure
that the program is fully debugged, tested and finished, save it using
the PROTECT option. This will allow other people to load in your ad-
venture and play it, but they won't be able to break into the listing to
find the solutions to problems. Keep an unprotected copy for yourself
though, just in case there are any bugs left undetectedl

Considering the overall advantages and disadvantages, it can be
seen that the use of easily read, easily edited DATA statements is the
better approach for the Amstrad AKS system. The problems are far
outweighed by the advantages.

THE LAYOUT OF AKS
AKS is designed rather like a programming environment, in that each
part of the program and data has a set place in memory. The diagram
in FIG 6.1 is a memory map of the AKS system, and shows you the
order of data.

FIGURE 6.1

F.END OF DATA.
EVENT DATA
OBJECT DATA.
LOCATION DATA
AKS DRIVING ROUTINES

MEMORY MAP OF AKS

Thus, all the data is located below the AKS system, and it should be
presented in the order of Locations, Objects and then Events. The end
of the data section is marked simply by an F. Within each section, the
data is ordered by location, object or event number in numerical, in-
creasing order,

50

7
ACTIONS IN AKS

The AKS actions are the parts of the vocabulary which cause an action
to take place, there are nineteen separate commands, each of which
is represented by a two letter abbreviation. A command line starts with
an A, to indicate an action. The actions are only performed:

a) as the result of a trigger
or b) as the result of an event firing.

We'll take a look at each of the Actions in turn, together with an ex-
planation of the effect of using each one. Later chapters will show how
these commands are actually incorporated within an AKS database,
as well as expressions and triggers.

Assign Flag (AF)
AKS provides a number of flags, which may be set to TRUE or FALSE
by the user, and then tested in later operations. The assignflag com-
mand will set the specified flag to the specified state, and takes the
form of:

AF, <f num>, <f lagstatus>
e.g. AF,11,T

where <fnum> is the specified flag and flagstatus is T or F.

NOTE: lf flagstatus has a value other than T, then the flag will be set
to FALSE, without an error being reported.

DRop (DR)

This will result in the object mentioned in the player's command line
being dropped, providing it is being carried, and that it can be dropped.
Otherwise, a suitable error message is produced.

51

EXamine (EX)

The object in the player's command line is tested, and if it is present
and may be examined, the description is then printed.

GEt (GE)

As with the drop command, the object to be taken is checked for
suitability, and to see if it is present. lf all the conditions are met, the
object is added to his inventory.

GO (GO)

This command causes the player to move in the direction given, mcving
him to a new location if a connection exists from the player's current
location; otherwise printing "You cannot go that way". The command
takes the form:

GO,<direction>
e.g, GO,N

where <direction> is usually one of N, S, E, W, U or D - indicating
north, south, east, west, up or down respectively. The direction may
be any word, providing it has been used in both the action and location
definition.

HaltGounter (HC)

The AKS system provides a number of counters, which are decre-
mented each move. The HC command will stop the specified counter
from counting. The command's form is:

HC, <cnum>
e.g. HC, 11

lncScore (lS)
A scoring facility is provided by AKS and the lS command will add the
score increment to the score. The command format is:

lS, <int>
e.g. lS, 25

The increment can be positive or negative,

In itialiseGounter (lC)

This will initialise the counter indicated to <int>, and starts the count-
down of moves. When Ø is reached, the event <cnum> will fire. The
command format is:

lC, <cnum>, <int>
lc, 11, 1Øe.g

52

lNventory (lN)

Displays the objects which the player is currently carrying or wearing.

LOad (LO)

This reloads a SAved game from tape.

MoveObject (MO)

This will move the object specified to the location number specified.
It takes the format of:

MO, <obj>, <loc>
e.g. MO, 12,24

PutOn (PO)

This changes the status of the object referred to in the command line
to show that it is now being worn by the player.

PRint (PR)

Prints the following string onto the screen. The print command takes
the form of:

PR <string>
e.g. PR, you cannot eat thati

ou¡t (ou)
This will quit the game (note: without requesting a confirmation from
the player), and then prompts "Another Game?".

SAve (SA)

This saves all the variables associated with the game to tape, so that
the game can be reloaded later on.

SCore (SC)

Prints the player's current score on the screen.

TakeOff (TO)

The opposite of PutOn, fairly naturally, this changes the status of the
object referred to in the command line from being worn, to being carried
by the player.

Zaptn (Zll
This takes an object from whatever location it is currently at, and brings
it to the player's current location. The command form is:

Zl, <obj>
e.g. Zl, 11

53

ZapOut (ZO)

This takes an object and changes its location to "nowhere", effectively
destroying it. lt takes the form of:

ZO, <obj>
e.g. ZO, 11

RANGES
The parameters to the above actions have maximum and minimum
values, which cannot be exceeded; an Amstrad Basic error "subscript
out of range" will occur if you do exceed the values. These are defined
as follows:

<int> : BASIC integer (signed).
<fnum> : Ø..maxflag.
<string> : BASIC string. NB must be surrounded by quotes if

the string contains commas.
<obj> : Ø..noofobjs (where Ø is the player).
<loc> : -1..nooflocs (Ø is the player, -l is nowhere)
<cnum> : Ø..maxcount.

The upper limits to some of these ranges are set within the program,
by the constants at the start of AKS. The initial (and arbitrary) vãlues
are:

maxflag :36
maxcount :5
maxobi :2Ø
maxloc :3Ø

Their values can easily be changed using the normal BASIC editor.

54

I
TRIGGERS IN AKS

Actions in AKS can be activated in two ways, either directly from the
player input, or indirectly inside the program, These are known as
triggers and events respectively, and we will look at the former in this
chapter.

The format of a trigger command is:

T, word list, condition
A, action

The word list is simply a list of words, which will cause this trigger to
become active if they appear in the player's input. These are followed
by a condition, which governs the condition under which the actions
may be performed. The trigger line is then followed by a list of actions
which will be performed.

While triggers are easy to implement, it is important to pick the correct
words for the word list, to ensure that you have covered all the possible
player input, which should cause the actions to trigger. For example,
if the player has to give an object to another character in the game,
he might use "G|VE", but you should also include words such as
"SHOW", "HAND", etc. Only using one direct phrase such as "GIVE
THE COlNS", results in a very limited vocabulary and causes great
frustration to the player. You want players to enjoy your game - not
tear their hair out while playing itl

There are two forms of trigger in AKS, local and globaltriggers. The
first of these, as their name suggests, are triggers which can only be
activated when the player is at the current location, and which are
ignored at all other locations. The second type, global triggers, are
active all the time, and can be triggered by player input from any
location. The AKS system examines the local triggers before the global
triggers are searched, which enables you to alter the behaviour of
commands within different locations. Let's look at some examples to

55

see what we mean by this, and how to use triggers in your own
adventures.

Firstly, the global triggers. These are entered in the database as part
of location Ø, This is a special location, which does not appear in the
actual adventure game - the player can never visit location Ø. lt is
here that we can declare all the synonyms for our global vocabulary.
For example, we might want the player to be able to perform a "GET"
action, enabling them to pick up objects. As well as "GET", it would
be convenient to allow the player to type in "TAKE", "PICK UP", and
so on. This is done by declaring a global trigger as follows:

T, get, take, pick up,.
A, GE

So, if the player inputs any of the words in the trigger line, then the
system performs a GET action. We can do the same for all the usual
commands as well - if you look at the listing for WITCH HUNT, you
will see that most of the global commands you'd ever want to use have
been declared,

The local triggers are very similar to this, except that they are declared
within the location description they apply to. They are declared in
exactly the same way, so a declaration of :

T, feed ducks, feed duck,*
A, PR, the ducks gobble up all the bread and leave.
A, ZO,5

would only trigger if it was at the player's current location. lf this was
true, and the player typed in "FEED DUCKS", then the system would
print the appropriate message and then remove the ducks from that
location (the ducks being object 5).

As well as declaring actions which manipulate objects, we can
change the possible directions the player can move. lf the current
location has connections east and west, with a small building to the
east, the player can move east or west by using the usual movement
commands. However, most adventure players will expect to be able
to go east to the building by typing "1N", not just "EAST". This can be
allowed by declaring a trigger such as:

T, in, enter,*
A, GO, E

which will move the player east when they type "lN" or "ENTER".
We can also alter the actions a command word had in each of the

locations. For example, suppose we have declared this global trigger:

T, rub amulet, stroke amulet, .C5

A, PR, nothing happens.

56

lf the player rubs the amulet (object 5) the system will simply inform
him that "NOTHING HAPPENS". ln one location, however, we want
rubbing the amulet to actually cause a very different action. This can
be implemented by declaring a similar trigger in the desired location.
This might take the form of :

T, rub amulet, stroke amulet,.CS
A, PR, The portcullis rises up and out of sight!
A, AF, 1Ø, T

This means that rubbing the amulet causes a message to be printed
and the flag 1Ø to be set to TRUE. This is possible because, as noted
before, AKS scans the current location for triggers before scanning the
global triggers. When a trigger is found, it is activated, and the trigger
search is terminated. This ensures that only one trigger will be activated
for each of the player's inputs.

57

89

I
LOGATIONS,
OEIECTS AND
EVENTS IN AKS

An AKS scenario is based around the structures of Locations, Objects
and Events, as these govern which actions take place where, which
objects can be manipulated and so on. ln this chapter we will take a
look at how the Actions and Triggers we have already considered fit
into the Location and Object structures.

The ordering of different data types is important in AKS, as the
memory map in chapter 6 shows, and thus we will deal with these
differing data types in the order they will appear in an AKS scenario.

LOCATIONS
Locations must be declared in an AKS database in ascending order
of location number. Location zero is the special global location, as we
have already mentioned in the previous chapter while looking at Trig-
gers. Each location has a very similar header, which might look like
this:

L, 15
D, *, ln the dark woods.
c, N, ., 16
c, s,., 18

This declares location 15, with a description of "ln the dark woods",
which has no condition attached. The location is connected to location
16 to the north, and location 18 to the S. There are no conditions
attached to the player moving to either of these two locations. There

59

can be as many descriptions (each with an associated condition) as
you wish, which enables us to simulate darkness, or to abbreviate the
description if the player has already visited this location. We simply
include these facts in the relevant condition; see the next chapter for
a detailed description of the conditions available in AKS, and their use.

The above location declaration is very basic, as it does not include
any triggers, these are simply added in before or after the connection
information. An example location might be:

L, 15
D, *, ln the dark woods.
c, N,., 16
C, S, -, 18
T, climb tree, go tree, *

A, PR, you cannot climb trees.
T, plant acorn, plant, bury, * C7
A, PR, the planted acorn grows into an oak tree
A, ZO,7
A, ZI, B

This adds triggers which will detect attempts to climb trees, and plant
acorns!

OBJECTS
Objects must be declared in numerical order, any out of sequence
objects being reported by the AKS system when you attempt to execute
the adventure. ln the same way that location Ø is special, so is object
Ø, as it represents the player! This does mean that object Ø can be
manipulated in the same way as other objects - so you can move the
player around, but, the declaration for the player will normally only
include an initial starting location and nothing else.

There are a number of elements to an object declaration, and we
will look at each of these in turn. The best method is to consider the
following example, and we can then look at what each element stands
for:

o,4
D, *, A small rusty lamp,
P, 19
N, rusty lamp, torch, "
S, GE, -

S, DR, -

S, EX, "

This declares object number 4. The first line of the declaration gives
the object a description, which will be printed out with no conditions

60

attached. The "P, 19" says that the lamp's initial position at the start
of the adventurewill be location 19. We need to letthe player referto
the lamp by different names in his command input, so we declare a
set of names using the "N" command, which allows you to attach a
condition to the player using that name.

Finally, the "S" construct lets us set the suitability of the object to be
used with certain of the inbuilt AKS actions. ln our example above, our
lamp is suitable for GEtting, DRopping and EXamining; there is no limtt
to the actions which can be performed on an object (except com-
monsense of course!).

EVENTS
An event is acted upon whenever the counter associated with it reaches
a value of zero, after it has been activated by another part of the
database. This is where the lnitialise Counter action comes in, as we
can set the counter to a number of turns, after which the event associ-
ated with that counter will come into action.

An example event might be declared as follows:

This declares event Ø (which is not special in the way location and
object Ø are) and lists a number of actions to be performed. ln the case
of our example, when the event is triggered, a message "You have run
out of time . . . " is printed, the player's score displayed and then the
game ended. This could be used if the player had a maximum number
of moves to complete some actton, or even the whole game, in. lf he
fails to do so, event Ø comes into action.

E,O
A, PR, You have run out of time
A, SC
A, QU

61

¿9

10
EXPRESSIONS IN
Ar(s

At certain points in AKS you may wish to attach a condition to something.
lf the condition is true then some operation is performed othenruise it
is not. When writing an adventure game scenario in Basic a condition
can be expressed as an "lF condition THEN perform operation" state-
ment. AKS aims to do away with the need to write in Basic in order to
specify your scenario and so cannot use this technique. However, the
need for some form of conditional testing when specifying an adventure
game cannot be overlooked. How could the puzzle with the big green
snake barring the way of the player be implemented if the scenario
were unable to test if this puzzle had been solved. Obviously, AKS
must have conditional testing. A glance at the scenario definition for
WITCHHUNT will reveal the presence of a large number of asterisks
at various positions in the definition statements. Each of these may be
followed by a string of characters terminated by the end of the line or
by a comma. The absence of this string represents the absence of any
condition - i.e. the associated operation is unconditional.

As in Basic, an AKS condition may have the value of true (T) or false
(F). lf the condition is true the operation is performed. An lF statement
which only allowed you to say "lF T THEN . . . " or "lF F THEN . . . "
would be useless. To be of use the condition must be allowed to be
something which is evaluated to either T or F. At the simplest level this
could be a flag variable. For example, a flag variable could be set
aside to indicate whether or not the snake puzzle has been solved.
AKS has flags called FØ, F1, F2 . .. and so on. Supposing we have
allocated F1Ø to represent the snake puzzle then we can write the
condition as *F1Ø. AKS initialises all flags to F at the start of a game.
When the player solves the puzzle the scenario assigns the value T

63

to F1Ø. The AKS coding for the snake puzzle could be implemented
by defining the appropriate location (18) as follows :

DATA L,1B
DATA D, *, You are in the Hall of the Mountain King.
DATA D, . F1Ø, A large green snake bars your way aheadl
DATA T, release bird, *

DATA A, PR, The bird drives the snake away,
DATA A, AF, ,1Ø,

T

When the player first arrives at this location he will be greeted by the
following description:

You are in the Hall of the Mountain King.
A large green snake bars your way aheadl

The player can now drive the snake away by entering the command
"RELEASE BIRD" to which AKS will respond:

The bird drives the snake away.

The AssignFlag (AF) command then sets F|Ø lo T indicating that the
puzzle has been solved. Now the description of the location will appear
as just:

You are in the Hall of the Mountain King.

This is fine but there is nothing there which states that the player must
be carrying the bird in order to release it. Another test is required to
replace the unconditional indicator at the end of the trigger line. One
possibility would be to set a flag to T when the player catches the bird
and test this as we did for the snake puzzle. However, you then have
to remember to reset the flag to F if the player drops the bird. A neater
solution is to have a function which tests to see if the object is being
carried by the player and becomes T or F accordingly. This type of
function is called a predicate and can be tested in a similar way to a
flag. So that CØ, C1,C2,.. . indicate whether objects Ø, 1,2,... are
being carried. Therefore, if the bird is object number 3, the snake
puzzle coding can be updated to:

DATA L,18.
DATA D, *, You are in the Hall of the Mountain King.
DATA D,* F1Ø, A large green snake bars your way ahead!
DATA T, release bird, . C3
DATA A, PR, The bird drives the snake away.
DATA A, AF,1Ø, T

AKS supports six different types of predicates and flags for use in
expressions. With the exception of the flag type discussed earlier, the

64

AKS program maintains the necessary information to return a value of
T or F for each of these tests. The flag variables FØ,F1,F2 . . . are only
altered by actions in the scenario definition and their meaning is de-
cided by the scenario designer. The AKS predicates and flags are
listed below:

Cx Carrying object x
Fx Flag x
Lx at Location x
Ox Object x at current location
Wx......... Wearing object x
Vx Visited location x

Although these flags and predicates allow a number of tests to be
performed it is often useful to be able to invert the result of a test. The
operator "NOT" allows you to do this in Basic. The "NOT" of true is

false and vice versa. AKS uses a minus sign to perform the same
operation. For example, -C3 can be used to test for the bird not being
carried and to print an appropriate message if you try to release it:

DATA L,18
DATA D, ", You are in the Hall of the Mountain King.
DATA D,.F1Ø, A large green snake bars your way ahead!
DATA T, release bird, .C3

DATA A, PR, The bird drives the snake away.
DATA A, AF, 1Ø, Ï
DATA T, release bird, .-C3

DATA A, PR, Good idea, but you don't have it.

ln addition to the "NOT" operator, Basic conditional expressions allow
the use of "AND" and "OR" to construct complex tests. AKS uses the
symbols "." for "AND" and "/" for "OR", So far there is nothing in the
example scenario location to stop the player passing the snake even
though he has been told his way is barred. This requires that all the
connèctions from this location except up (U) which is the way back
out of the location, only be opened when F1Ø is T:

DATA L,18
DATA D, *, You are in the Hall of the Mountain King.
DATA D,.F1Ø, A large green snake bars your way ahead!
DATA T, release bird, .C3

DATA A, PR, The bird drives the snake away.
DATA A, AF, 1Ø, T
DATA T, release bird, "-C3
DATA A, PR, Good idea, but you don't have it.
DATA C, N, -F10,17

DATA C, E, *F10,12

65

DATA C,W, -F1Ø,25

DATA C, U, -, 5
This has defined the connections north, east and west to locations 17,
12 and 25 to be open only when the snake has been driven off. Now,
let us introduce another problem the player is faced with at this location.
Once the snake is disposed of, the player is free to explore the con-
nected locations and is able to find three treasures. However, certain
of these treasures are too large or heavy to carry up the stairs from the
Hall of the Mountain King together. lf the player is carrying the gold
bar (object 4) and the axe (object 5) or alternatively, the gold bar and
the jewels (object 6) and wearing or carrying the armour (object 7) then
he may not go up. This can be expressed by:

L, 18
D, ., You are in the Hall of the Mountain King.
D, *F1Ø, A large green snake bars your way ahead!
T, release bird, .C3

A, PR, The bird drives the snake away.
A, AF, 1Ø, T

T, release bird, .-C3

A, PR, Good idea, but you don't have it.
c, N, .F1Ø, 17
c, E, -F1Ø, 12
c,w,.F1Ø, 25
c, u, .-((c4.c5y(c4.c6 .w7 tc7)), 5

AKS evaluates conditionalexpressions starting with the highest priority
operators first unless brackets specify otherwise, as does Basic. The
priority of operators in descending order are - (not), / (or), . (and). So in
the above example the order of evaluation is:

<a> (C4. C5)
W7lC7 "/" is higher than "."
<c> C4. C6
<d> result of <c> . result of
<e> result of <a> / result of <d>
<f> - result of <e>

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

66

SEGTIO]I THREE

IMPLEMENTTNG AKS
ON TIIE AMSTRAD

67

89

11
PROGRAMMING
TECHNIOUE

AKS has been written in a highly structured format with an emphasis
on readability and robustness of the Basic code. The techniques
adopted in the programming of AKS to achieve this structured format
are described below,

1. PROCEDURAL APPROACH
The problem tackled by AKS has been divided into several sub-
problems and each of these divided into sub-problems and so on until
each sub-problem becomes trivial. These trivial sub-problems are then
coded as Basic Subroutines. lt is important that the interaction between
these subroutines is tightly controlled and made clear in the listing. To
this end, the assignment of a value to a variable which is to be used
in another subroutine is made on the same line as the 'GOSUB' state-
ment (e.9. 'loc:Ø:GOSUB 123Ø:REM .isobjatloc.'). lf a subroutine re-
turns a value in a variable then where possible any test¡ng of that value,
or any use of that value is performed immediately after returning from
that routine.

2. SENSIBLE VARIABLE USAGE
The most obvious point here is the use of meaningful variable names
to increase readability. Amstrad Basic allows multi-character variable
names for this reason. ln addition to enhancing readability, the use of
long variable names reduces the chance of conflicting use of a vari-
ables (i.e. attempting to use the same variable for different things at
lhe same time). All variable names are in lower case to make them
stand out from the upper case Basic keywords.

69

AKS initialises several constants at the start of the program (e.9. the
number of scenario locations is set by 'rnaxloc:3Ø'). As their name
suggests these 'variables' are not changed anywhere else in the pro-
gram, even though it is strictly possible to do so. Thìs has two effects.
Firstly, it increases readability and secondly, it makes it easy to modify
the program because the value need only be changed in one place.

3. COMMENTING
Comments are used in an orderly and consistent way. Lines containing
just a colon are used extensively to space the program out and divide
it into logical blocks. ln the main part of the program a logical block
is a group of instructions with a similar function. For the rest of the
program, a logical block is a subroutine. In addition, every subroutine
is headed by two 'REM' statements. The first of these has the name
adopted throughout AKS for that routine bracketed by three asterisks
(e.g. 'REM *** resetflags ***'). The second is just a blank'REM'statement
to highlight the routine title.

Any subroutine call is followed by a comment containing the name
of the routine bracketed by single asterisks (e.9. 'GOSUB 5ØØØ.AEM
resetflags'). To maintain this standard some 'lF condition THEN
gosubsomewhere ELSE gosubsomewhereelse' statements have been
split into two statements (i.e. 'lF condition THEN gosubsomewhere' and
'lF NOT (condition) THEN gosubsomewhereelse') to allow the 'GOSUB's
to be followed by a comment.

Although the game is written to run in Ìhe 4Ø column I\i ODE 4, the
commenting has been written for viewing in the BØ column MODE 2.

Where possible, comments about the operation of program lines are
on the same line and use the single quote character instead of ':REM

. . .' to start the comment. This helps to distinguish normal comments
from subroutine labels on 'GOSUB's. Should the comment be too long
to fit on the same screen line or if it is syntactically invalid to have a
comment on the same line as that type of statement then the comment
is placed, where possible, on the line preceding the statement. ln this
case a normal 'REM' is used instead of a single quote to make the
comment stand out from the Basic statements. Unless emphasising
something, comments are in lower case to make the upper case Am-
strad Basic keywords easy to see.

4. CAREFUL CONTROL OF FLOW
Something which explicitly controls the flow of a program is potentially
very dangerous. Apart from having the potential to make a program
totally unreadable, incorrect use of flow controlling instructions can
result in corruption of the Basic stacks, The most obvious control flow

70

instruction is 'GOTO'. Much has been written about the use and misuse
of 'GOTO', but few will deny that it is difficult to program in Basic without
it. Amstrad Basic goes some way towards removing the need to use
'GOTO' by allowing the use of 'WHILE..WEND' loops as well as the
normal 'FOR..NEXT' loops. AKS makes much use of the'WHILE..WEND'
construction. Another common use of 'GOTO' is to implement multiline
'lF..THEN..ELSE..' statements. AKS avoids using 'GOTO'for this by the
use of multistatement Iines instead. However, AKS does make use of
'GOTO'as a quit instruction to skip over the rest of a'WHILE'loop's
instructrons and go directly to the 'WEND'. This technique of jumping
to 'WEND' is used to terminate the loop without corrupting the Basic
stack. When AKS does this, a comment is used to identify the 'GOTO'
as a quit instruction.

Another frequently misused control flow instruction is 'GOSUB'. To
make a subroutine easily understandable, a subroutine should have
only one entry point. ln the AKS Iisting the entry point to each subroutine
is the line immedìately following the title 'REM'. lt is a good idea not
to 'GOSUB' or'GOTO' a'REM' statement, as these are often removed
from the runtime version of the program; thereby causing a'line does
not exist' error. The last instruction in every AKS subroutine is a 'RE-

TURN'. The practice of using 'GOTO'to jump in and out of subroutines
is avoided. However, it is often desirable to skip the remaining instruc-
tions in a subroutine, This could be done using 'GOTO' to jump to the
'RETURN' instruction. A cleaner solution is to use another 'RETURN'
instruction instead of the 'GOTO'. Even here, AKS comments the pi'e-

mature subroutine exits as quits.

DIRTY TRICKS
Examination of the first few lines of the AKS listing will reveal that
everything is not perfect. To implement AKS in Amstrad Basic a signi-
ficant problem must be overcome. AKS works by interpreting a scenarìo
database specified in 'DATA' statements at the end of the program.
Each statement occupies one 'DATA' line and AKS must be able to
find the start of any given statement. Unfortunately, Amstrad Basic
does not allow use of the 'RESTORE' statement with a variable line
number (i.e. 'RESTORE fred' is illegal). lnstead, it insists on a literal
line number (e.g. 'RESTORE 5ØØ'). Totally legitimate use of 'RESTORE'

in AKS would require a ridiculously time consuming search from the
first 'DATA' statement, reading a string (not a line) at a time, until the
desired line is found. Therefore, AKS resorts to a'dirty technique'which
'POKE's the value of a variable into the space occupied by the literal
line number part of a'RESTORE' statement lN THE BASIC PROGRAM.
This explains the existence of the first few lines of the program' For

example, to'RESTORE'to line 37Ø, AKS would perform'lin:37Ø:GOSUB

71

2Ø:REM *restorelin*'. This fudge routine is placed at the front of the
program along with comments giving a warning of the dangers inherent
in this technique. Obviously, changing this routine will result in the
wrong part of the program being altered and may corrupt the code.
Things are further complicated by the fact that the 'RESTORE' state-
ment's line number must be set to a non-existent line number before
attempting to 'RENUM'ber the program. The small 'ENTER' key is pro-
grammed to do this. AKS requires the 'DATA' statements in the scenario
to be numbered in increments of the constant 'lineinc'. The normal
value of 'lineinc' will be 1Ø - which is the default line number increment
used by Basic'RENUM' and'AUTO'.

ln addition to knowing the line number increment, AKS must know
the line number of the first 'DATA' statement of the scenario definition.
It is unreasonable to expect a programmer working on AKS to find this
out and set a variable to the value everytime he adds a new line of
Basic. For this reason, a second 'dirty technique' is used. Ïo find this
value, AKS jumps to a purposely included invalid program line that
immediately precedes the first 'DATA' statement of the scenario defi-
nition. AKS traps the error generated using 'ON ERROR..' and assigns
'datastart' the line number of the line after the invalid line (i.e.
'ERL + lineinc'). Although not as dangerous as the firsT'dirty technique',
this technique is also heavily commented.

72

12
STRUGTURAT
OVERVIEW OF AKS

The overall structure of the AKS driving routines can be broken down
into six different sections, which we will consider and briefly outline tn
this chapter. ln order to understand how the routines work in detail,
you are advised to study the full listing of AKS in Appendix A, as it is
fully commented, with meaningful variable and routine names. To detail
the program within this section, in the same way, would simply duplicate
the information in the Appendix. This chapter is merely considering the
structural elements of AKS, and the way these elements relate to the
overall program.

INITIALISATION
The first stage of the program requires it to initialise all the variables
it is going to use. This is done by the three routines lnitlocations,
lnitobjects, and lnitevents, As their names suggest, they initialise all
the variables associated with the locations, the objects, and the events
respectively. We'll look at each of these separately.

lnitlocations
This routine starts at the beginning of the data, with location Ø, and

it searches through the data, until it encounters a data declaration for
an object, event or the F end marker. While it is scanning through these
data declarations, the location numbers declared in the "L, < locnum >"
command are noted, and any missing or out of order locations are
reported. The array element "locline(loc)" is set to the program line at
which the data for the location "loc" begins. This process of scanning

73

continues until a non-location declaration is found, at which point
"nooflocs" is set to the number of locations found, and the routine
returns to the main initialisation.

lnitobjects
This routine works in a similar way to lnitlocations, except that it deals
with Objects, and it scans until it finds a declaration for an Event or the
"F" end marker. During this scanning process, the array element
"objline(obj)" is set to the data line which begins the declaration for
the object "obj", in the same way as "locline(loc)" is used. Any out of
order, or missing object numbers are reported by the system, and the
scanning is stopped.

This initial scanntng process also allows us to find the start locations
for each of the objects and to set their position in the "objloc(obj)"
array where all the object positions are stored. When the scanning
search for objects has finished, the "noofobjs" can be set, and the
routine returns to the main initialisation section.

lnitevents
This initialisation routine deals with any events which may have been
declared at the end of the data block, and sets the array "eventlin(cnt)"
to mark the data line at which each event begins. The search for events
finishing when the "F" encj marker is encountered.

After initialising the locations, objects and events, all the program
flags are initialised by Resetflags, which simply sets all of them to the
value FALSE. This then completes all the initialisation the program has
to do.

MAIN PROGRAM LOOP

This is a very simple WHILE loop, which runs continually until the flag
"eogame" becomes TRUE, whereupon the game ends. This flag is
obviously only set by the player losing, winning or quitting the game.

Thus, the loop consists of five different operations:

(a) Describing the current location,
(b) Noting that the current location has been visited.
(c) lnputting a command from the player.
(d) Processing this command line.
(e) Updating any countdowns r,vhich are currently active.

The second action is simply a case of setting a flag corresponding to
the current location in the visited array to TRUE, which is very straight-
forward. The other routines are a little more complex, so we will consider
these separately.

74

DESCRIBELOC
This is the routine which prints out the appropriate description for the
current location, in a neat and formatted form. The first step is to find
the data line at which the player's current location is defined, and then
to call Describeln, to print out the current description. We then test to
see if any objects are at the current location. lf there are objects here,
we search through all the objects, printing out the object descriptions
for all objects at this location. This done, we return to the main loop.

Describeln
This routine searches through the data statements for the current lo-
cation, looking for description data (beginning with a "D"), until it
reaches the start of another location, object or event. Once it finds a
line of description, the condition attached to that description has to be
evaluated, and this is done with a call to the expression evaluator
(which is covered in great deta¡l in the next chapter). lf the condition
evaluates to TRUE, we can then print the description by calling Print-
descr, and carry on searching for the next one.

Printdescr
This is the routine which performs the actual act of printing the location
description to the screen. This is not a simple matter of printing out the
text in a straightforward fashron. lf we did this, some words would
overlap the edge of the screen, being split across two lines. This would
not only be diff icult for the player to read, but it would g ive ou r adventure
games a very untidy, messy appearance. A lot of the appeal of the
adventure game is the way in which it is presented to the player. A
slapdash, untidy presentation only a discourages the player from botir-
ering with the game.

The printdescr routine gets around this problem by making sure that
words are not split over two lines, and that punctuation is not put in
at the beginning of a line. This is done by taking the description string
a screen width's worth at a time, e. g. if ou r screen width is BØ characters,
and we have already printed the first 1Ø characters on the current
screenline, we consider the next BØ characters of the description. This
is then checked to see if the end of the string occurs in the middle of
a word, if it does, we search backwards through the string to find the
end of the previous word. The string can now be printed up to that
point. We then consider the next BØ characters from this point and so
on, until the string left is less than (or equal) to the screen width when
we simply print it, and return from the routine.

This printing routine is very general-purpose and not just specific to
the AKS program, so you could easily use it to present neat, word-
wrapped output in your own programs.

75

GETCOMLINE
This is a very short and simple routine, which prompts the player with
the question "What now?". The player's command line is then input into
the variable "in$". Obviously, we cannot provide for all the possible
combinations of upper and lowercase which the player might type in'
so we use LOWER$ to convert the input string to be totally lowercase.
This does mean that all the commands, and object name which you
include in the object and location declarations must all be in lowercase
also. But, this is small price to pay in return for faster processing of the
command line.

PROCESSCOMLINE
This is the most important routine in the program, in many ways, as it
checks the player input against the database and causes actions to
be performed if matches have been found. The first stage is to search
for triggers in current location, and then in the global location; matching
the input string against the trigger phrases. lt is worthwhile noting at

this point that it is important to order trigger phrases in the correct
order - substrings after the main string. By this, we mean thal "FEED

THE DUCKS" should come before "FEED", "WIND UP THE CLOCK"
should come before "WlND UP" and so on. lf you fail to do this, then

the main phrases will never be activated, due to the search method
that the Triggertest routine uses. lf no triggers are found then the "Sorry

I do not understand that" message is printed and control returns to the
main loop. lf the command is recognised, then the Actions routine is

called to carry out the required action.

Triggers
This routine steps through the current location data (until it reaches a
new declaration for location, object or event) searching for Trigger
commands. lf a command is found, it is tested by the routine triggertest.

Triggertest
This routine attempts to match the command line with the trigger
phrases for the current trigger, This is done by scanning the trigger
line until the end marking "." is found, which marks the start of the
condition. A test is made for each of the trigger phrases to see if it

occurs within the command line (using the string function INSTR). lf

a match is made, the condition for that trigger is evaluated. Only if
there is a match and the condition evaluates to TRUE, is success
reported back to Triggers and PROCESSCOMLINE.

Actions
This routine simply scans down the list of actions which follow a Trigger

76

command. The type of action is read in, and then the appropriate actlon

routine is called, depending on the action. when all the actions have

been read in, the routine returns to the main loop. Each of these actions

then performs the required tests and manipulations to carry out their

function, before returning to the main action routine. lf you wished to

add more actions to the AKS system, it is simply a matter of adding
a new test on "act$" inside this routine's WHILE loop, with a GOSUB

to your new action routine.

UPDATECOUNTDOWNS
This routine steps through all the counters possible and tests to see

if they are currently counting. lf a counter is active, then it is decre-
mentód by one, lf ihe counter value is still above Ø, nothing further is

done, and the routine returns to the main program loop.
However, if the counter has reached a value ol zero, the counter is

reset to a non-counting state and the appropriate event is actlvated.
This is done by setting the current dataline to the start of that event,

and then calling the A-ctions routine to step through and perforrn the

required actions. Once this is complete, the main program loop is
resumed.

That completes the rnaìn program structure You should find all the

above routìne descriptions relatively easy to follow, using the comments

in the program as a guideline Many of the routines described in this

chapter ca"n quite easily be used in other programs, not just adventure
games. The pretty priÁting abilities of Printdescr being iust one such

ãxample, along wltii the whole method of data searching employed by

AKS

77

8L

13
IMPLEMENTING
THE EXPRESSION
EVALUATOR

The behaviour of the AKS expression evaluator has already been dis-
cussed. This chapter explains how the AKS Basic program arrives at
a result of true or false for a conditional expression, This description
of the expression evaluator will be invaluable should you decide to
alter the terminology, ìmplement additional operators or allow the use
of further flags and predicates. ln addition, the expression evaluator
in AKS illustrates some fundamental programming techniques and data
structures.

The Basic code corresponding to the expression evaluator is con-
tained in the subroutine .evalthis. and the subroutines it invokes. On
entry to this routine, the expression string should be stored in the
variable 'expr$'. On exit, the variable 'res' holds the result of true or
false. The integer values representing true or false are -1 and Ø re-
spectively. This is the same as the internal notation used by Amstrad
Basic when it evaluates conditional expressions in lF statements. Con-
sequently, the AKS program can test the result returned by .evalthis.

as follows:

lF res THEN . . ,

Thus to evaluate an expression, AKS copies the expression string into
expr$ and calls .evalthis.. Often, the AKS program wishes to read in
the next string and then evaluate it. This is reflected in the presence
of the subroutine .evalnext., which reads the next string in the DATA
into'expr$'and then calls .evalthis. to evaluate it.

79

Considering that the function of .evalthis. is to return something
which can be tested by a Basic lF statement, it may seem pointless
to go to the trouble of writing a conditional expression evaluator to do
the same thing as the existing Amstrad Basic conditional expression
evaluator. Take for example, the AKS condition string (having already
stripped off the preceding '.'):

-(w3/c3).v12

It is not difficult to see how, by substituting 'NOT'for'-', 'OR' Íor'l' and
'AND' for '.', this could be transformed into the string:

NOT (W3 OR C3)AND V12

Now if you replaced all occurrences of sequences of digits by'(', the
sequence of digits itself and ')', the resulting string appears to become
a Basic conditional expression:

NOT (w(3) OR C(3)) AND v(12)

Given that the arrays W, C and V existed and contained true/false
values (-1 or Ø), it would be very convenient if Amstrad Basic could
then be made to evaluate this for us. Unfortunately, this information is
locked inside a string variable and Amstrad Basic is unable to evaluate
a string variable. For example, it is INVALID to write in a program:

lF expr$ THEN . . .

Some Basics have a command to overcome this problem and force
the Basic interpreter to evaluate a string. A very 'dirty' way in which
Amstrad Basic could be made to evaluate a string would be to convert
the string into Amstrad Basic's internal representation and POKE this
into the program between an lF and a THEN and then execute this line.
However, AKS expressions are variable lengths and so other parts of
the program would need to be adjusted to create exactly the right
number of spaces between the lF and the THEN. An alternative method
of evaluation must be used.

Therefore, the AKS program is forced to do a step by step evaluation
of 'expr$', lgnoring the trivial case of 'expr$' being just '*' where
*evalthis. returns true, the evaluation process can be divided into three
stages:

1. Substitution of flags and predicates (eg. C3,W3,V12) in expr$
for 't' or 'f' representing their true or false values.
2. Reorganisation of the expression according to operator priority
and bracketing (ie. '-' before '.' and '.' before '/' unless brackets
dictate otherwise). The now redundant brackets are discarded.
3. Evaluation of operators and their't' and 'f'operands in the order
established in stage 2.

BO

Although the evaluation takes place in three logical slages, in practice
stage 1 can be performed during the same scan through the expression
string as stage 2. A brief glance at *evalthis* reveals that it has two
subroutines performing the three stages:

1 . *converttoRP.
- stages 1 and 2.

2. *evaluateRP.
- stage 3.

The letters 'RP' stand for Reverse Polish. An expression written in
Reverse Polish notation requires no brackets or operator prededence
as the ordering of the expression precisely represents the order of
evaluation. To achieve this, Reverse Polish notation places an operator
after its operands, giving rise to the alternative name of postfix notation.
The normal notation used in mathematics and Basic is called infix
notation and places an operator in between its operands. The scenario
writer is allowed to write AKS expressions in infix notation for the sake
of readability. lt would be unacceptable to force the scenario writer to
learn Reverse Polish before he could use AKS. However, anyone who
has done a lot of programming in the language Forth, which uses
Reverse Polish all the time, may be happier writing expressions in
Reverse Polish. lf this is the case, the *converttoRP. subroutine can
be replaced by a subroutine which just performs stage 1 of the eval-
uation process. A slight increase in the execution speed would also
be achieved. To help convince you to stick to infix notation, some
examples of infix AKS expressions and their corresponding Reverse
Polish versions are given below:

INFIX REVERSE POLISH

w3/c3
-(w3/c3)
-(w3/c3).v12
(c1 .c2y(c3.c4,c5.c6)

w3c3/
w3c3/-
w3c3/-v12.
c1c2c3c4c5c6 .../

The subroutine *converttoRP- converts the infix expression held in
'expr$' into the Reverse Polish equivalent which is returned in 'revpol$'.
It repeatedly calls *getlex* to get the next operator or operand from
'expr$'. lt is the subroutine *getlex. which performs the substitution of
flags and predicates for either't' or 'f' to perform 1 of the evaluation
process. When -getlex* encounters an operator (ie. next character is
'l' ,'.' ,'-' ,'(' or ')'), it simply returns it to *converttoRP. in 'dat$'. However,
if it encounters a flag or predicate (ie. next character is 'F', 'V', 'W', 'C',
'L' or 'O') then it calls .evalflag. to determine a value of true or false
and set'dat$' to't' or'f' accordingly.

Having performed stage 1 of the evaluation, .converttoRP* must
reorder the lexical units returned by calls to *getlex* to form Reverse
Polish. There are several algorithms which could be used to do this

B1

reordering and removal of brackets. All of these algorithms require a
means of determining the priority of operators shown below:

OPERATOR PRIORITY

highest

lowest

The algorithm used in AKS is often referred to as the Shunting Algorithm.
This name arises from an analogy with a simple railway network, shown
in the diagram below.

OUTPUT
(REVERSE POLISH

EXPRESSION)

SIDING

Let us ignore brackets for the moment. The algorithm takes carriages
(lexical units) from 'input' (infix expression) one at a time. lf the carriage
is type-A (operand) then it passes straight across to'output' (Reverse
Polish). However, if the carriage is type-B (operator) it goes into the
'siding'. Each carriage has a priority (operator priority). When a new
carriage approaches the 'siding' it allows carriages already in the 'sid-
ing' to go to 'output' one at a time until a carriage of lower priority is

at the front of the 'siding'. The new carriage then takes its place at the
front of the 'siding'. Eventually, there are no more carriages at 'input'
and all the carriages in the 'siding' are allowed to continue to'output'.
The Reverse Polish expression is now at 'output'. An example con-
version using this algorithm is given below. For clarity, flags and pred-
icates are shown as therr identifiers instead of their actual 't'or'f'values
from stage 1.

INPUT SIDING OUTPUT

INPUT
(INFIX EXPRESSION}

c5.-v7tF4
.-v7tF4
-v7tF4
v7tF4
lF4
F4
empty
empty

empty
c5
c5
C5
C5V7
c5v7-.
c5v7-.F4
c5v7-.F4t

empty
empty

empty

82

By a simple extension, this algorithm can be made to remove brackets
afier they have served their þurpose. Firstly, the symbol ')' must be

considered as the highest priority operator. when a '(' is encountered
it goes into'siding'o[eying the same rules as the other operators. The

allorithm then cóntinues as normal until a ')' is encountered. This

causes all operators in 'siding' to be released to'output' until a'(' is

reached. This bracket pair can now be discarded. For example:

INPUT SIDING OUTPUT

-(c3/w3).v12
(c3/w3).v12
c3/w3).v12
/w3).v12
w3).v12
).v12
.v12
v12
empty
empty

c3w3
C3W3/
c3w3/-
c3w3/-v12
c3w3/-v12

:
empty
empty
empty
c3
C3

mpty

(

(-

t(

:

empty

ln computing terms, a structure called a stack embodies the idea

of the 'siding'.-Machine code programmers will undoubtedly be very

familiar with-the operation of the Amstrad's hardware stack. The AKS
program is unable to use this stack freely because Amstrad Basic is

using it as the program is running. Therefore AKS maintains its own
softriare stack. Whétfier it is implemented in hardware or in software,
a stack has the same logical structure. There are two operations associ-
ated with a stack, adding an item and removing an item. ln ZBØ as-

sembler these operations are known as PUSH and POP respectively.
AKS uses somewhat the more readable names of .stack* and *unstack*

for the subroutines performing these operations. The important thing

to remember about a stack isthe Last ln First out (LlFo) rule, which
means last item in will be the first item out. This is the reason for the
analogy of the shunting Algorithm where the last carriage in is always

the fir;i carriage out. The internal mechanism by which the status of

a stack is maintained is by a pointer to the next free element of the

stack. The AKS stack elements are held in an array called 'stack' and
the pointer to the next free element of 'stack' is 'stacktop'. At the start

of the program 'stacktop' is initialised to point to the first element of
'stack'. Frõm then on, 'stacktop' is only changed by the *stack* and
unstack subroutines. stacking or unstacking a variable is done by

storing the value of the variable in 'dat' and calling *Stack* or *unstack*

respectively.

B3

Having converted the infix string into Reverse Polish it must be eval-
uated. This can be done very simply by the use of a stack. As*converttoRP* has finished using the software stack, .evaluateRP. can
make use of the same stack. The algorithm scans through 'revpolg'
one character at a time from left to right. lf the character is an operand
('t' or 'f') then stack it. lf the character is an operator then take the
required number of operands off the stack, perform the operation and
stack the result of 't' or'f'. The binary operators, '.' and '/' will unstack
two operands whereas the unary operator '-' will just unstack one op-
erand. When all the characters in 'revpol$' have been processed, a
single value remains on the stack. lf this value is 't', 'dat' is set to 'true'
otherwise 'dat' is set to 'false'. The expression has now been fully
evaluated.

However, what happens if the original 'exprg' was incorrect? For-
tunately, th
to be made
of the ex

is method of expression evaluation allows simple checks
at each stage of the evaluation process to detect the validity
ression. Firstly, if any invalid characters (ie. not in "-.1

disit)
rough

'ora are included then these are recognized during
the initial scan th the string stage 1 of the evaluation process.
Missing numbers afte r a flag or predicate character (eg. '(C/W3)') are
detected when the evaluator attempts to substitute 't' or'f'for the flag/
pledjcate - stage 2. Finally, an incorrectly structured expression (eg.
'(C3/W3)V12') will be detected after the Reverse Potish eipression hat
been evaluated because the stack will hold more than just the result

- at the end of stage 3.

84

14
EXTENDING AKS

While the basic AKS system does provide a complete adventure game
generator, and one which can be used to create some very complex
and large adventures, obviously there are additions which could be
made. Everyone has their own ideas for adventure games, and for the
types of actions and situations they would like to include in their own
games. ln this chapter we will detail some of the additions we have
thought of, as well as methods for adding your own additions and
extensions to the basic AKS format. We hope that you will experiment
with AKS, and add your own new actions, commands and so on; you
will learn a lot more about programming and adventure games writing
in this way than from any commercial games designer.

EXTRA ACTIONS

This is the simplest addition to AKS, and the easiest to carry out. The
actions included in the basic system cover all the usual adventure
game requirements, but you may well wish to add other actions which
cannot be constructed from several existing ones. Possible new actions
might be EAT, DRINK or even SLEEP! These can be fitted into the
system by inserting a new subroutine which deals with the objects the
new action affects. This new subroutine is then accessed by adding
a new line into the Actions routine, which tests "act$" for the new value.
An example might be:

lF act$:"SL" THËN GOSUB 6ØØØ : REM .Sleep.

where the subroutine dealing with the sleep action is located at line
6ØØØ.

85

REAL TIME ACTION
Although the AKS system already provides a system of counters which
can simulate a timed event, where the time is measured in turns, this
may not be enough. ln many games, the adventure is played in real-
time, with time ticking away between turns (while the player is making
his decisions and typing in a command) as well as while the computer
is actively engaged in processing a command. ln machine code, this
is fairly easy to achieve, using interrupts to update a clock. lndeed,
on some machines a realtime clock is provided by the computer's
hardware. ln the case of the Amstrad, we are fortunate that the Basic
itself provides for interrupts, and allows us to create real time events
from Basic.

The way such a feature could be implemented is to alter the lnitialise
Counter subroutine so that it sets an interrupt timer in progress. Thus,
we would use the Amstrad AFTER statement to say that a certain
subroutine would execute after a certain amount of time. This would
enable us to set an event going, and then the basic hardware would
interrupt whatever process was going on in order to execute our event
after the elapsed time. Once the event has occurred, we can return
to the main program at the point we left it.

It would also be possible to implement an event which occurred
every so often using the basic command EVERY, instead of AFTER,
as in the above example. This would cause our event subroutine to
execute at regular intervals, instead of just once. One possible use for
this would be intelligent characters, who could move through the game
of their own accord, with their position updated after every three minutes
or so.

The Amstrad manual gives full details of the interrupt facilities avail-
able in Chapter 10.

DON'T CARE MATCHES
At the moment, we have to match all of our command input against a

set of trigger phrases, wìth a match for each word in the trigger phrase
being nðCessary. Wouldn't it be better if we didn't always have to match
every word, but could just make sure that some of the input phrase
was correct, while not caring about the rest? This is where what is
known as a "don't care" indicator comes in. This enables us to say
that we are not bothered about what value some part of the phrase
has, just that we want that part of the phrase to be present. To add this
feature to AKS, we simply have to add a "don't care" facility into the
routine triggertest, which compares the phrases with the command line
input. This could be a symbol such as "Ê", which would represent a
"don't care" word. For instance, in:

86

T,eat Ê,*

we are simply testing to see if the player wants to eat an object, we
are not bothered about which object he is trying to eat!

This facility also allows us to set unconditional triggers which will
activate whenever the player inputs a command at their location, re-
gardless of what that command is. This is done by using the trigger:

T,Ê,*

which will ignore the player's input completely. This might be useful
if we wish to cause an action the first time the player tries to do some-
thing in a location, or perhaps to simulate something like the player
being drunk, where it will trap any of the player's inputl

A RANDOM FACTOR
Although, personally, we do not like random happenings in adventure
games, as they can spoil an otherwise excellent adventure by taking
away any skill factor, some people do like them. lf you wish to add a
random facility to AKS, it would be possible by adding the random
facility to the conditions part of a trigger. Thus, the trigger:

T,jump,.R25

would only happen 25% of the time, where the "R25" condition indicates
the random 25o/" chance.

SKILLS
with the growth of roleplaying games and the increasing interest in

sueh gamãs, there are more and more adventure gam.es being pro-

duced-whicl-r attempt to emulate a roleplaying game. This means add-
ing player character skills to the adventure. ln AKS, this would require

a ðharacter generating section, which would enable the player to create
his charactei. You could then test these skills in the normal conditional
checks to see if the player is capable of performing an action, or to
see if the player is affecied by an event. Again, skills do tend to add
to the random elements in the adventure game, and produce a poorer

adventure in our opinion. There is no way a computer can substitute
for a human games master!

87

BB

SEGTIO]I FOUR

WITCH HUNT - AN
EXAMPLE AKS

SGENARIO

89

06

15
WITCH HUNT PLOT
DESIGN

Designing the plot for an adventure game is very similar to designing
the plot of a novel. You begin with basic ideas about the situations and
characters you want to deal with, often just in the form of short, dis-
connected notes. These must be brought together, and interlinked, to
form a continuous storyline. Within the adventure context, you do not
have to bother quite so much about detail, or even realism, but you
are faced with several other problems. ln a novel, the main character
or characters, stick to the storyline you have set out - they don't have
a mind of their own; in an adventure game, your central character is
the player, and they can think for themselves! ln this chapter we will
be looking at how an adventure game is designed, and how to develop
the basic ideas into a fully-fledged plotline.

The example plot and adventure game we will be considering is
Witch Hunt. This is a relatively simple and fairly short scenario which
has been implemented using AKS. As such, we are able to break down
the whole scenario into sections, and show just how each of these
sections connects with each other and the overall plot. lf you have not
yet played through Witch Hunt, and would like to puzzle out the game
by yourself, we suggest that you do so before reading this chapter.
The following pages discuss Witch Hunt in detail, and thus give away
most of the solutions to the scenario.

BASIC PLOT IDEAS
The basic idea behind Witch Hunt was to develop a short scenario
which offered a chance to interact with some characters, and which
had an overall goal. We also wanted to get away from the very over-
worked theme of magicians, knights and dragons - in fact the whole
fantasy milieu has been done to death.

91

Thus, we settled on an approximation of Middle Ages England, with
the player's task requiring him to find the identity of a witch in a small
village. With both of us being firm fans of Monty Python's Holy Grail
film this was a fairly natural choicel Once we had decided on the theme
of the adventure, we had to decide on some of the basic elements of
the plot.

The Setting
ln order to keep the adventure within a reasonable size, and thus keep
down the number of locations, we decided to base the adventure in
and around a small country village. Once this had been fixed, it was
immediately possible for us to work on the map of the adventure game.
As the game was relatively small, we needed only show the major
buildings and sites of interest during the game, thus people's houses
could be left out, along with miles of road, fields, etc. This enabled us
to produce the map shown in Figure 15.1, which is a rough sketch map
of the area the adventure takes place in. Note, that at this stage we
are not bothered about how each location is connected, or what each
location contains, just with what locations we have; all the connect¡on,
etc information comes later, when we start to produce the actual scen-
ario data.

/-

.oO

FIGURE 15.1

92

The Purpose of the Game
While we have already said that the player's mission is to find out which
person in the village is the witch; just how does he do that? We came
up with, and discarded, several ideas before hitting on the concept
used in the Witch Hunt scenario. The player finds a hat which belongs
to the witch in question, and thus, he must find the person this hat fits
(shades of Cinderella!).

Characters
lf the player is looking for a witch in his village, then there must be
some inhabitants for him to try the hat on! Thus, we will need some
non-player characters for the player to interact with. Well, we have
already drawn up the map, and this shows a number of important
locations within the village. Obviously, the owners of the various prem-
ises within the village can be used as characters, as this has the
advantage of tying them down to a logical, fixed location. This gives
us a woodcutter, innkeeper, blacksmith, priest, goatherd and miller.

The Objects and Puzzles
The player has to try the witch's hat he finds on everyone in the village,
without them realising what he is doing, that is the major puzzle, but
there has to be more than this in the game. We have to introduce some
puzzles (and objects associated with them) that will hinder him in his
task, and prevent the player just breezing through the game.

One limitation is to set a time limit on the game - either he solves
the mystery and finds the witch by midday, or he is burntl This gives
the game a sense of desperation, but doesn't really stop the player
completing the quest simply and easily. What else is there associated
with a witch? Black cats, of course, and thus the black cat in the church
yard enters the game. This sets another time limit on the player, but
requires him to solve this puzzle (how to lose the cat, before he is
burned as a witch), rather quickly; it also adds extra puzzles which
must be solved to achieve this aim, Alì these puzzles use the locations
we have already put on the map, and objects which would naturally
be there.

Having developed a few rough ideas for our adventure, we can
connect these into a complete plot, for the whole adventure. The best
approach to plotting the adventure is to consider the actions the player
must take to solve the game as a short narrative - thus we write them
out as a short story. This enables us to spot inconsistencies in actions,
and helps us check that it is possible to perform the actions in the
order we require. The plot line for Witch Hunt, our example game is
written out below:

93

WITCH HUNT: THE PLOT
Introduction
You are a simple village lad, who works for the local miller, fetching
and carrying grain for him. Your life was reasonably happy and setiled-,
very little disturbs the tranquil lifestyle of your small country village.
That is, nothing disturbed it until recently; there have been some strange
goings onl The crops have been turning bad, the corn at the mill hás
been plagued with rats (previously unseen locally) and the goatherd
has vanished. These occurrences would be worrying by themselves,
even if they didn't relate to you; unfortunately, the villagers have decided
that your working at the mill has something to do with the corn, and
the fact you found a secret crypt near the church (and were discovered
there by the priest) has led them to accuse you of being the witchl
You have protested your innocence, of course, to no avãil, and they
have given you until noon today to prove your innocence by finding
the "real" witch - if there is onel

Plot
The game starts on the village green, at the centre of the village. Where
can you go to find the witch, or even to find out if there is one? The
first clue comes from the village pond, here you find a smalltoad, which
ggems strangely afraid of water! So, you pick up the toad and drop
it into the pond, and to your surprise there stands the missing goatherd.
He is wet and confused, but manages to tell you that he wãs attacked
and turned into a toad in the woods, You also discover that the ducks
on the pond are guarding something, and they appear to be hungry
enough to object to you reaching it,

Once you are in the woods, your surroundings all look very similar,
and you find yourself lost. Whilst wandering through the mazeof trees,
you hear someone running away from you, and there on the ground
is a witch's hat! This must belong to the witch - and you quickly realise
that whoever it fits will be shown to be the witch! you now hav-e a way
of identifying your quarry. You slip the hat onto your own head - it
doesn't fit!

ln the centre of the woods is a small clearing, and here you see the
woodcutter, he is breathing heavily and looks hot and bothered. He
shades his eyes from the sun and then notices the hat you are wearing.
Commenting that it will shade him from the sun, he tries it on for sizê

- it doesn't fit him. That is one suspect you can strike off your list.
Coming out of the woods, you pass through the churchyârd, and as

you do so, a black cat steps out in front of you. You almost trip over
it, but manage to keep your feet, only to find that it follows you. you
quickly realise that if the villagers find you with the witch's hai and the
black cat, they are not going to believe in your innocence for very long!

94

You have to find some way of getting rid of the cat - food seems a
good idea, and then you remember the rats at the mill. You will need
io catch them, and that will require cheese, so you head for the inn.

Unfortunately, the innkeeper is in the inn kitchen, and he prevents
you from taking his cheese, or his last loaf of bread. Luckily, however,
you are able to steal the cheese when his back is turned. So, armed
with some bait you (and the cat!) head for the mill. Once inside, you

can see some movements on the rafters, and dropping the cheese
brings a mouse scurrying down. This you catch and give to the cat,
hastily leaving while its attention is diverted! While you are up at the
mill, you wonder if the miller is the witch - he might have spoilt his

own corn as a coverl When you find the miller he is busy carrying
sacks of flour, and he Iooks thirsty and tired. An idea strikes you, and
you fill your witch's hat from the stream, offering it to the miller. He

ihanks you, gruclgingly, and drinks some of the water, before pouring
the resf overhis head. You can see that the hat will not fit him, as he

does this. Another suspect can be. crossed off the list'
As the miller takes the hat, he drops a sack of f lour, and you remember

that the inn-keeper wanted one, which would enable you to get the
bread to feed the ducks. You head back to the inn, where the innkeeper
accepts the sack and lets you have the loaf of bread. As you leave the
kitchen, you notice that the innkeeper is continually running backwards
and forwards between the main part of the inn and the kitchen. This
gives you an idea for testing the hat against the innkeeper's head. You

óarefully balance the hat on the door between the two rooms, and then
call in ihe inkeeper - the hat falls from the door onto his head! lt

doesn't fit, but he is so furious with you that he throws you and the hat

out of the inn! Ah well, you can't go there again but at least you know
the innkeeper isn't the witch, as the hat didn't fit him.

The next place to try is the church, where the priest will be. He isn't
in sight when you enter, so you climb the belfry to look for him. Once
by the bell, you cannot resist the urge to strike it, and so you ring the
bell. There is a shout below you, and you see the priest run into the
nave of the church, and stand looking up directly below you! This is

too good an opportunity to miss, and so you drop the hat, which sails
gently down and over the priest's head. And over his shoulders as
welll You hurry down to the nave and pull the hat from his head, he

seems annoyed and hurries back to the crypt. You follow him, and find
the strange carvings on the floor of the crypt that you saw earlier, as
well as torches lining the walls. Strangely, the brackets holding the
torches onto the wall are made of iron - an expensive method! That
reminds you - you haven't been to see the blacksmith yet!

The blacksmith is very unhelpful and very unfriendly, when you try
and approach him. Perhaps he is trying to hide something? Like the
blacksmith's ducks are? lt is time to find out just what the ducks are

95

hiding, and so you feed them the bread. They scatter and reveal the
gold which they have been guarding. The woodcutter appears and
claims the gold as the money which was stolen from him - obviously
by the blacksmith! This is a fairly serious offence, and so the blacksmith
is put into the stocks on the green.

This gives you the opportunity to try the hat on the blacksmith, now
that he is immobile, and . . . it fitsl The blacksmith is the witch, and you
have proved your innocence! You celebrate that evening with the búrn-
ing_of the blacksmith, glad that it isn't you who is beinþ burnil

Obviously, when you are constructing your own plot lines, you do
not need to write them out in such a detailed and structured way as
the one above. That is written out like this, to make it interesting to íead
and follow for other people - you are the only one who has to under-
stand your plot notes.

The next stage in preparing your adventure is to go from the plot
notes to the actual data statements required for coding the adventure
using AKS. The next chapter shows how this is done, witn a full break
down of the Witch Hunt plot described above. lf you study both the
chapters together, you will see how a plot idea càn be translated in
a straight forward way into AKS statements.

96

16
BREAKDOWN OF
WITCH HUNT

This chapter consists of a detailed breakdown of each location, object
and event in the example scenario Witch Hunt, explaining how they
can be implemented using the AKS system. The breakdown consists
of the following:

1) The location map of AKS, showing how each of the locations
is connected.

2) Tables listing each of the flags used, the scores given, the
location names, and the objects with their start locations.

3) Locations.
4) Objects.
5) Events.

FLAGS
Flag no.

Ø

1

2
3
4
5
6
7
B

9
1Ø

11

Meaning

found hat
rung church bell
hat dropped on priest's head
put toad in pond
being followed by cat
hat balanced on inn door
banned from inn
fed mouse
hat full of water
given miller water
blacksmith in stocks
started counting game moves

97

LOCATION MAP
FOR

WITCH HUNT

25.
WOODCUTTER'S

24.

wooos
22.

wooDsWOODS

18.19_

't 3.
CHURCH.
YARD

11.
BELFRY

10.
CHURCH
NAVE

12.
CRYPÏ

9.
FORGE MEADOW

8.
6.
GBEEN
SOUÏH

PONO
K

3.
INN

2.
INN
BAR

t_

GREEN
MIDDLE

5.

GRAZING
LAND

14.
ROAO

4.
GREEN
NORTH

15.
BRIDGE

16.
MILL

17.
STREAM

TWO.WAY LINK

98

+ ONE-WAYLINK

SCORES
Puzzle Score

Trying hat on woodcutter 1Ø

Trying hat on priest 1Ø

Trying hat on innkeeper 1Ø

Trying hat on miller 1Ø

Trying hat on blacksmith 2Ø

Getting blacksmith in stocks 2Ø

Getting rid of the cat 1Ø

Freeing goatherd from spell 5
Finding gold 5
Loading a saved game -1
Maximum score is 100 points.
lf you save the game, you only get 99 points

LOCATIONS
Location no. Location

Ø

1

2
3
4
5
6
7
B

9
1Ø

11

12
13
14
15
'16

17
1B
'19

20
21
22
23
24

global location/player
green middle
inn bar
inn kitchen
green north
grazing land
green south
pond
meadow
forge
church nave
church belfry
church crypt
churchyard
road
bridge
mill
stream
woods
woods
woods
woods
woods
woods
clearing
woodcutter's25

99

OBJECTS
Object no, Object

Ø player
t hat
2 load
3 ducks
4 cheese
5 bread
6 mouse
7 bell
B goats
9 priest

1Ø sack of flour
11 woodcutter
12 cat
13 innkeeper
14 gold
15 miller
16 blacksmith
17 stocks

lnitial location
green middle (1)
woods (23)
meadow (B)
pond (7)
inn kitchen (3)
inn kitchen (3)
mill (16)
church belfrey (11)
grazing land (5)
church crypt (12)
nowhere (-1)
woodcutter's (25)
nowhere (-1)
inn kitchen (3)
nowhere (-1)
mill (16)
forge (9)
green north (4)

LOCATION Ø - THE GLOBAL LOCATION
Many of the definitions in this location will be standard for most AKS
scenarios. Commands which are usually explicitly coded in the Basic
program of other adventure games, such as movement, inventory, get
and drop, are defined in the AKS scenario global location. The explicit
coding in AKS is associated with the action (A) statements not with the
keywords which cause their execution. Witch Hunt defines the action
of going east as:

T,e,east,*
A,GO,E

This associates the keywords 'e' and 'east' with the action 'GO,E' so
that when the player's command line contains either then word 'e' or
the word 'east' AKS will perform the action of moving the player east.
Supposing you wished to adapt Witch Hunt to print ã messaçje on the
screen confirming the action, it is a simple matter to add an extra action
to this trigger as follows:

T,e,east,*
A,PR,Going eastwards
A,GO,E

No modification of the AKS program itself is required. ln addition to

100

allowing modification of the fundamental actions of an adventure game
scenario, actions may be deliberately omitted from a scenario by
omitting their definition from the global location,

ïhe way Witch Hunt implements the cat following the player around
shows the flexibility of AKS triggers. From the above example, it can
be seen that adding actions to triggers allows extension of an action.
A brief examination of the Witch Hunt global location definition will
reveal that it has two versions of every movement command. Both
versions contain the same keywords but have different trigger condi-
tions and actions. The first version will fire when flag 4, the'player being
followed by cat' flag, is set to true (ie. '.F4' evaluates to true). The
second version will fire unconditionally and so if the first version does
not fire the second version will. ïhe first version, which fires when flag
4 is set to true, results in the player being moved by the 'GO' action
and the object 12 (the cat) being Zapped ln to the player's new location.
The second version, which fires when version one fails to fire, just does
a normal move player using 'GO'. To cause the cat to start or stop
following the player merely requires setting flag 4 to true or false
respectively.

The global location in Witch Hunt also contains triggers for actions
not fundamental to adventure games in general but which may be
performed at any location in the Witch Hunt scenario. An example is
the action of eating something. Commands containing 'eat loaf'or'eat
bread'will cause 'Yummy yummyl'to be printed and the loaf (object
5) to be Zapped Out to nowhere; provided, of course, that the player
is carrying the loaf (ie. '.C5' is true). A similar trigger exists for eating
the cheese. However, if the player enters 'eat church' then neither of
these triggers will fire and AKS will reach the 'T,eat,*' trigger and print
'No thanks'. The addition of these extra scenario specific commands
helps to give the scenario credibility.

The global location cannot be reached by the player and so requires
no description or connection statements. Triggers which may occur
in any location must be defined here. However, remember that triggers
defined in the player's current location (localtriggers) have priority over
triggers defined in the global location (global triggers). lf a localtrigger
is satisfied then the global trigger will never even be tested. This is
illustrated in Witch Hunt by the global trigger'T,n,north,.'and the local
triggerdefined in location 13,'T,n,north,church,.-F4.012'. lf the player is
at location 13 and enters the command'go north'then AKS try to
match the local tngger lirst. The keyword 'north'will match and so the
condition '.-F4.Ø12'will be evaluated. When this evaluates to false, the
trigger is not satisfied and so AKS continues to try the remaining local
trigger statements; only when all these have been tried are the global
triggers tried resulting in the firing of the unconditional 'T,n,north,*'. ln
the case where'.-F4,012'evaluates to true, the actions immediately fol-

101

lowing the local trigger statement are executed and no further trigger
testing is done; hence AKS does not reach the global trigger statement.
ln this way, the same keyword can be made to have different effects
in different locations. Here, 'north' is made to cause an entirely different
action in location 13 to the normal global one.

769ø
77ørò
77tø
772ø
773ø
774ø
77ãø
776ø
777ø
774ø
779ø
7Aøø
78t@
782ø
7t,3ø
7841ì
7Bãû
7e6ø
7A7rì
788ø
7ecø
79øø
7911â
7?2ø
793ø
7?4ø
795ø
7?6ø
797ø
794ø
799ø
8øøø
80t1ø
Bø2ø
8ø3ø
8ø4ø
aø3ø
eø6ø
eø7û
8øBø
Eø9ø
atøø
811ø
8t2ø
B l3ø
814ø
a 150'
E 16ø
at7ø
818ø
819ø
82øø
tjzLø
822ø
825ø
a24ø

DATII
DATA
DATA
DATA
DATA
DATA
DâTA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATfI
DATA
DATA
DATII
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LtØ
Ttnfnorthr*F4

ATGOTN
Ar¿l r12

Trnrnorthr*
ArGlOrN

Trereåstr*F4
ATGOTE
ArZ¡r12

Trereastr*
ArGiOrE

TrBrEouthr*F4
ArCìOrS
ArZIrl2

Trsrsouthr*
ArGiOrS

TrHrwestrtF4
ArGiOrW
ArZr. t12

Trwrwestr*
ATGOTW

Trurupr*F4
ATGO,U
Ar¿l rL2

Trurupr*
ATBOTU

Trdrdownr*F4
ATGOTD
Ar2l r12

Trdtdownr*
ArCìOrD

TrwearrFut onr*
A, PO

TrremovÉrtake off,*
ArTO

Trget rtakerpick up rEåtch r*
AtGE

T , drop , put i throw t rel eåse | *
A,DR

T r ex , exan, exåml ne I I ook at , *
ArEX

Tti tinvrinventoryr+
A,IN

Ttscoret*
ArSC

Trloadr*
ArLO
Ar ISr-l

T , save, *
AtSA

Treat breadreåt loå+ r*Cs
ArFRryummy yummy!
ArZOrS

Treåt cheeÉer*C4
ATPRTFår too nouldy!

Treåtf*

102

825ø
826ø
€27ø

DATA A,FRrNo thanks.
DATÉì Trfeed catrdrop mouEerreleåse nouser*C6.Ol2
DATA ArPRrThe cåt tåkeE both mouse ånd cheese and the
n runs o{{.
DATA A, IS,1O
DI\TA llrAFr4rF
DATA ArZOr6
DATA A, ZOr l2
DATA A,HCtO
DATA Trhitrklll rettåckr*
DATA ArPRrSorry, No violence ls allo¡¡ed in thls gäme.

929ø
e29ø
B5øø
831ø
s52ø
833ø
E54Cl

835ø
836ø
637ø
gSBqt
839ø

DATA
DtìTA
DATA
DATA
DATA

T I show, gi ve I accuse r {eed r *
ArPRrNot lnterested.

Trquitr*
ArBC
At nu

LOCATION 1 - GREEN MIDDLE
This is the first real game location in the scenario definition. Witch Hunt
starts the player off at this location. This location has two description
definitions (D statements). The description the player is given will al-
ways start with the first of these which has no condition attached. The
second description is only glven when the player has not spent one
game turn at this location (ie. not visited location 1, '.-V1', is true). Being
as the player starts at this location he will only receive the second
description once - before his first move. ln this way, Witch Hunt
implements the usual introduction to an adventure game (ie. as the
second description).

The player is only allowed 100 turns in which to complete Witch Hunt.
The counting of moves is done using one of the AKS counters (counter
1). When the counter reaches zero event 1 will fire automatically and
the actions defined in event 1 will be executed. These actions are
described later in this chapter. However, for a countdown to be started,

the player's first move must result in an initialise counter (lC) action.
For this reason ther:e is a trigger for each possible direction of movement
from this location (N,S,E,W). ln addition to the normal effect of moving
the player (by 'GO,N', 'GO,S', etc.) each of these triggers initialises
counter 1 to 100 (by'1C,1,100'). Although this would have the desired
effect on the player's first move, if the player later returns to this location
and moves off again then the counter will be reinitialised to'100. This
would be fine if you wanted to implement something like a player
holding his breath as he leaves a diving bell and having to return to
the bell within 100 moves or drown, but we don't. Therefore a flag (flag
11) is used to indicate whether the initialisation has been done or not.
AKS automatically initialises all flags to false (F) at the start of a game.
The movement triggers test for this flag not being true (by '.-F11')
before firing and once fired they assign a value of true to flag 11 (by
'4F,11,T'). Counter 1 will only be initialised by the player's first move-
ment as these triggers will never fire again.

103

Travelling east from this location will take the player to location 2

- the inn. The trigger keyword 'lnn' allows the player to enter com-
mands.lr-ke 'go inn' or 'enter inn'. However, if the player has been
banned from the inn (ie. flag 6 is set to T) then the tiigsier 'T,inn,*-F6'
will not fire. lnstead, the 'T,e,east,inn,.F6; trigger will fiie and print a
message saying that the player may not enter. The latter is another
example of the local trigger having priority over the global trigger.
a4uÀ
841ø
gJ42ø

DATA L,1
qil! Dr*rIn the niddle of the village green.
DATA Dr*-VlrBeyond the north end of-thã grecrn you cânsee your home - the nill. To east is the inn. The churchwherê åll this trouble begån iE to the south. you can hear the goats making goaty noiEes to the west.DATA T, Ínn r*-F6
DATA A, GiO T E
DATA Tre, east, inn, *p6
DATA ArPRrThr innkeeper refuEes to let you enter the
i nn.
DATA T, e, east t i nn r *-Fl I
DATA A,GO,E
DATA ATAFTlITT
DATA ArICrlrløCt
DATA T, n rnorth r*-Fl I
DATA A,GOTN
DATA AtAFrlltT
DATA A, IC, I,1øø
DATA Trwrwestr*-F11
D/ITA ATGO,W
DATA A,AF,11,T
DATA A, ICr t, løø
DATA T, s, south r*-Fl I
DATA A,GOTS
DATA AIAF,lltT
DATA Ar¡Crltlelcl
DATA CrNr*t4
DAÏA Crgìr*r6
DATA CrEr*r2
DATA CrWf*rE

443ø
844ø
B45et
846ø

447ø
848ø
849ø
85øø
851ø
852ø
8530
854ø
855ø
85åEt
8570
B5Bø
Bs?ø
aóøø
BA 1ø
€j62ø
863ø
Eé4ø
8ó5ø
e66ø

LOCATION2-INNBAR
The bar in the Melbourne lnn has an unconditional short description
and a long description for the first visit to the location implemented in
the same way as for location 1. The long description mentions that the
kitchen door is slightly ajar thereby giving a clue to the way of trying
the hat on the innkeeper. A third description is given when ihe playel
has balanced the hat on the door. Triggers exisfto allow the haito-be
placed on the door and to retrieve it should the player fail to complete
the puzzle. Two versions of calling the innkeeper allow him to enter the
room when the hat is either on or off the door (flag S). Notice that the
innkeeper object is never actually moved as the messages displayed
make this seem to happen without having to genuinely move the objôct.
When the innkeeper is called and the hat is on the door, the player
discovers that the hat does not fit him, gains ten points for solving tiris

104

a67ø
869ø
só9ø

a7øø

871ø
a72ø

ouzzle (bv lncrement score
-'1s,1Ø'),

gets thrown out of the inn with

[r," nat änO OanneO from returning (by 'AF,6,T')'

DATA LI2
DATA ór*rThe bar in the Plelbourne Inn'
ó;ii;{ ol*Ës's"ti {ool ha¡ belanced å pointed hat on top
o{ the kltchen door!

oÃra D.+-v2.The lnn lg closed at the ßoment due to the
-'Åä*oiåi""ã'=pãtii"c-ã+ tt" ale. The kttchen door çlts
sliohtlv ajar àt thc :a:¡t end o{ the room'
õÁiÃ iruar".,.r hat rput het rplaca |tit tlcl
pnfe ArPRrYou manage to balanc; the håt on toP ot tnt
kitchcn door.

DATA AtAFtSTT
DATA AIZO,I
DATA T,èreast, ki tchen t*FS
DATA ArPRrThe h¡t {rll¡ to thr floor.
DATA A, ZI t 1

DATA A,AFt5,F
DATA AT60,E
DATA Trget hðtr+
DATA A, ZI T 1

DATA ATAFISTF
DATA AtEE
DATA T, cal I r Ehout r *-Fs
DATA Á, PR, 'i The^i nnkeeper ^cones^i nto^the^room r ^but ^:9Fi ng^you-he^Érosses^hl msè1 { ^and^dashes^back-i

nto-thc^kl tc
hen.'l
DATA Trcall rshoutt*Fs
DATA ArPRrÌhe tnñkeeper pushes the kitchen door open
and steps fn the room.
DATA ÀrpRrpLoPl The hat lånds on hís head. lt looks I
lke a thinbie on a gtantE head. He throvrs you and your h

873ø
874ø
875ø
87âø
a77ø
a7eø
e7iø
ABøO
881ø
EB2ø
883ø
BB4ø
BB5ø

886ø
8A7ø

EBBO

BB9ø
89ø0
a91ø
892ø
893ø
894ø
895ø
s96ø
a97rÐ

at out of. the inn.
DATA ll,Isr lQl
DATA A,GOtW
DATA A, ZI ,1
DATA A,AF,5IF
DATA A,AFT6IT
DATA T, I eaverout t*
DATA AtCìOrW
DATA CtEr*r3
DATA Crl¡¡t*r 1

-.-

105

LOCATION3-INNKITCHEN
The kitchen in the Melbourne lnn is the home for two puzzles - the
cheese and the bread. The innkeeper will not allow the player to take
either of these objects. Provided that the objects are present, local
triggers will trap an attempt to'get cheese' or any mention of the words
'loaf' and 'bread'. lnstead of performing the normal get action, a mes-
sage is printed telling the player that the innkeeper has prevented his
action. Both messages contain clues to a way of obtaining the appro-
priate object. ln the case of the cheese, the clue is in the words ". . .

openly trying to take . . .". The solution is to not try and take the cheese
openly - 'steal' it. ln the case of the bread, the clue is in thê words
". . . last loaf . . ." and in the fact that on entering the inn bar the player
is told that the innkeeper is broke. Giving the innkeeper a sack of flour
from the mill allows him to bake some new loaves and so he gives the
player the old one. This is implemented by the trigger "T,give,. C1 0.05"
which may fire when the player is carrying the flour (object 10) and
when the innkeeper has the loaf to give away (object 5 is at this location).
Although dishonest enough to accept stolen flour, he will not be in-
terested in receiving money from the player because of the danger of
being accused of stealing the woodcutter's gold.

DATA L,3
DATA Dr*rKitchên in the helbourne.
DATA Dr*-VSr¡t seens surprisingly enrpty. Perhåps the i
nnkeeper fs a little short o{ money at the nonent.
DATA Trsteal cheeser*
DATA AtBE
DATA Trcheeser*O4
DATA AIPRIGET OFF t'lY CHEESE! What do you meån openly
trying to take ny {oodl

E9Bø
899ø
1øøø

9øtø
9ø?ø
9øsQt
9ø4ø

9Et5ø
9ø6ø

9ø7ø
9ø8ø
9ø9ø
9tÍiø

DATA T rgi ve, *Cl0l. Os
DATA ArPRrThe innkeeper saysr"'Oh^goody^goody
ålte^some^more^loaves-now. " and grabs your sack -I^can^bof {lour.

"You^can ^have^th Í E^l oaf . "
DATA Arl'1O,5,ø
DATA A, ZOr lQl
DIITA Trloa{ rbrÊådr*OE
DATA AtPRTGìET OFF l,lY BREADI Whet do you rneån trying t

?l tø
çt2ø
913ø

o take my last
DAïA T, I eave,
DATA A,BO,W
DAÍA Crh¡r*r2

loaf !

outrbarr*

T

106

LOCATION4-GREENNORTH
The north end of the village green is the location where the game can
be completed. With the blacksmith in the stocks here for stealing the
woodcutter's gold (flag 1Ø is set to T), the hat can be tried on the
woodcutter and found to fit. The final twenty points are awarded for
doing this (by '1S,2Ø') and the player clears himself.

I 14Cr
915ø
916ø

9t7ø
918ø
919ø

92øø
s2tø
922ø
923ø
924ø
925ø
926ø

DAÎA L,4
DATA Dr*rAt the north end of the village green.
DATA Dr*-V4rYou rernember coming here in the påst to th
row rotten food (and the odd brick) at people ín the sto
cks. This is where they ålr{åys burnt witches. You rememb
er throwing on wood... Those were gÕod tlmes.
DATA Trput hatrplace hatrtry hatr*ç1.p¡g
DATíì A,PR,It .fits!
DATA ATPRtA crowd of villågerE gather. "The^blacksmlt
h^is^the^witch! " s¡creems the prfest. "Þurn-himl ^Burn^hfm!^Burn^him!". And they do. Everyone haE a real good time
... roåsting chestnuts and potatoes in the {íre. You hav
e cleared yoursel{.
DATA A, Igr2Ct
DATA AtSC
DATA A, GIU

DATA T rroad r*
DATA ATGOTE
DATA CrSr*, I
DATA CrEr*r 14

þ 'l\
t,

LOCATION 5 - GRAZING LAND
This location is a red herring. lt is a very good way of losing bread and
cheese to the goats. lf the player is carrying either the cheese or the
bread and tries to feed these (or any other object) to the goats then
a goat will help itself to either cheese or bread. The order of triggers
makes the goats prefer cheese to bread. ln addition to this, any attempt

107

to perform an action using either cheese or bread will result in the
goats snatching one or the other.

927ø
?28ø
92Cø
93øø
931ø
932ø
933ø
934ø
935ø

ATPRI
ArZO,

T, feed
ATPRT
ArZO,

ErEr*t

DATA Lts
DATA Dr*rAn åreå of grazing land.

ch€ese r *C4
goat ånatches your cheese and eats it.

breådrloaf r*Csgoat'snatches your bread ånd eats lt.

DATA Tr{eed
DATA
DATA
DATA
DATA
DATA
DATA

t
A
4
I
ll
5
I

LOCATION 6 - GREEN
936ø DATA Lr6
9370 DATA Dr*rAt the southern
938ø DATA D,*-V6!A foul odour

the meådow at the west of
935ø DATA Ttmeadowr*
94øø DATA ATGOTW
94Lø DATA Ttchurcht*
942ø DATA ArB0rg
943ø DATA CrWr*rB
944ø DATA CtNr*t I
945ø DATA CrSr*rlø

SOUTH

end of the vtllage green.
drifts {rom the direction o{
the greÊn.

LOCATION 7 - POND
The water in the pond is stagnant and may not be reached by the
player. The pond does provide a means of releasing the goatherd from
the spell which has turned him into a toad. Throwing the toad into the
pond undoes the spell and so he turns baek into a boy. Five points are
awarded for this and a clue from the boy tells the player to try exploring
the woods. The changing of the toad to a boy is only a change in the
description of the toad object (object 2) brought about by setting a
flag (flag 3) to true. This technique is explained in the description of
the toad object later in this chapter.

108

Feeding the ducks the bread from the inn makes the ducks move

away frori their nest and reveal the woodcutter's gold. Unlike the toad

to bóy change, the ducks to gold change_ involves a g_enuine substi-
tution of objects. The ducks object (object 3) is Zapped out to nowhere

and the golb object (object 14) is Zapped ln from nowhere. The reason

for this aTternatiúe a¡Jpróacn is that the gold object can be manipulated
by the player whereas the boy object can not. were the description
switcf ing technique used here, the player could create strange effects
by referrìng to thb gold as ducks. While not doing any harm in. terms

oí tne sceñario, this would make the game appear rather stupid to the
player

s46ø
947ø
948ø
949ø

DATA L,7
DATA Dr*rAt the edge of the village pond.
onrn Di*J.v7rTne poñd ts stagnant ånd smells {oul.
OÀrn irput ioaOrårop toadrtñrow toadrrelease toedr*82'
-F3
DATA A,DR
DATA AiPRrsptash... I The toåd turns lnto a small boy'

"þlhere^ám^i?^l¡lhat^hapPened?" he mutters aE he climbs ou
t o+ tr,ã pãna. "Uaãt^ti¡lng^t^remcmber^I^was^strolllng^in
^the^woods

! "
DATA AtAF,SIT
DATA A, ISIS
DATA Tr+eed duck¡feed ducksr*C5
DêTA ArPRrTh" ducks gobble up the bread and leave' Th
ere was somethlng hldden tn their neEt.
DATA A, ZOrS
DATA At ZOrS
DATA ArZIrl4
DftTA Ai ISrS
DATA Trf¡ll rwaterrPondr*
DATA A,PR,it is ímpossible to get at the wåter,
DATA CtSr*tB

95øø
9516

9.52ø
953ø
954ø
955ø

95ôA!
957ø
95BO
9s9Qt
96øø
961ø
962ø

109

LOCATION 8 - MEADOW
DATA Lr8
DATA Dr*VBrIn the meådow.
DATA Dr*-V8,In the rniddle of å meådow. To the north th
e ground beco¡nes marshy. At the weËtern end {'f the neado
w you cen see a ¡looden buildlng.
DATA CrNr*r7
DATA CrWr*r9
DATA CrEr*tó

9ó30
964ø
9ó5ø

966ø
9671Ð
96eø

LOCATION 9 - FORGE
The description the player is given on the first visit to this location says
that the blacksmith is well known for his all round handyman skills. This
might give the player a clue as to who carved the intricate markings
on the floor of the secret crypt.

Showing the blacksmith anything other than gold coins, or accusing
him of something when the coins (object 14) are not carried results in
the player being told to go away. However if the player is carrying the
coins the blacksmith will confess to stealing the woodcutter's gold and
is dragged away by the villagers. The player is not told where they take
him - to the stocks on the north of the green (by'MO,16,4'). A ftag
is set (flag 1Ø) to indicate that the blacksmith is in the stocks. Twenty
points are awarded for completing this puzzle.

DATA Lrg
DATA Dr*rAt the blacksmith's {orge.
DATA Dr*-V9rYou remember coming here often in the påst
. The blacksmith always repairs everyone:l tools. He is apretty good all round handyrnan.
DATA Trshow goldrgíve goldrEhor.. coinsrgive coinsreccuË
Êr*Cl4
DATA ArFR,The blacksmith bursts lnto tears. ,'Alright.
-I^con{ess^-^l^stole^the^woodcutter's^gold.', he blurts o
ut.
DATA ATFRTA crowd o{ villegers ruÊh up ånd dråg the p
leading blåcksmith aþrey.
ÞATA A, IS.zQl

969ø
97øø
97tø

972ø

973ø

974ø

975ø

.:¡ti.::,1

110

976ø
977tÐ
97tlø
979ø

DATA
DATA
DATA
DATA

9Êøø DATA

ArAFr 1ø
ArMOr 16

Trshowrg
ArPRrHe

crEr*rB

T
4
ve, accuse r{orge, anvi l, *
shouts I'Bs^of.f ¡with.you! ^Llttle^witch. ".

I
i

I

LOCATION 1Ø - CHURCH NAVE
Once the player has managed to get the hat to land over the priest's
head and shoulders as described in the next location explanatíon, the
hat must be retrieved. The trigger which traps the keyword 'hat' when
the hat is on the priest's head Zaps Out the priest (object 9), Zaps ln
the hat (object 1)and then does a Get to pick it up.

æ

DATA L, Tø
DATA Dr*rIn the church nåve.
DATA Dr*-VlOrThe Eecret entrance to the crypt you foun
d lies open. High åbove you is the be¡{ry balcony. The {
ront door is to the north. In the Eouth wall is a small
door.
DATA T,hat, *F2. 09
DATA ArFR,Tug...
DATA A,ZI,I
DATA ATAFT 1 tF
DATA Ar ZOr9
DATA AtGE
DATA ArPRrThe priest storms o{{.
DATA Trcrypt,*
DATA ATGOID
DATA Trbel{ryt*
DATA AtG¡OtU
DATA CrNr*rê
DATA CrSr*r 13
DATA E,Dr*rl2
DATA CrUr+r1l

981ø
9426
983ø

984ø
985ø
986ø
9tJ7ø
988ø
949ø
s9øø
991ø
992ø
993ø
9940
995ø
956ø
997r4
998ø

111

LOCATION 11 - CHURCH BELFRY
The puzzle at this location is a two stage one, given that the player has
already found the hat. The first stage is to ring the bell which causes
the priest (object 9) to come from the crypt and stand in the nave
(location '1Ø) directly below you (by'M0,9,1Ø'). Setting flag 1 to true
causes the priest's description to change to say he is looking up at the
belfry. The second stage of the puzzle involves dropping the hat from
the belfry onto the priest's head (indicated by setting llag 2 to Ï) to
reveal that it is too large for the small priest and gain ten points. lf the
bell has not been rung when the hat is dropped (flag 1 is F) then it just
falls onto the nave floor, as a result of the second 'drop hat' trigger
statement.

999ø
tøøøø
LøøIø
tøø2ø
Løø3Tì
tøø4ø
løø5ø

Løø6ø
løø7ø
1øøBCt
10ø9ø
tøtîìtì

DATA L, I I
DATA Dr*tIn the belfry.
DATA Dr*-VtlrFar below you côn see the church nave.
DATA Trrlng bell

'*-(FllF2)DATA ArPRrTtre bell tolls and nearly deafens you!
DATA AtNOr9r lgt
DATA ArFRrYou see the prlest run into the church dfre
ctly below you.
DIìTA
DATA
DATA
DATA
DATA
r the
DATA
DATA
DATA
DATA

ArZOrl
Trdrop hat¡throw håtr*Cl.-F1

112

ArAFrlrT
T'ring bell t*
ArPRrDing dong... !

Trdrop hatrthrow hatt
ArPRtThe håt droPs +

priest's head.
Ar ISt 1e'
ArAFr2tT

*c1.F1
roo the belfry and lands ove

tø1 lø
Lø12ø
1ø 13ø
1ø14ø

lø15ø
tøtéø
tø17ø
1øIBø
lø19ø

DATA
DATA
DATA
DATA
DATA

ArFRrlleeee.... it falls from th€ belfrey.
Arl.lorlrlCl

T, nave, I eave t *
Ar60rD

crDr*t1ø

LOCATION 12 - CHURCH CRYPT
This is the location discovered by the player (before the game started)
and where he was caught by the priest. The function of the crypt in

the Witch Hunt scenario is to provide the player with clues to the identity
of the witch, without providing any hard and fast evidence' The clues
are obtained by examining the location. Examination of the markings
on the floor reveals nothing of their meaning but the player is told that
they are well carved. When the player first visits the blacksmith, he is
reminded that the smith is well known for his all round handyman skills.
This clue is a little vague whereas the clue given by examining the
torches on the wall is very informative. Just mentioning torches says
that they are firmly attached to the wall by brackets. The unwary player
may tak-e this to only mean that the torches may not be taken. However,
this should prompt the player to examine the brackets and discover
that they are made of iron. This points very strongly at the blacksmith's
involvement. Notice that the markings, torches and brackets are not
objects and so their examination requires explrcit triggers in the crypt
location definition; whereas objects have their examination details
embedded in the object definition.

lø2øø DATA Lr12
1ø21ø DATA D,*rIn thr Eecret crypt.
tø22ø DATA Dr*-Vl2rThe air iE icy cold. The floor is intrica

tely carved with strange narkings, On the v¡al1 are lit t
orcheE.

lø23ø DATA Trtorchesrtorchrwall rwållsr*
1ø24C1 DATA ATPRTA couple o{ torches are firmly attatched to

the wall by brackets.
1ø29ø. DATA lrbracketrbracketst*
1ø2óø DATA ArPRti¡Llst plain iron bracketg,
1ø27ø DATA TrfloorrmarkÍngsr*
¡ø?8ø DATI\ ArFRrYou cån ñåke no sense of the markings but y

ou c¿ln see they åre well carved.
182?ø DATA
1ø34}ø DATA
Iø3Iø DATA

Trlnaver*
ATGOTU

crur*r1ø

113

LOCATION 13 - CHURCHYARD
When the player goes north from here he trips over a black cat which
will then follow him around for 20 moves before a crowd of villagers
notice he has a black cat familiar and decide to burn him. The counting
of moves is done using counter Ø and the villagers burning the player
is event Ø.The localtriggerwhich traps an attempt to move north starts
the countdown by the action 'lC,Ø,2Ø'. ln addition to this, a flag is set
to indicate that the player is being followed by the cat (flag 4). This
prevents the same trigger from firing again when the player tries to go
north again and it allows f iring of the alternative set of movement triggers
defined in the global location. These alternative movement triggers
move both player and cat. The way in which the player may get rid of
the cat is described in the explanation of the mill location definition
(location 16). lt should be noted that the cat will appear again should
the player return here and go north again after having got rid of the
cat at the mill. However, the objects to get rid of the cat have been
destroyed (Zapped Out to nowhere) at this stage in the game so the
cat can not be disposed of again.
tø5.2ø
røs3ø
1034ø
1ø35ø

ere !

1ø36ø DATA
1637ø DATA

DATA L, 13
DATA Dr*rIn the churchyard.
DATA Trdl g, graverheadstone;tombt*
DATA AiFRrCareful... they bury grave robbers åround h

T rn, north r church r *-F4
ArPRrYou trip over å blåck cat which appears {ro

m behind a headgtonel
1elsBC!
I ø39ø
t.ø4øø
1ø41ø
tø4210
I ø43ø
Lø44ø
I ø45ø
1ø460

DAfê
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Ar¿l tL2
Arl\Fr4rT
A rrc tø 12ø

Trchurchr*
ArGìOrN

114

tø47ø
Iø48ø
tø4?ø

LOCATION 14 - ROAD
To prevent the player wasting many hours trying to give a hat full of
stream water to characters other than the miller, a local trigger will fire
as the player moves westwards carrying the hat of water. This trigger
tells the player that he tripped and spilt it. The flag indicating that the
hat is full of water (flag B) is reset to F; thereby emptying the hat.

DATA LI 14
DATA Dr*rThê roåd.
DATA Dr*-Vl4rYou know this road u¡ell. To the north it
påsses by the mÍll on its way to town.
DATA TrwrHestr*FB
DATA AIPR,u¡HOOPS! You tripped and spilt the wåter.
DATA A,AF,g,F
DATA Trfollow roådrålong roadt*
DATA A,GOIN
DATA CrWr*t4
DATA CrNr*r l5

LOCATION 15 - BRIDGE
The player may not fill the hat at this location. lf he attempts this then
the trigger will say that he is unable to fill it here. A careless adventurer
may take this to mean that the hat may not be filled instead of 'not filled
here'.

DATA L
DATA
DATA
DAfA
e.
DATA
DATA

165øø
l ø51ø
Løá2ø
tø53ø
tø54ø
lø55ø
tø5éø

tø57ø
letsBø
t ø59ø
Lø6øø

1Cr6l0t
tø62ø

ctsr*rl4
crNr*r1ó

I
D
T

15
r*r0n å brldge over å stream.
,water,streåm, f i I I I down, d | *
ArPRrThe stream ls totally inaccessable {ron her

115

LOCATION 16 - MILL
There are two problems to be overcome at the mill. Firstly, the mouse
must be caught. However, the player is not automatically told that there
is a mouse here. lnstead he is told that something is moving around
in the rafters. Examination of the rafters or listening in this location will
inform the player that he thinks that there is a rat in the rafters. lf the
player then mentions the keyword 'rat' or 'rats' he is told that it is a
mouse not a rat. These tr¡ggers only fire when the mouse is in the rafters
(ie. flag 7 is F). The mouse can be tempted from the rafters by feeding
it the cheese or just dropping the cheese. When this happens, the
cheese object is Zapped Out (by '20,4') and flag 7 is set to T indicating
tile mouse is no longer in the rafters. The description of the mouse
changes as a result of setting flag 7 and becomes a 'piece of cheese
wìth a mouse attached to it'. An attempt to get the cheese when flag
7 is set to T results in a message saying that the mouse refuses to let
go of it. lf the player has the hat he may catch the mouse in it otherwise
the mouse will slip through his fingers. From hereon the mouse and
cheese may be manipulated as one object.

The second problem faced by the player in this location is finding
out if the hat fits the miller. This is solved by giving the miller the hat
full of water. He will drink some of the water and then pour the rest
over his head at which point the player sees that the hat would not fit
the miller. Ten points are awarded for doing this. However, if the player
has already done this once (ie. flag 9 is T) and tries a second time,
the miller just smiles and says go away creep. When the miller took
his drink, he put down the sack of flour (object 1Ø) he was carrying
and did not pick it up again when he started working again. The sack
can now be picked up by the player. Previously, any mention of flour
or sacks caused a trigger to fire which said the miller growls at you.

1ø63ø
la}64at
lø65ø
r86ó0

DAlA
DATA
DATA
DATA
onder
DATA
DATA

L,16
Dr*rThe nllI.
Ttllstenr*-F7
ArFRrYou can hear a faint Ecurrying noise. You w

1{ it is a rat.
T, råf ters r *-F7tø67ø

1øóBø
t is a rat.

Iøó98} DATA T
Iø7øø DATA
1ø71ø DATA T
Lø72ø DA'TA

tø73ø
rø7 4ø
tø7ãø

1ø76ø
Lø77ø
IATBø

ArPRrSomethfng fs making noises. You wonder if i

tråt rråtsr*-F7
ArPRrRat! Påh! I'm a nouse you fool.
,{eed mousetdrop chceset*C4
ArPRrThe mouse scurrleE down and nlbbles the che

ese.
DATA AIAF I7 IT
DATA A, ZO r4
DATA Trcåtch mouserget mouse¡take mousetplck up mouser
*F7.Ê1. - (W1lFB)
DATA A, GiE
DATA ArPRrYou caught the mouge in the hat.
DATA Trcatch nouserget mouserteke mouserplck up mouset
rFz

116

tø7sø
IøBøø
1ø81ø
Lø92ø
tø8so
rø940
1ø85ø

rø86ø

DATA ArPRrHe slips through your fingÉrs.
DATA Trcheeser*F7. lo,ble6',
DATA ArPR.ThÊ Írouee holdq onto the cheese,
DATA Tr{lourrsackrgrålnrbågrmlrl rl-Fq
DATA ArPRrThe mfller growls et youl
DATA Trglver*F8.-F9
DATA ArFRr "The^mi l ler^puts^the^såck^down r ^takes^the^håt ^ånd ^dr I n ks ^some^water.DATA ArPRrHe says "Ta^Lad." and then pours the rest o
ver his head. As hE doès this you noticc th¡t the hat ls
too småll {or him to wear.

løs7ø
1 øEBø
1ø89ø
tøsøø
lø91ø
Lû92ø
tø?3ø
1ø940

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A, I5, lø
ATAFIBTF
ArZIrlO
ArAFr9rT

Trgiver*FÊl.Fq
ArPRrHe smiles åñd Eåys "Eio^awåy^creep."

crE¡r*rl5
Crl¡¡r*,l7

<

__+_,.__

LOCATION 17 - STREAM
Unlike the bridge over the stream and the pond this location allows the
player to fill the hat with water. To indicate the hat is full of water, flag
b is assigned the value T. Should the player be foolish enough to forget
to take the hat off (ie. 'Wf is T) before attempting to fill it, he is told
why his action failed.
1095ø DATA Lr17
109éø DATA D.*,By the stream.
1ø97ø DATA Dr*-V17tA loud sploshi

er wheel. The wåter looks as
1O9Bø DATA Trfill r*81.-(wtlcó)
1ø99ø DATA ATPRII{ you insist.

sound cones fron the wat
re9h end cleår ås ever.

ng
{

I 1øøø DATA ArAFrEfT
ll0fø DATA Tt+ill hatr*Wl
tlø2ø DATA ArPRrBargle..,gargle...bubble! You ere unable to

hold your breåth any longer and take your head out of t
he stream.

1lø3ø DATA T'mill'*
t 1ø4ø DATA A r E¡O, E
l1ø5ø DATA C,E,*r¡ó

117

LOCATION 18 - WOODS (a)
This location is the first WOODS location the player reaches. When the
player arrives here for the first time, the second description is given
in addition to the main description as a warning to the player.
l1øóø DATA LrlE
l1ø7ø DATA Dt*rIn the deep
I 1ø8ø DATA Dr*-VtErCareful
Itø9ø DÉìTA CrEr*r13
111øø DATA CrWr*r19

LOCATTON 19..22 - WOODS (b)
These locations all have the same description as location 1B making
it difficult for the player to find his way around. To further complicate
navigation of this maze, moving in a certain direction does not always
take the player to the next physical location in that direction. Reference
to the location map will quickly clarify this idea.

dårk Hoods,
! You mfght get lost.

DATA L, 19
DATA Dr*rln the deep dark woods.
DATA CrEr* r l8
DATA C,Sr*tzQl
DATA Crt¡r*r21
DêTA L,2ø
DATA Dr*rIn the deep dark woods.
DATA CrWr*r23
DATA CrNr*r l9
DATA CrSt*r22
DATA CrEr*r21
DATA Lt21
DATA Dt*rIn the deep dark woods.
DATA CrWr*tzQt
DATA CrEr*t21
DATA CrSr*r23
DATA L,22
DATA DrtrIn the deep dark woods.

1111ø
Ltt2ø
1113ø
1114ø
1115ø
1t róø
tt17ø
111Søl
I I l9q'
tL2øø
I LztÍÀ
Lt22ø
I 125ø
It24rD
I 125ø
Lt?.6ø
Lt27ø
Ltzgø
tt29ø
1 130ø

DATA
DATA

crNr*r20
CrErrr23

LOCATION 23 - WOODS (c)
This is another location in the maze but, as the player arrives for the
first time a second description tells the player that he thought he saw
someone run away. The player finds the hat here.

1131ø DATA L,23
1132ø DATA Dr*rIn the deep dark woods.
1l330l DATA Dr*-VzsrAs you árrived you thought you saw Eiofneon

e r'Lrn ¿rwåy.
1134ø DATA CrNr*t2ø
1135ø DATA C,Er*r24
113êø DATA CrWrxr22

118

LOCATION 24 - CLEARING
The clearing in the woods exists to provide the player with a hint for
getting the woodcutter to try the hat on. One part of the location des-
cription says that the clearing is sheltered from the wind and the sun
seems very hot. Wearing the hat removes this part of the description.
The player must be wearing the hat when he first moves south to the
wooiJcuiter's house. Seeinþ that the player is wearing the hat, the
overheating woodcutter takes it and tries it on for size to see if it will
shade him from the sun. lt does not fit so he replaces it on the player's
head. The player is awarded ten points for solving this part of the
scenario.

1137ø DATA L,24
1138ø DATA Dr*rIn å clearlng in the woodE'
113eø Drlrr¡ ,3,1;lhiå.å:oi?"ÀåEi"d {rom the wtnd here and thc

I r4øø Dr*-Vz4rYou hear ¡ loud chopplng sound to thc gou

1t4lo
Lt42ø
1r43ø
LT44ø
1 145ø

DATA
th,
DATA
DATA
DATA
DATA
DATA

Trsrsouthr*-v25.t¡Jl
A, rs r 1gt
ATGOTB

c rw r* r22
crst*r25

119

LOCATION 25 - WOODCUTTER'S
The woodcutter can be found here. Any mention of the woodcutter's
hut results in the player being told off by the woodcutter.
1146ø DATA Lr25
1147ø DATA Dr*rThe wood cutter,s hut.1l48ø DATA Trhutr*
1149ø DATA ArPRr.The woodcutter bars your wåy. ,,.I ,ve^already

-hed ^rny^gol d^stol en. ^I' m-not
^goi ng ^to^l óse^anytñi ng ^el åe

.
^Keep^out ! "

llSAtCt DATA CrNr*r24

-=:i==
- -

OBJECTØ - THE PLAYER
ln AKS the player is considered to be a special type of object. The
player object is defined in a simitar way to ail the othái objects ättnougn
any description statements will never be printed by nks. The initial
positio.n.of the player can therefore be defined using ihe position state-
ment. witch Hunt starts the player off at location 1-, the'middle of the
village green. unlike otherobjects, it makes no sense to start the player
object off at a special location (ie. either location Ø - carried,or location
-'1.:nowhere). The p]ayer object may be given names (using the N
statement) and suitabilities (using the s statements) to allow relerence
to the player character in the gáme. lt makes no iense to allow the
player to get himself (by 'S,GE,.') or wear himself (by ,S,pO') whereas
il ryV be desirable.-to.attow the ptayer to eiamine himsetf (by
'S,EX,.,description'). Witch Hunt, howevér, sticks to the more conven_

120

tional adventure game format and does not implement actions on the
player by the player.

1151ø DATA Orø
1152ø DATA Pr1

OBJECT 1 - HAT
The witch's hat can exist in two states depending on the value of the
'hat full of water' flag (flag 8). As far as the hat object is concerned
these states are just different descriptions - one for each state of flag
B. The hat starts off at location 23 (position 23 -'P,23').

The hat is
fundamental to completion of Witch Hunt and the player can get an
important hint by examining it. Note that the hat may not be put on
when full of water (S,PO,.-F8').

11530 DATA Orl
1154ø DATA Dr+-F8ra witch's hat.
1155ø DATA D,+FBra witch'E hat {ull of ¡{åter.
I 156ø DATA Pr23
ll57ø DATA Nrhåtr*
1158ø DATA SrEXr*tIt has a label on the inside which såys 'A

Cl4E Witch's Hat - s¡ZE 9'. You wonder who wears a Eize I
håt I

tl59o DATA SrGEr*
116ø0t DATA StDRr*-(FBlCå'
1¡61ø DATA SrPOr*-(Fg/C6'
11620 DATA SrTOr*

121

OBJECT 2 - TOAD
The toad has two states, toad and goatherd, implemented in an identical
manner those of object 1. when in the goatherd state (ftag 3 ¡s r) in¡s
object may not be picked up ('s,GE,.-F3'). Names are detiñeo for both
states to allow the object to be examined in either state. The description
given depends on the state of the object.
I 163ø
I 164ø
1 165ø
I 1660
Ll67ø
t 168ø
I 1698
It7øø
tt7 tø

DATII Or2
DATA Dr*-F3ra gnall wart-covered toad.
PîIî Pr*FS,å ¡{et end {rlghtancd goet hard.DATA F,E
DATA SrGìEr*-F3
DATA SrDRr*
DATA Nrtoadrboyrherdr*
91If StEX'*-¡3r¡ very human looking toad.DATA S'EXr*Fsra very toady loðklng human.

OBJECT 3 - DUCKS
The ducks object can be referenced by the names 'duck' or 'ducks'.
It is important not to make a scenario tóo fussy about small details of
the vocabulgry. ln general a plural object shoulá be made to recðgnise
its singular form.

1172ø DATA O,3
1173ø DATA Dr*rseveral ducks.
1 174ø DATA F 17
I l75At DíITA Nrducksrduckr*
It7óø DATA SrEXr*rThey seem to be sitttng on something.

12

á--

't22

OBJECT 4 - CHEESE
1177ø DATA Or4
t178ø DATA D,*ra small plece o+ cheese.
r179ø DATA P,5
tl8øø DATA N,chee:et*
ttBlø DATA SrG¡Er*
llB2O DATA SrDRr*
118sø DATA SiEXr*rLooks å blt cherEy!

OBJECT 5 _ LOAF
11S4ø DATA Or5
1rB5ø DATA Dr*rå loaf of br.¡d.
l1860 DATA Prs
1f670 DATA Nrloaf ¡breadt*
tr88ø DATA StGEr*
11A9ø DATA SrDRr*

OBJECT 6 - MOUSE
The mouse object exists in three states:

1) mouse
2) mouse and cheese
3) mouse and cheese in hat

The current state and description of the object is controlled by only
one flag, the 'mouse fed' flag (flag 7). lf the mouse has not been fed
the cheese this flag has the value F and the mouse is in state 1. On
feeding the mouse this flag is set to T. After feeding the mouse, but
before picking it up ('.F7.-C6), the object is in state 2. Once the object
has been picked up ('.F7.C6'), it enters state 3. The sequence of
transitions from state to state is fixed as 1-2-3. This object is known by
the names cheese or mouse. Another cheese object already exists so
a condition must be attached to the recognition of the name. The mouse
may not be handled before it has been fed; by which time the real
cheese object has been Zapped Out to nowhere. Therefore, when the
mouse has been fed (flag 7 is T) it is valid to refer to the mouse object
by the cheese name. This is implemented by the 'N,mouse,cheese,*F7'
statement.

119øø DATA 016
llgfø DATA Dr*-FTrsomething movlng around in the råfterç.
1192ø DATA Dt*F7.-cérå piece o+ cheesÊ erith å nouse åttatche

d to ft.
1193ø DATA Dr*F7.C6rthe mouse and the cheese lñ the håt.
II?4ø DATA
IT95ø DATA
1196ø DATA
1197ø DATA

P, 1é
Nrmouse¡cheeEer*F7
SrGEr*
EitDRr*

123

OBJECT 7 - BELL
DATA Or
DATA D
DATA P
DATA N
DATA S
ters'r

7
,*ra ¡årgr bregs b:I1.
tlt
¡bell,*
,EXr*rl largc church bell lnscribed wfth the let
lng ne!'.

T I9Bø
¡ 199ø
L2øøø
t2øtø
t2ø2ø

OBJECT 8 - GOATS
The.goats object is a, red herring. Examination of the goats will just
conf¡rm the genuine disappearanõe of the goatherd.
12ø30 DATA Org
l2O4ø DATA Dr*rå lot of goats.
t2ø5ø DATA P,5
1206ø DATA Nrgoet rgo.rtsr*
l2O7ø DATA SrÊXr*rThey are tethcrtd to posts. Btrangel They

seem to have eaten all the good grass they cen reåch. pe
rhåps they have not been mov¡d for a whlle?

OBJECT 9 - PRIEST
The priest may be described as do¡ng one of three things depending
on whetherthe bell has been rung (flag 1) and whethelthe hat ¡s on
the priest's head (flag 2). The sequencã oÍ state transitions is 1-2-3-1.

12øAø DATA O.9
12ø?ø DATA Ór*-(FtlFz),å very smetl prleet blesslng the secr

et crypt.

'124

lzloct DATA Dr*Fl.-F2ra very ågltated prlast looklng uP åt th
e belfrey.

1211ø DAiA DriFzra prlest e¡eårfng e blåck hat over his head
and Ehoulders!

1212ø DATA P, l2
l2l3ø DATA N'Priest.*
iãíõõ oärÀ sJEx'*'¡tÉ looks very anall to vou.

OBJECT 1Ø - SACK OF FLOUR
Note that the initial pos¡tion is 'nowhere' (location -1)

1ø
,*ra sack of flour.

irå.k,uag ¡{lour r*
l+,*
r*r It is labelled 'Megal'li1I Flour Co. '

1215ø DATA O.
1216ø DATA D

12T7ø DATA P
12IBø DATA N

T219ø DATA S
I22øø DATA S
1221ø DATA S

GE
DR
EX

OBJECT 11 - WOODCUTTER

When the player first encounters the woodcutter ('.-V25'), he is given

the first desciiption. lf the player is also wearing the hat (object 1) on
this first encounter ('.-v25.W1') the first two descriptions are given. The
first description will appear in the object list, indented as normal' The
second description will appear underneath the object list and will not
be indented. În¡s ¡s another way ¡mplementing an event in AKS' Sub-
sequent descriptions of this object will only give the third desciiption.

125

t222ø
1223'ø

1224A

t225ø
t226ø
1227ø
t22Aø

DATA Ot I 1
DATA Dr*-V25ran out of br"rth woodcutter rerting on hi!i AXer
DATA .Dr*-V2S.WlrSuddenly the woodcutter snatcheE the hat. and trys it on.',t^wonder.i+^thic^wf lf-Ehiã'iã-rã-i.ã,
-the^slrn^?" he^ says. ,'pi ty. . . ^not^my^sI zeI', he ;.úbi.;-anct replåces the hat on your heåd.DAÍA Dr*V25rthe woodcutter hard at work.DATA P,25
DATA N rwoodcutter, *
DATA SrEXr*rA r¡ther hot sweaty woodcutter.

OBJECT 12 - CAT
t22qø
123øø

1231ø
t2s2ø
1233ø
t234ø

DATA O
DATA
nkl €s.
DATA
DATA
DATA
DATA

t12
Dr*F7ra frlendly blEck cat drooling around your å

Dr*-F7ra friendly bl¡ck cat.
Pt-l
Nrcåtr*
SrEXr*rIt lookc frlrndly.

126

OBJECT 13 _ INNKEEPER
1255ø
L23è1à
t237ø
I23Bø
1239ø

DATA O
DATA
DATA
DATA
DATA

l5
,*rthe innkeepcr.

t
D
FtI
N, i nnkeeper
SrEX¡*tHe I

,*
E råther large.

OBJECT 14 - GOLD
DATA O,14
DATA Dr*rsome gold colns!
DATA P,-I
DATA Nrcofnstgoldri
DATA Sr6Er*
DATA S,DRt*
DATA S'EXr*rNo. They are not sllced golden egg.
ust håvé c(]ñe 'from somewhere eIge.

L24øø
t24tø
L242ø
I 24Sø
1244ø
124Sø
1246ø They m

OBJECT 15 - MILLER
Examination of the miller will give different descriptions before and after
he has been given the hat full of water.

1247ø
I 248ø
1249ø
t25øø
125rø
1232ø

DATA O
DATA
DATA
DATA
DATA
DATA

t15
Dt*tThe niller humping sacks about.
Pr 16
Ntmlllert*
SrEXr*-p9r¡e lookE hot and thlrsty.
srExr*FtrHe look¡ wet.

127

OBJECT 16 - BLACKSMITH
The,blacksmith object may be in one of two states depending onwhether he has been put ln the stocks or not (ie. tøg ñ ¡s i or rrespectively).

I 253ø
I 254ø
t2s5ø
1256ø
1237ø
I25Eø
123r]ø

DATA
DATA
DATA
DATA
DATA
DATA
DATA

or16
Dr*-FlOrThc btecksmith hard at work.Dr*FlOrThe btàcksmith tn the

"tããtã.Pt9
Nrblacksmithrsmfthr*
!rEXr*-F1ørHe looks råther hot.SrEXr*FlørHe looks gtuck.

128

OBJECT 17 - STOCKS
The stocks have no function other than as something for the player to
examine. The description given depends on flag 1Ø in the same way
as object 16.

tzaøø oArA o,tz
1261ø DATA Dr*rsone ÉtockB.
t2ó2ø DATA Fr4
12630 DATA Nrstockst+
12ó4ø DATA ItExr*-pl6tThcrs ls ¡ br¡ss plrque wlth 'l'lade by

OXO' engraved on tt.
1265ø DATA SrEXr*Fl0rThere ¡rême to be a blacksmith ln theml

EVENT Ø

The actions in this event are executed when counter number Ø reaches
zero. These actions kill the player because he has been followed by
the cat for too long. The final score is printed and a quit actioned.

1266ø DATA Erø
L267ø DATA A¡PR¡"^"
t26Bø DATA ATPRtA crowd o+ villagers gather round you. The p

riest points at the cat and sayg "Look^hé^håã^å^black-cl
t^{amlliar!^That^proves^he-is-a^wltch. ". They draq you a
way end test your lnflammabillty.

1269ø DÂTA A,SC
t27Oø DATA A,OU

EVENT 1

This event fires when counter number 1 reaches zero indicating that
the player has had 1ØØ game turns. This is used to represent the
midday deadline for the player clearing himself of being a witch. The
optimal solution to the game requires nowhere near 1ØØ game turns.

l27lø DATA El
T272ø DATA A

I agers
occåsi

1

1273ø DATA A'SC
1274ø DATA ArSU
1275ø DATA F

FRrThe church bell rlngs. It ts midday. The vilI
drå9
on ån

you åwåy ånd burn you. lt was å reålly Jollyd people came from miles around to see you.

129

08t

APPE]IDIX A
THE AKS AND
WITCH HUNT
LISTING

This section contains the complete listing for the Adventure Kernel
System and the Witch Hunt example scenario. The program is over 3Øk

long, so it is a major typing task! ln order to get AKS into your machine
and fully functioning as easily as possible, we recommend that you
follow a couple of guidelines. Firstly, leave in the comments and in-

dentation as you type in the program. They may mean a lot more typing'
but you'll be grateful for them if you are trying to debug a.section of
codó! Secondly, pay particular care to the punctuation and format of
the DATA statements. lf you do find errors after you have typed in the
program, this is a very likely place for them to occur.

After the program has been fully debugged, then you can remove
the REM statements and the indentation to create more space for
scenario data. This will also speed up the response time of AKS.

tø
2ø
5q¡
41ò
5ø
6ø

7ø

6BI'0 6ø
PEKc- 429.lin MoD 256
FoKE 43O.lin\25é
RESTORE 1ø
RETURN 'fron *** restorelin ***
REM That routine enåbles the program to RESTORÉ to å vå
rieble vålue'
REt'l It does this bv pðkinq the line no' stored in "lin"

i nto I i ne 4Ct.
REH
REH >>>II'IPORTANT<<<
REI4
REI'I i) Do not chånqe lines l0l-40.
REH ii) Do not use the nornal RENUI'I command'
REt,l inste¡d - press the (ENTER) keY on the nuneric
key pad.

Bø
9ø
løø
Ito
L21À
13ø

131

l4n
15ø
t60

t7ø
18ø
t9ø
2øø
2lû
22ø
23ø
235
24ø
25ø
2éø
?7ø
273
2eø
29ø
søø
3lø
32ø
33ø
340
35ø
36ø
37ø
38ø
39ø
4ørÀ
4tø
42ø
43ø
44ø
45ø
4êø
47ø
486

REH
RE},1
REM
RET4
REI,I
RE1,I
¡

REt4 Iqnore the error messåqe.
REM
REI'I NB s the Froqrå.n ñust bê RUN to initialise the (ENT
ER) key...
KEY ¡39r"poke 429,O : poke 4S0t.B : renum,,+trHR$(tS)
!

REM ******i*t********
REM *

REl'l *
REI'I *AKS

REt'l*ADvENTURE KERNEL SySTE'RE|4* (AKS)
REM *
REFI *t*************r*****Ì**********************{.***

*
*
*
*
*

was written and developed by : Simon price.
I¡TITCH HUNT wes written Jointly by tl''likç Lewis & Simon Pric:.
(C) l,li ke Lewis end Simon pricc lgBS.

* * ** * ** ****** *** ******* ** ******* * * ***i******** ***

HODE t
PR INT
PRINT

'set 4O column 3crcen nodc
"!lelcome to AKS.,'
! PR INT " Ini ti al i sl nq. , . pl ease wai ti,

49ø
5øø
5lø
521à
s30
54ø

550
56ø

671Ð
6eø
69ø

57ø
5BB
59ø
6øø
é10
â2ø
ó3ø
641Ð
é50
661ì

!
REH declare all
DEFINT a-z'

numeric variables as inteqers
!
REH initiål ise constants
REN
lineinc=1O 'BASIC line no. incrementmaxloc=3Ql 'maxinum no. locåtiong
maxobi=28 'måxinum no, obiectsrnåx+låa-sct 'no. o.f s¡cenario defin€åblr f¡egsnaxcount=S 'no, scenårio de+ineåble countersrnåxBtåck=zø 'maxinum sizc o{ expression €våluetor steck
true--l 'booleån valu¡¡ recoaniÉed by IF etatemcntfå¡ Ee=Qt
linlen=40 '!¡creen width for d?Bcription output
REI',| f i nd vål uÉ o{ the constant 'dåtastårt ,

REI'I ie. the line no. ol the +irst scênerio DATA ståtement
flN ERROfì BOIO 57ø 'next but one llna
Gi0T0 768ø 'ðn erronrou: llnc lmrnediatrly priccdlng tlrut DATA statement
IF ERR(}z THEN ERROR ERR ELSE RESUFIE 59ø
REFI report tf not expected error typedatastart=ERL+l i nei ntr

ERROR BUTO O 'turn error trapping off

REll initial ise variables
REM

DII'I locline(maxloc) 'line no.s of start o+ obiect DATAdefinitions
GOSUB løBø s REH *initlocations*
DII'I obiline(nexobi, 'line no.s of ritårt of locåtion DATA d€finl tions

ON

132

7fìø
71ø
721ì
7SO

74ø
75,ø
76ø
77ø
7Aø

DIll objloc(maxobi) 'initia¡ locetion o+ obiects
GOSUB f32ø ! REM *Ínitobjectg*

DII'l eventlin(mexcount) 'event ¡ction definition stårt I
i nes
6OSUB fTlO : REH *initevênts*

DIt4 flag(maxflaq) 'scenårio de{ined +lagE
Dtl'l worn (noo{ob js) 'ob j€ct worn f I ags
Dlll vt!3it€d(noo{locs) 'locåtion viÉited by plaver flag
s
DIll counting(noofcnts) 'countdown ti¡ner on {lag
BOSUB f 92O ! REl"l *réËetf lags*

DtM count(noofcnts) 'value of countdown tiner

Dtll stack(måxsteck)'êxpreesion evåluåtion Eteck
stacktoP=Cl

gcore=ø

REH main program body
REM
cL5
eoqeÍre=f ål tse
t{HILE NOT (eogane)

BSSUE 2ø9ø : REI'I *de5crlbeloc*
vi si ted (ob il oc (gl)) =true
GOSUB 43Oø ! REl"l *qrtcomline*
GOSUB 439ø ! REI¡| *processct'nline*
GOSUB 479ø : REl"l *updåtëcountdown3*

WEND
PRIN'I
INPUT "Another gane ?"rres$
IF LOtr¡ER$ (LEF"It (res$+"y" r I)) r'ryr THEN RUN
GOTO lA3ø 'hang machine up

:
RE¡l *** initlocations ***
RET4
I i n=datastart
I oc=0t
type$="?r' 'dunmy våtue to force et least one iteration
of l,lHILE
WHILE lhlsrR 'tYpe$)=oGOSUB ?ø : RË14 *regtt'relin*

READ typeJ
lF tvpe3r"L" I'HEN 6oÊ¡UB t25ø r REI'I *lnltloc*
I inEl in+l ineinc

},END
noof I ocs=l oc- I
REl'URN

!
REl"l *** Ínitloc ***
REI,I
READ defloc
tF loc()defloc THEN PR¡NT"loc out o{ sequence AT LINE "
¡lin : END
locl ine (l oc) =l in+l i neinc
I oc=l oc+ I
RETURN

79rì
Bøø
Blø
a2ø
83ø
B4ø
B5ø
a6ø
87ø
ABø
s90
9øø
9lø
92rì
93ø
94ø
95ø
s6ø
97ø
9Aø
99ø
1øøø
l0llø
tø2ø
l03ø
lrò4rò
lø5ø
lø6ø
tø7ø
IøBø
lø?ø
I lø0

ltlE
lt2ø
It30
t t4s
I l5ø
lr60
ttTrì
I tso
I l9ø
t2øø
12tø
t22fì
I 250
t24ø

r 25gr
l2èø
t27û
12BO

133

,29ø
l5øø
l3l ø
I 52ø
I 33ø
I 34ø
1 35ø
I 36et
l37Ar
,38ø
I 39ø
t4øÍò
141Ct
142ø
I 430
144ø
I 450
I 46ø
L47A

!
REM *** initobjects ***
REM
ob i=ø
lin=lin-lineinc
hlHILE INSTR ("EF" . type$) =OIF type3="Q" THEN ciOSUB 1460

lin=lin+lineinc
GOSUB 2ø : REII *restt'relin*
READ tvpe:l

t¡END
noo#ob is=ob i-l
RETURN

REH *initobj*

!

REI'I *** initobi ***
REM
REAÞ defob i
IF ob i<)def ob i THEN PRINT',ob i
¡lin ! END
ob il i ne (ob j) =l in+l ineinc
tyÞe:ü="?" 'drrmmy val rre
WHILE INSTR ("OEF" . type$) =Olin=lin+lineinc

6OSUB 2g' ! REl,l +restorellni
READ type$
IF tvpe$="F,, THEN 6OSUB tóSø

t¡JEND

out of Eequence AT LINE

lin=lin-lineinc 'adjust to suit
obj=obj+l
RETURN

:
REM **r+ initobjloc ***
REM
READ loc
IF loc(-l OR loc)nooflocs THEN pRINT.'obJ loc out of renoe AT LINE ":lin : END
objloc(obj)=loc
RETURN
!

REI'1 *** initevents ****
REM
noof cntts=O
l{HILE type$(>"F "

GOSUB zet : REH *restorelin*
READ type$
IF type$=',E" THEN GOSUB tBSølin=lin+Iineinc

t¡IEND
RETURN

REM *initeventlin*

:

REM *** initeventlin ***
REM
READ cnt
IF cnt()noofcnts THEN pRINT"event out of sequence AT LtNE"¡lin
eventl in (cnt) =l i n+l i neinc
noof cnts=noof cnts+ I
RETURN

I 4BO
I 49ø
I 5øø
151ø
t 520
I 53ø
I 54ø
1 55ø
156ø
l57A'
1 58ø
I 59ø
I 608
16lO
Lé2ø
I 63ø
t640

I 65ø
1ó6At
l67rì
1 68ø
to9rì
t7øø
t7tø
172ø
t73ø
t74ø
t 7sø
L76ø
177ø
1 7Bø
I79ø
1Aøø
lel ø
l82rì
lg3ø
ls40

! REl,l *initobjloc*

+i ni tob ject e*

I gse)
I 86ø
la7ø
I gaat

134

rB90
19øø
19l ø
t92rì
I 93ø
194ø
I 958
196ø
ti7ø
I98ø
1990
2øøø
2øro
2ø21'
2ø3ø
2ø4ø
2ø5ø
2râ6rb
2ø7ø
2TÃBø
2ø9ø
2tøø
2l lø
2tzÍr
2r30
214ø
2râû

2t6rò
2t7rò
2TBø
2tsø
22øø
221ø
222ø
223Íì
224tÐ
22314
226ø
227ø
22tJø
229ø
23øø
231ø
232ø
233ø

!
REl"l *** reBetf laqs ***
REI"I
FUR i-ø TO maxflaq

{lag(i)-f¡lge
NEXT
FOR i=ø TO noof ob-is

v¡orn ('i) =f ¡l r¡e
NEXT
FOR i=8 TO nooflocs

visited (i)o{alse
NEXT
FOR i=O TO noofcnts

counting(i)-f¡lse
NEXT
RETURN

!
REll *** descrlbeloc ***
RE14pn¡¡¡f : FRINT : FRINT STRING*(4Or"-")
lin=locline(obJloc(ø)) ! 6OSUB 2220 r REl"l *dreecrlbeln*
lof=66¡foc(ø) ! GOSUB 26Lø 2 REI'I *iEobjåtloc*
IF NoT(res) THEN RETURN 'quit
FRINT"There islare ¡ "
FOR obj=l TO noo{objs--'¡f

oU¡toc(obj)=o¡jloc(Al) THÉN PRINT" "¡ ¡ lin-objli
ne(obj) ¡ BOSUB 222Ø ¿ REll +drscribÊln*
NEXT
RETIJRN

REl,l *** describeln
REI'I
I i nef eed=true
Êara 227ø
REtl *** describe ***
REH
linefeed=fål5e
type:ß="?"'dunrny value
t¡¡HILE TNSTR ("L0EF'.tYPe:$) =ø

GoSUB 2ø ! REÍ"| *re5torê¡in*
READ type$
îF tñå;i>"D' IHEN 2340 'qo trv next DATA line
GoSUE 27øø ! REH *evelnext*
iF-;;" THEN READ degcr* : EOSUB 241Ø t REI'{ *printdesc

r*
lin=lin+lineinc

WEND
RETURN

I
REll *** printdcscr ***
RET,I
l¡¡HILE LEN(descr:3)) linlen-Pog(*Ol+1

rlim=linlen-POS(*Qt)+1 'right hl¡nd tide of scre
en

2450 rhg-rl im+l '1 char bevond :¡crecn rl

2340
233ø
2S6ø
237ø
238ø
235ÍÐ
24ÍîrÀ
24ÚÂ
242ø

244ø
243ø

sht
t¡¡H¡LE l'lID$(descr$.rhs. l) ()" "

rhs=rhg-l 'skip backwårds over rightmolt ¡{ord on
line

t¡END24èø

135

247ø
24AîÀ
2499,

25øø
231ø

rhE=rhs-l
PR¡NT LEFT$ (descr$,rhs) :IF POS(*ø)>t THEN PRINT .stårt nè¡{start of one
descr$=R ¡GHTf (descr:ß. LEN (descrrt) -rhs)!¡HILE LEFTS (descrf , 1)'" ,, .skip over

s
descr$-RIGi{T$ (descr$,LEN (descrt) -t)

h,END
UIEND
PR¡NT descrlt
IF linefeed THEN FRINT
RETURN

Icåding spåc€

!
REl.l *** isobjetloc ***
REl'I
res=f al se
FOR obj=l 'lO noofob-is

¡F obJloc(obJ)=loc ÍHEN rcs=true
NEXl
RETURN

I
REÍY{ *** evelnext ***
REIf
READ expr:3
GOSUF 277ø ! REI'I *evålthis*
RETURN

!
REI{ *** evålthi5 ***
RET,I
ch¡r$=LEFT$ (expr$. I)
IF char$(PRINT"EXPR Êxpècted Al L¡NE ,,¡lin ¡
END
IF LEN(exprlË)=1 THEN res-true ! RETURN ,quit
expr$=RI6HT$ (expr$,LEN (exÞr$) -t)
GOSUB 2BBø ¡ REH *converttoRp*
GOSUB 379ø : REl"l *evaluateRp*
FËTURN 'res is either true/false
!
REH *+t converttoRP ***
REM
revpol:Ë=f rr

dât=ASC GUSUB 412ø ! REM *Btackctet*
WHILE LEN (exprS)..)Ct

EìOSUB 3ø5ø : REt't *getlex*
__IF INSTR(,,t+',.dåt$)<>ø THEN revpoli=revpotr+dstf ! GOfO 29AO 'next lex

REM dat:' is an operator
dat=ASC (dåt$)
IF dåt$=,,(,, THEN GOSUB 4lZø : REM *ståckdåt*lF dåt$=,,)" THEN 6OSUB S4Sø ; RÈH *closepar*

. IF. INSTR(,,(),'rdat$)=O THEN GBSUB SS4O I FiEH *66¡¡pE¡spriori ty*
WEND
GOSUF 343O ¡
RETURN

REll *s ! 6ssp¿¡¡
!

REH *** qettex ***
REM

llne if not et

252ø
253ø
254ø
255ø
256ø
2ã7ø
25Aø
2591r
26rùø
26tø
262ø
2ó5ø
2ê4ø
265ø
266ø
267ø
26[Jg,
269ø
27øø
27 tø
272ø
273ø
2749t
27gø
276ø
277ø
27AÍÐ

279ø
2Aøø
2Alø
2A2ø
283ø
2e4ø
?85ø
286îì
2A7ø
2BBø
2e9ø
29øø
29tø
292rÃ

293ø
294ø
295ø
296ø
2979

29êø
295ø
3Ctøø
3øl ø
3ø2ø
Sø3O
3Ct4ø

136

3ø5ø
3øêø
3rò7ø
3080

sgt90

3tø0
3l lø
3t2ø
3t3ø
314ø
315ø
316ø
3r7ø
3IBø
319ø
32ø1ì

321ø
322ø

dat$=LEFT$ (expr$. 1)
expr$=RIEHT$ (expr$

'LEN
(expr$) -1)

used=fal ge
IF INSTR("FVNECLO",dat$)(>0 THEN used=true ¡ 6OSUB 3l5O
: REN *evel+lå9t

IF NOT(used) AND INSTR("(,/.-",dati)-O THEN PRINT"inval
id expr AT LINE "¡lin: END
RETURN

!
REl4 *** evålfleq ***
RE},I
num=01
isdigit-true : qotnum=false
I¡IHILE i sdi qi t AND LEN (exprf) ()O

cher$=LEFT$ (expr3' I)

chval=ASC(cher3)-ASC(ÙO")'convert to digit
IF chval(O OR chval>9 THEN isdíqit={alse ELSE expr$=R

tGH'l$(expr3çLEN(expr$)-l) ! nun=num*1Cl+chvâ¡ I gotnum'tr
ue
þ¡END
IF NOI(qotnuml THEN PRINT"Ílag no. nissing AT LINE ";Ii
n¡END
GosUB 33Ct0 : REI'I *setbool *
IF bool THEN dat:ß="t'r ELSE datf="f "
RETURN

I
REH **{ setbool +**
REI,I
bool =fal ge
BN INSTR ("FV[¡¡CLO" 'dat:t) GìOTO 3320r333C1'5348'3350l.53601.3
37rÐ
bool=flag(num) : RETURN 'F-{laq
bool=visited(num) : RETURN'V-flåg
bool=worn(num) : RETURN 't'¡-+låq
IF objloc(nr"rm)=O THEN boot=true ¡ RETURN ELSE RETURN

'C-f I eq
IF objloc(Ql)=num THEN bool=true ! RETURN ELSE RETURN

'L-f I åq
IF ob-iIoc(numi=objloc(Ø) THEN bool=tru€ ¡ RETURN ELSE R

ETURN 'O-f I ag
RETURN

2

REN *** closepär ***
REH
rel easi nq=true
hIHILE rel easi ng

GOSUB 42øø : REM *Ltnståckdåt*
op$=CHR$ (dat)

IÊ op$-"(" THEN relÇåslnqEfal¡e ELBE rrvpolt'ravpol!¡+
oÞ$
t¡IEND
RETURN

:
REM *** conpareprioritY ***
REII
newop=dat 'save new operator code
EOSUB 372ø : REl'l *priortty*
r't"rp¡ ¡ =9ppr i
rel eäsi nq=true

332ø
333ø
3540
3S50

3360

3379l

539ø
3394t
34øø
3410
342ø
343ø
344ø
3459}
34éø
347rÐ

325ø
324ø
325ø
3261¿
327rà
S2Bø
329rì
330ø
331 0

348ø
349ø
3søo
351ø
552ø
353ø
354ø
355ø
356ø
s57ø

137

358ø
359ø
36øø
3é1ø

tdHILE releasing AND stacktop()O
GOSUB 42etø 3 REH *unËtåckdåt*
6OSUB 372ø : REl.l *priority*
lF newpri(oppri THEN revpolr|=revpot'+CHR$(dat) : GOTO

5å5O'next
rel easi nq=f al se
EOSUB 412ø ! REM *steckdåt*
dåtÊner.rop

WEND
GOSUB 4120 r REI'I *ståckdðt*
RETURN

!
REl,l *** priority ***
REM
oppri=INST ,CHRf(dat))
RETURN

REN *** evaluåt€RP ***
REH
¡THILE LEN (revÞol 3, >Ct

dat$=LEFÌ$ (revpot S i I)
revpol $-R¡6HT:l (revpol $ r LEN (revÞoI +) -l,IF INSTR("t{",dåtf)<)ø THEN d¡t¡Ag[(drt1¡) ¡ 6OSUB 412

Íl ! REM *ståckdat*
IF INSTR("tf"rdåt$)=O THEN GOSUB 3940 r REH *ËvåloÞ*

t¡END
GOSUF 4lBø ¡ REH *unsteckdåt*
IF dat=ASC("t") THEN dat=true
IF dat=ASC("f") THEN dat-false
reB=det 'dat may ålreådy have been booleån (01,-l)
IF stacktop<)ø THEN PRINT'Invalid expr AT L¡NE u;lin :
END
RETURN

!
REN *+* evalop ***
REI,I
6OSUB 4lBø ¡ REM *unsteckdåt*
IF detËASC("t') THEN opl=tru€ ELSE opl-fàlse
IF dat:X>"-'r THEN 4O0lQl 'not e unåry operator
dat=NOT (opl)
EOTO 4el5ø 'store result
REll binary operåtorE
BBSUB 41EO ! REl,l *unståckdet*
IF dat=ASC("t") THEN op2=true ELSE op2-falsc
IF dat:}=".', THEN dat=opl AND op2
IF dat:t=',/" THEN detËopl OR op2
REl4 store result
IF dat TIIEN dat=AS ELSE dat-AgC("{")
GOSUB 412ø : REll *stackd¡t*
RETURN

I
REll **.* Eteckdat ***
RET,I
steek (stðcktop)=dat
stecktop=etacktop+ t
IF stacktoplmaxstack THEN PRINT"cxpr too 1årge AT LINE
"¡lin ! END
RETURN

3ê2Íl
563ø
364ø
3650
3ó6ø
367ø
568ø
3690
s7øø
37 tø
372ø
373ø
374ø
37eø
376ø
377ø
5780
379ø
SBøO
3Stø

342ø
3S3ø
384ø
385ø
3S6ø
3€J71ù
3BAø

349ø
39øø
39tø
5920
595ø
394ø
395ø
396ø
397ø
398ø
399ø
4ø1Ðø
4IìTø
41â2ø
4ø3ø
4Í04ø
4ø50
4øéø
4ø7ø
4øBø
4øqø
4 tøø
4l tø
412ø
4r3ø
4t4ø

4t5ø
4t6ø

138

4t7ø
418ø
419ø
421òtô
42trô

422ø
423ø
424r¿
425ø
426ø
427ø
42Aø
429ø
43øø
43tO
432rì
433ø
4540
435ø
436ø
437ø
438O

439rì
44øø
441ø

!
REN *** unståckdåt ***
REH
stacktop=stacktop- I
tF Etacktop<ø THEN PRINT"Incomplete expr
: END
det=steck (stacktop)

RETURN

:

AT LINE',;IiN

442r¿

REl,l *** qetcomlinGr ***
RET4
PRINT : INPUT "What now ? ".in*
PRINl
coml i ne¡3=LONER$ (i n$)

RETURN

:
REl,l *** procGlsscornline ***
REI,I
REI'I remember to ensure that Étrings come before subEtri
;;= - eg. "take off" nust be de+íned beforc "take" or it
would never be reached.

tr i g={ al sc
lin=locline(objloc(O)) : GOSUB 448ø ! REI'I *trÍgS9l:*
ir Noiitrig) THEN I inolocl inr(o) ! 6t¡sUB 44Bo : REl'il *tr
í ggers*
IË'NOT(trig) THEN PRINT "sorrv I do not underst¿nd that
. " ELSE C¡OSUB 543C1 ! RE1'l *actions*
RETURN

!
REM *** triggers ***
REN
type*="!" 'dummy value
¡¡Hit-E ruOr(triq) AND ¡NSTR 'tvpe!})=oEoSUB 2ø : REH *restorelin*

READ tYPe:t
IF tvpåi="T" THEN GOSUB 46ø0 r RE¡'t *triggertest*
lin=l¡n+lineinc

WEND
RETURN

3

REI'I *** triggertest ì**
REM
natch=fal se
tr i gsl eft=true
comíen=LEN(comline:È) : xcomline$=" "+comline$+" " 'c
onstants v¡ithin loop
WHILE NOT(match) AND trigsleft

READ trlg$
ip terr*(trig$tl)="*" THEN trigsleft=false ! goTo 467

O 'quit loop
tÉ comlen)= LEN(trig:;) THEN IF INSTR(xcomline$!r (+t

ri g:i+t' ") < >ø THEN metch=true
WEND
hIHILE trigsleft

READ trlqs 'ccrn:¡ume remaining triggers upto expr
IF LEFTititrig$, 1)=r'rx THEN trigsleftÉfålse

hIEND

4430
444ø
4450
44ârù
447ø
448ø
44qø
45øø
451ø
452ø
4S30
4540
4550
4560
4571Ð
458ø
459ø
46ørà
4âtø
462ø

4ê38
464rì
4650

qé6ÍÃ

467rÐ
4êBO
469r¿
47ørÀ
47tø

139

472ø ¡F NOT(måtch) THEN res={alse ELSE cxprtatrtg$: BOSUB 2
771ì ¡ REH *evalthis*
tri q=¡s"
RETURN

:
REN *** uFdetecount¡16¡¡¡s ***
RET,I
FOR i=O TO noo+cnts

IF NOT(counting(i)) THEN 48óO 'test next one
count (i) =count (i) -1
IF count(i)>ø THEN 48óO 'no event yet
count i ng (i) =fal se
lin=eventlin(i) : GOSUB 2ø ! REll *restorelin*
GOSUB 5434 ! REl"l *àctitrns*

NEX'T
RETURN

:

!
REN *** åEsignobj ***
RE]'I
obi=l '=¡-rt with first real object (ås obJO is player)

tr i q=¡ 6¡ ="]¡THILE NOT (trí g) AND ob l(¡noof obJ¡
lin=obiline(obi)
6OSUB 5løø : REll *nernese.rcht
obj=65¡*t

WEND
IF NOT(triq) THEN PRINT "You cån't do that.,' ! RETURN
obj=obj-l
GOSUB 52201 : REM *suitåbilitv*
IF NOT(res) THEN tri9=ç6¡=" ! PRINT"Thet is npt possibl
e. "
RETURN

:
REll *+* nemereårch i**
REM
type$="?' 'dunny value
WH¡LE NOT(triq) AND INSTR("OEF",type$)-ø

GOSUB 20 ! REH *restorelin*
READ type:}
IF type$="N" THEN COSUB 46B0 ¡ REì.í *triggerte6t*
¡in=lin+lineinc

WEND
RETURN

:
REIYI *** s'ui tåbi I i ty ***
RE},I
lin=obiline(obi)
res=f al se
typsS="a" 'dummy value
tIHILE NOI (res) AND INSTR ("gEF,, ,typet) *O

GUSUB 2ø ¡ RElf *restorelin*
READ type:;
IF type:F="S,, THEN GOSUB SSéO ! RE¡t *suittést*
¡ in=¡ in+l íneinc

t¡rEND
RETURN

473ø
474ø
475ø
476ø
477tÀ
47eø
4790J
48øø
48tø
4A2ø
4S3Cr
444ø
4e50
4Séø
487ø
4ABø
489ø
49øø
4910
492ø
493ø
494ø

49ser
496ø
497ø
498ø
499ø
5øøø
3ølø
ãø2ø
5ø30
5ø4ø

scr5E
5øóO
507ø
5ø80
5ø9ø
5l oEt
511@
5r2ø
s13ø
5t 4ø
5l5At
5160
317ø
5IBø
519ø
s2øo
521ø
522ø
523s
524ø
52sø
526ø
327ø
528ø
529ø
53øø
531 ø

140

5S20
535ø
534ø
535ø
536ø
5370
538ø
539ø
540ø
541O
ã421ì
545ø
544ø
s450
346ø
347ø
5486
5490

55øø
55tø
5520
553ø
554ø
555ø
356ø
5570
55SO
5590
5óøø
56tO
3620
5é3ø
5b4ø
5ó5ø
5ó6ø
567ø
568ø
569ø
57øø
371ø
37?ø
5730
374rô
575ø
576Íì
3771Ð
578ø
379ø
5Aøø
5Stø
582ø
5S30

REI.I
REI"I
REI'I
REFI
REII
RE14
REM
RE1'I
RE]I
RE}4
RElI
REH
REt,I
REII
RET,I
RET,I
REH
REI'I
REM

REl.l **t Euittegt ***
REI'l
READ l8ui t$
IF suitf=åctsuit:i THEN GOSUB 271Ð6 t REM *evålnext*
RETURN

!
REl"l *** ections +**
REI"I
åctline=lin 'meintåin e tÊperåtË lin for this routine
acttype$="?"'dunmy value
t^¡HtLE ¡NSTR ("TLOEF" recttype$) =O

I in=åctl ine : 6OSUB 28 ¡ REI'I *rêttor.!¡ inl
READ acttvpeS
actl i ne=åct t i ne+l i nei nc

'no mc¡rc actfong forIF ecttypef(>¡4" THEN GOTO 57Oø
this trigqer

READ åct3
IF act$="SC" THEN GOSUB 5760 t
¡F åct:Ë-"IN" THEN G¡OSUB 582O :
tF act$="QU" THEN GOSUB 596O s

IF actS="IS" THEN 6OSUB 6O2O ¡
TF ECt:}="AF'' THEN BOSUB éO9ø !
TF ACt:ù="FR' THEN GOSUB 616ø :
IF act$="G0" THEN GIISUF 652O ¡
IF âct3="¡4t1" THEN GOSUB 6256 ¡
IF åctS="GE' THEN GOSUB 658ø !
IF actS="DR" THEN GOSUB é660 !
IF ectrß=,,Po', THEN 6BSUB 674ø r
IF ¡ct$="TO" THEN GOSUB 682ø t
¡F ectS="Ex" THEN EOSUB 69OO ¡
IF act$="Ic" THEN 6gSUB ê99O !
IF actl="H0" THEN GOSUB 707O :
IF act$="zl" THEN GoSUB 7146 ¡
IF act$="2o" THEN G0SUB 722O :
IF act:t="L0" THEN 6OSUB 73Oø !
IF act$="SA" THEN GOSUB 7440 t

I,¡END
RETURN

!
REll *** Score ***
REII
PRIN'I "You have Ecored "¡score
RETURN

SCore
INventory
oui t
* I ncE¡ct're*
AsEi qnFl åg
PRi nt
GO
llõveobJ
GìEt
DRop
iPuton*
*TåkeO+ I *
EXåni ne
Ini tcounter
Hel tcounter
Zåp In
ZepOut
LOåd
SAve

584ø
585ø
586ø

5870
5880
5S9ø
59øø
591ø

!

REll *** INventory ***
REM
loc=O r BOSUB 261ø : REll *iBobjatloc*
IF NOT(reB) THEN PRINT "You are not cärrying ånything."
: l(L lUl(N 'qrrt t

PRINT"You ere cårryinq ¡ rl

FOR obi=l TO noo+obJs
IF objloc(obj)(>ø THEN 60T0 59el0 'this obj not cårríe

d
PRINT " '' ¡
lin=objline(obj) : GBSUB 2261ì t REll *describe*
IF worn(obj) THEN PR¡NT" (worn)' ELSE PRIN'I

NEXT
RETURN

141

392ø
593ø
594Ct
595ø
59óø
3971Ð
598ø
599ø
éøøø
êø10
6îÐ2ø
603ø
aD4rÀ
ê05ø
6ø6ø
6ø714
6øAø
61ì9ø
óløø

ållø
6t2ø
615ø
6t 4ø
6150
ó16ø
è17ø
6IBø
679ø
62øø
62tø
622ÍÐ
62SO
624rð
625ø
626ø
ó27ø
628ø
629ø
63Ate!
ê31ø
632ø
ê33ø
ó34ø
635ø
636ø
637Ø
ó38Ct
639ø
64tàø
64tø
642îô

!

REll *** QUi t ***
.REI,I
e(Jgðme-true
RETURN

!
REI'I *Ì* Incscore ***
RÊ}4
READ inc
tcore=gcore+i nc
RETURN

:
REM *** AssignFlag ***
RET4
READ +lågnurnrboolS
IF bool*="T" THEN +leg(flågnum)=true ELSE flåg(flågnum)
=f åI se
RETURN

:
REll *** PRint ***
REI.t
READ descr:3
I i ne+eed=true
6OSUB 241ø ! REI''I *printdeBcr*
PRTNT
RETURN

:
REN *** MOve ***
REI,'I
READ obirloc
objloc(obj)=loc
worn (ob.i) =f al se
RETURN

RElvl *** GO ***
REM
READ di r:ü
I i n=locl ine (oÞjloc (ø))
match=fal se
typ€S=ft ?r" durnmy våIue
WHILE NOT (metch) AND INSTR("LOEF" !type$)=e,

6OSUB 20 : REI'I *restorelin*
READ type$
IF tvpe$=r'C" THEN G¡OSUB 648ø r REh *GOz*
I i n=¡ in+l ineinc

t¡rEND
IF NOT(måtch) OR (nråtch AND NOT(res)) THEN PRINT"YoU ca
n not go that way. "
RETURN

:
REl"l **r GO2 ***
RET,I

r{EAD defdir$
IF dir${}defdir$ THEN RETURN 'quit
netrh=trLre
G¡BSUF 27øø : REM *evalnext*
IF re6 THEN READ objloc(ø)

643ø
644ø
6450
6461ì
647ø
64FJø
è49fò
65øø
ê51ø
6S2e

142

é53ø
634ø
655ø
656ø
6â7ø
65BCl
659ø
66rìÍò

é610
à62ø
6é3ø
664ø
é65ø
666rÀ
ê67ø
ó680

è69rÀ
67ørtr
67 Lø
672rÐ
673ø
674tÐ
675ø
6761Ð

RETURN

:
REl'l *** GiEt **+
REI,I
åctsuit$É'rGìE" : 6OSUB 494Ø z REll *as:¡ignobJ*
¡F NOT(triq) THEN RETUR¡ 'quit
IF objloc(obj)=obJloc(ø) THEN objloc(obj)=6 ¡ PRINT "Ta
ken." ELSE PRINT"You can not see it herc."
RE]'URN

:
REN *+* DRop ***
REM
actsuit$="DR" ! GOSUB 494Ø : REM *åssignobj*
IF NOT(triq) THEN RETURN 'quit
tF ob!¡oc(obj)=g THEN objloc(obJ)=objtoc(O) : worn(obj)
=+ålse ¡ PRINT"Dropped." ELSE PRINT"You do not have it."

RETURN

:
REll *** Puton ***
REI,I
actsuit'$="FO" ¡ 6oSUB 494ø . REI'I *å33ignobj*
lF NOT(triq) THEN REÏURN 'quit
IF ob i¡oc (ob-i)=gt THEN worn(obj)'true ¡ PRINT"I'lorn. " ELS
E FRlNT"You do not h.vè it."
RETURN

:
RE¡4 *** Tåkeof+ ***
REI"I
actsuit$="TO" : GOSUB 494fÐ t REI'I *rs6ignobj*
IF NOT(triq) THEN RETURN 'quit
IF vrorn(obj) THEN worn(obJ)ãfål5e I PRINT"RemovÇd." ELs
E PRINT"You are not Heàrlng lt."
RETURN

!
REl.l *** EXeDine ***
RElf
actEuit$=,'EX', ! BOSUB 4941Ã z REI'I *å3signobj*
IF NOT(triq) THEN RETURN 'quit
IF NOT (ob-iloc (ob j) =O OR ob jloc (ob j) =obJloc (O))

NT"You see nothinq speciål." ELS€ READ descrl :
=true ¡ GOSUB 241ø r pg¡'¡ *printdescr*
I i n=objl ine (obj)
RETURN

:
RElf r** Initcounter ***
REI'I
READ cnum.cvåI
count (cnun) =cval
counting (cnum) =true
RETURN

!
REl,l *** HaltCounter *+*
REI'I
READ cnum
counti ng (cnltm) ={ aI se

THEN PRI
I incfeed

ê77ø
67ArD
679ø
6EøS
ê81ø
6s21¿
é€36
6840

6S5ø
6eèø
687',Íd
6880
ês9ø
69'øø
69rø
692Íù

693ø
6941ù
é956
6961ò
o971'
è98ø
69?ø
7rÃÍÐfr
7ølø
7ø2rì
7ø30
7râ4ø
7ø5ø
7û6rÀ
7ø7ø
7øeø

143

71ã9ø
7tøø
7Ltø
7 t21Ã
7t31Ð
714ø
7t3ø

RETURN

!
REH *** ZåpIn ***
RE1.,I
READ obj
ob jl oc (ob J) sobJloc (O)
n
worn(objlgfelse
RETURN

:
REf,l **i Zäpout ***
REM
READ obj
objloc(obj)=-l

nove object to current locatio

'sêt object Ioc.tion to nowhere

worn (obj) afal se
RETURN
I

REM i** LOåd ***
RE}4
BOSUB 757ø : REtl *getfnårnr*
SPEED g¡RITE I
OPENIN {ile:}
INPUT lt9, score, noo{ I oca r noo.f ob Js, nex+ I åg, noof cnts
FOR lÊgl TO nooflocs : INPUT lf9,visited(l) : NEXT I
FOR l=O TO noofobJs: INPUT T9,obJloc(l).worn(¡) ¡ NEXT

I
FOR l-Qt 10 nåx+Iåa ¡ INPUT {l9rfleg(l) ¡ NEXT I
FOR l=ø TO noofcnts ¡ INPUT llgrcount(I)rcounting(l) : N
EXT I
CLOSE¡N
RETURN

!
REl,l I** SAve ***
REI.I
6OSUB 757ø ! REI'I *gÊtfnð|ne*
OPENoUI +i lcl
t¡¡RI fE S9 r score r noof I ocs, noo{ ob jE t måx { I å9, noof cnts
FOR ¡=Cl TO noo{locr ¡ I{RIIE llgrvlritrd(l) ¡ NEXT I
FOR l=91 TO noo{ob.is : I{R¡TE ll9robjloc (l) .worn (l } I NEXT

t

7 t6ø
7 t71Ã
7TBø
7 t9ø
720rÐ
721ø
722ri
723ø

724ø
72=tà
726ø
7?71ò
72SrA
729ø
73øø
73rø
732tÐ
7350
734rL
7350

736rÐ
7371â

73AO
739tô
74øtì
74tÍÐ
742rÐ
743rà
744ià
743rÐ
746ø
747ø
748ø

749ø FOR
7Sfìø FOR

EXT
7510
732râ
7530
7541Ã
7550
73êø
757ø

75AO

759ø
761ârâ
761ø

mexf låq : l¡¡RITE {19,f la9 (l) ¡ NEXT I
noof cnts t t¡R¡TE ll9rcount (¡) ,countinq (l) : N

CLOSEOUÏ
RETURN

i
REl.l tt* getfneme ***
REIT
IF LEN(comline$)(6 THEN +tle*-"' ¡ RETURN 'defeult na
ne
conllne$=HID$(comlinêS+STRINGI(ló!" ") r6rl6r'l?xtråct

f i I ename
fileS=""
FOR l=f T0 LEN(comline$) 'remove eny quote marks

IF HtD$(coml inetS,l r l)<>CHR:¡(34) THEN +lIe$Ê+ile$+Þl¡D
$ (cornl ine$rl. l) ELSE f ilè¡is+ilct+rr*r'

I =El ïOl=O TO
t

7ê21À NEXT I

144

763tì
7641à
7631à
7ê6ø
767ø
76tJø
7691à
77øø
77 lø
772ø
773ø
774rÃ
77ãø
776ø
777ø
7781ã
779ø
7eøø
7ALÍÐ
7e?ø
783ø
7fJ41â
785ø
7s6ø
7fJ7ø
7BB6
7e9Íô
79øø
791ø
792ø
793ø
794ø
795ø
796ø
797ø
79eø
799ø
B0t6ø
B0rø
Bø2ø
aø3ø
gø4ø
Bel50l
eø60
gø7ø
BC'BO
Bø9ø
Btøø
Bl to
at2ø
B 1SAt
B 14ø
Br5ø
Br6ø
aL7ø
8 TBø
B l9ø
a2øo
a2lø
ê22rì
A2Sø
824ø
825ø

DAlA
DATA
DATA
DAlA
DATA
DâTA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DA'I'A
DAÏA
DATA
DATA
DATA
DATA
DATA
DATA
DA]'A
DATA
DAIA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

RETURN

THIS LINE GENERATES AN ERROR
DATA LTø

Trnrnorthr*F4
A,GOTN
A.ZI,l2

Trntnorthr*
A,GO,N'l ,ereðstr*F4
AtGO.E
Al¿l 'L2Trereastr*
ArGìOrE

T r e. Bouth r *F4
ATGOTS
A.Z¡rl2

'I rãrsouthr*
A.60.S'lr¡{rwestr*F4
A'GO.t¡¡
Ar2l ,12

T¡w,westr*
A,

ftu
A,

GO, t¡
r up. *F4
GOrU

A,Zl,l2
'¡ ruruPr*

A. GO. U
I,drdownr*F4

A.GOTD
A,Zl ,12

Trd.down.*
A, GO, D

l.wearrput ont*
ArPO

T.removerteke of{ r*
A, TO

T,get rtåke,pitrk uP rcetch r*
A, GE

T. drop r put , throw, rel ea6e. +
A, DR

T,ex,exemrexarni ner I ook at r*
ArEX

Tri rinvrinventoryr+
A, TN

T r score. *
A, SC

T. l oad, *
A, LO
A.IS.-r

l,savet+
A. SA

Treat breådreåt ¡oåf r*CS
A.PR,yummy yummyl
ArZOrS

Tréåt cheeser*e4
A,PR'Får too mouldY!

T,eåt,*
ArPRtNo thånk5.

145

s26ø
fl271Ã

DATA Tr{eed cat,drop mouserreleåEe mouser*C6.Ol2
DATA ArPRrThe cat takes both mouse ånd cheese ðnd the
n runs off.
DATA A,IS,lCl
DAÍA A.AF.4.F
DATA A, ZO,é
DATA A.2O.12
DATA ATHCTø
DATA Trhitrkill,attackr*
DATA ArPRrSorry. No violence is åIlowed in this game.

DATA Trshow.giveråccuserfeedr*
DATA ArPRrNot interested.
DAÍA Trqui t r*
DATA ATSC
DATA ATOU
DA'f A L, I
DATA D,*,In the middle o+ the village green.
DATA Dr*-Vl.Beyond the north end o{ the green you cån
see your home - the mill. To east is the inn. The church
where all this trouble began is to the south. You cån h

ear the goåt5 mäking goaty nolseg to the west.
T,innr*-F6

ArCìOrE
ïrereastrinnr*F6
A,PR,The innkeeper re+uses to let you enter the

Trereastrinnr*-F11
GiorE
AF.ll,T
¡c, I , lelgt
, north r *-F I I

ArG¡OrN
rAFrtlrT
r ICr I, lcl0l
¡{.r¡eBtr*-Fll
,GOrl¡¡
,AFrllrT
, IC,1, lQlCl
Ë. south . *-F 1 I
,GOrS

A,AF,11,T
A, ¡C, ,lø€l

B2Bø
e29ø
E5øø
a3tø
B32CÌ
B33Q'
B34A

835ø
g3óø
B37ø
B3Aø
839ø
B4øø
E}4tø
F342ø

847ø
€4eø
8490
B5ø0'
a5l o
852ø
853ø
854ø
455ø
B56Ct
857ø
asBqt
B59ql
B6øA)
86IB
862ø
8630
aê4ø
e65ø
aé6at
467ø
BáBø
9690t

443ø
B44At
845Ar
846ø

a7øø

87tø
EJ72ø

DATA
DATA
DATA
DATA
i nn.
DAfA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DAÏA
DATA
DAÏA
ÐATA
DATA
DATA
DAlA
DATA
DATA
DATA
DATA
DATA
DATA

A,
A.
A,

Ttn

A
A

T,
A
A
A

T.
A

CrN
c,s
c.E
CrH

*
*
tf
*

I
4
6
2
5

L.2
D.*.The bar in the I'lelbourne Inn.
D,*FS,Some +ool håB belanced e pointed hat on

of the kitcheñ doorl
DATA D,*-VzrThe inn is closed at the mornent due to
Lrnexpleined spoiling of the ale. The kitchen door

sliqhtly ajar at the east end of the room.
DATA Trbalance hatrput hatrplace hatr*ç1
DATA ArPR.You månåge to bålånce the het on top of
kitchen door.

DAÏA A,AF,5,T
DATA Ar ZO, I
DAïA T. e. eãst , k i tchrn . *Fs
DATA A,PRrThe håt fà¡ls to the floor.
DAÏA A.ZI.I
DATA A,AF !5,F

top

the
gi ts

a73ø
e74ø
B75q)
a7âø
477ø
ETArì

146

the

a79ø
€Bøø
aBlo
882ø
BBSO
B€4ø
BB5ø

886ø
BBTO

aBaø

sB9ø
a90ø
s91ø
a92ø
B9sø
s940
s95ø
896ø
[J?7ø
498ø
899ø
9rÀrüÐ

DATA A, C¡O r E
DATA Trget hått*
DATA Ar Z¡, I
DATA A,AF,5,F
DATA A,GE
DATA 'l tcal I tshout r*-Fs
DATA ArPRr"The innkeeper comes into the roomr but see
inq you he crosses hißscl+ ånd däth€s back into the kitc
hen. "
DATA T'cal I "shout '*F5DATA A,PRrfhe innkeeper pushes th€ kitchen door open
and steps in the room.
DATA A,PR,FLOP! The håt lends trn hls head. It ltrol.s I
ike a thirnble on å giåntB hËàd. He throw¡ you end your h
at out o+ the inn.
DATA A, IS, lø
DATA A r BO.l,¡
DATA A,ZI, I
DATA A.AF,5,F
DATA A,AF tå,7
DATA T, leaverout '*DATA A'G¡Orl¡¡
DATA CrEr*r5
DATA Crl¡¡r*r I
DATA LTs
DATA Dr*rKitchen in the I'lelbourne.
DATA Dr*-V3rtt seems surprisingly empty. Perhaps the i
nnkeeper is a little short of money at the moment.
DATA Trsteal cheesat*
DATA A,6E
DATA 1 rchee6èr*O4
DATA A.FR,G}ET OFF llY CHEESE! hlhat do you neen openly
trying to take my food!
DATA TrgivG,*Clø.Os
DATA ArPR'The innkeeper says "Oh goody goody. I can b
eke soñe morc loaves now." and grabs your s.ck of flour.

"You can håve thl¡ loef."
DATA A.MO.5.O
DATA A, ZO. Iø
DATA T'loafibrcädr*Os
DATA A.PR.6ET OFF NY BREAD! t'lhat do you méan trying t
o take my laEt loa{!
DATA T. I eave.out ¡bår t*
DATA Ar60,bl
DATA E!Wr*r2
DATA L,4
DATA Dr*rAt the north end of the village qreen-
DATA Dr*-V4,You remenbËr coming here in the paet to th
row rotten food (and the odd brick) at people in the sto
cks. This is where thèy älwåys burnt witchers. You rçnemb
er throwing on wood... Those were good times.
DATA l rput hatrplace håtrtry h¡t'*Cl.F10
DATA A'PR'It {its!
DATA ATPR,A crowd of ví11ågers gåther. "The blåcksmit
h i s the wi tch ! " screams the Pri est. "Burn hi m ! B¡-rrn hi m

! Burn hitnl". And they do. Everyone ha¡ e reål good time
,.. roastinq chestnuts ånd potåtoeB in the fire. You hav
e cleared yourself.
DATA A, lS,2ø
DATA A,SC
DATA A,OU
DATA T.road,*
DATA A,GOTE

eølqt
9ø2rù
9ø3ø
9ø40

9ø50
9ø61Ð

91ì7ø
9øBø
9ø9ø
910ø

9r to
9t2ø
9tsB
914ø
9150
9t6rì

9l7rì
9IBø
9190

921âø
921ø
922rì
923ø
9241ò

147

925ø
926ø
927ø
92€Jø
929ø
93øø
931 ø
9520
933ø
9340
935ø
936et
937ø
93BO

eedtbreåd!loef r*C5DATA T,f
DATA A,
DATA A.
DATA C,E

DATA CrSr*i 1

DAïA CrEr*r l4
DATA L,5
DATA DrtrAn åreå of gråzing lånd.
DATA T rfeedrcheeser*C4
DATA A.PR.A goåt snåtches your cheese end eåts it.
DATA AtZO,4

PR'A goat snâtches your breed änd eets it.
zo.5
rir l

DATA L.6
DATA Dr*rAt the southern end of the village green.
DATA Dr*-V6,4 foul odotrr drifts {rom the direction of
the meadow at the west o+ th€ gre€n.
DATA Trmeadowr*
DAïA A. G¡O r t¡¡

DATA I,churchr*
DATA A,BO.S
DATA C,l,¡r*rB
DATA C.N.*r t
DATA CrSr*rlQt
DATA L.7
DATA Dr+.At the edqe o{ the vlllåqe pond.
DATA Dr*-VTrThe pond is Etågnånt ånd smells foul.
DATA I,put toadrdrop toadrthrow toadrreleåBe toed,*C2.
-F3
DATA A,DR
DATA ArFRrSp¡ash... I The toåd turns into å €måll boy.

"lrlhere em I? t¡¡håt heppened?" he mutters åE he climbs olr
t of the pond. "Last thing I rern?mbrr.I wåÉ Btrolling in
the woods ! "

DAÏA AtAF.STT
DAïA A,IS¡t5
DATA T'feed duckrfeed ducksr*CE
DATA ArPR,The ducks gobble up the bread and leevë. Th
ere ¡rås sornething hldden in thllr n:Ét.
DATA ArZOrS
DATA A!20i5
DATA A,ZI,l4
DATA At IStS
DATA T rfi I l rwaterrpondr*
DATA A,PRrIt is impossible to get at the water.
DATA CrSr*r8
DATA Lt8
DATA Dr*Vgrln the oeådow.
DATA D!*-VB.In the middle of a meadoe¡. To the north th
é qround becomes marshy. At the weBtern end ol the meado
þ¡ you cån gee a wooden building.

rNr*r7
rl¡lr*r9
,Er*ré
9
r*rAt the bIåckBmith's +orqe.
,*-VgrYou remember corning here often in the past
Iåcksmith always repairs €rveryones tools. He is a
good al I round handyman.

.show goldrgive goldrshow coinsrgive coinsråccus
er*Cl4
DATA ArPR,The blåckEmith burstg into tears. "Alright.

I con+e5B - I Btole the woodcutter'B gold." he blurts o
ut.
DATA A,PR.A crowd o+ villagers rush up änd dråg the p

939ø
94øtD
94tø
942ø
943ø
944ø
945ø
946ø
947râ
g4eø
949ø

95e!ø
951 O

952ø
9530
954ø
955ø

9Sôø
9571ì
95AO
959ø
96øø
961O
962ø
9å3ø
964ø
965Qt

966ø
967ø
9óBAt
969ø
97rÐra
çì7 ltÀ

972rì

973ø

DATA
DATA
DATA
DATA
DATA
DATA
. fhe
pret

DATA

c
c
c

Lr
D
D
b

ty
T

974ø

148

973ø
976ø
977ø
97Bø
c79ø

9Aørì
98tø
942ø
983ø

984ø
9Els0t
9A6ø
9A7ø
9Ër8ø
989ø
99øø
991ø
992Í!
993ø
?94ø
995ø
996ø
997ø
998ø
999ø
tøtÐøø
løølø
tøø2tÀ
1øøsct
tørò4ø
1øø5ø

LøTD6ø
tøø7ø
IOøBø
tøø9ø
tøloQt

DATA
DATA
DATA
DATA
DATA

leadinq blacksmith away.
A.ISr2Qt
ArAF,1C"T
Arl'lor 16,4

T r show, gi ve, accuserf orgerðnvi l r*
A,PR.He Ehouts "Be of{ wíth you! Líttla Hitch.'r.

DATA CrËr*r€l
DATA Lt Iø
DATA D.s,ln the church nave,
DATA Dr*-VlQlrThe secret entrånce to tha crypt you foun
d lieÊ open, High åbove you is the bel{ry balcony. fhe f
ront door is to the north. In the lrouth rrall is a sn¡Il
door.
DATA
DATA
DATA
DATA
DATA
DATA
DATA,
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA L

hat , *F2. O9
.PR.Tuq...
rzl,l
.AF.lrF
,ZO r9
rGE
.PR.The priest storms off.
Erypt r +
rGOrD
bel {ry, *
rG0ru
Nr*ré
Sr*r l3
Dr*rl2
Ur*,I I
I

T,
A
A
A
A
A
A

Tr
A

T,
A

cr
c.
ct
cr
,l

1ø11ø
1ør2ø
10r3ø
1ø140
1615ø
tøtéø
løL7rÀ
Iø18ø
lø190
tø2ø1À
tø210
lÍò22ø

DATA Drrrln the belfry.
DATA Dr*-VllrFar below you crn sec the church nåvê.
DATA T,ring bell,*-(FllF2)
DATA A,PRrÏhe bell tolls ånd nËårly dråf€ns you!
DATA A,ltor9.lQt
DATA A.PR.You see the prirst run into thr church dirÉ
ctly below you.
DATA A. AF. I . T
DATA 'ltring bellr*
DATA A,FR,Ding dong... I

DATA "l ,drop hat , throw håt, *Cl . F I
DATA ArPR.The hat drops fron thÉ bËl{ry ¡nd lrnds ovc
r the priÊst's head.
DATA A, IS, lø
DATA A,AF,2,7
DATA Ar ZOr I
DATA T'drop hat'throw hått*Cl.-Fl
DATA A.PR.t{eeee.... it .f allg f rom the b:l{rey.
DATA ArÌlO,I,lcl
DATA T,nave. leave, *
DATA A,GOTD
DATA CtDr*r10
DAÎA L, 12
DATA D.*,In the secret crypt.
DATA Dr*-VlzrThe air is icy cold. Thc floor ig intrica
tely carved with strånge markings. On the wall ¡rc lit t
orchet.
DATA Trtorches,torchrwal I,wel ls.*
DATA ATPRTA couple of torches ere firmly ått¡tched to
the wåll bV brackets.

DA'ÌA T rbråcket,bråcketsr*
DATA A,PR,Just plåin iron bracketg.
DAl A 'l ,f loorrmarJ.inget*

l02sø
r1Ð24ø

1ø25ø
tø26ø
t1ù27fù

149

IO28ø

tø29ø
1ø3øø
tø31ø
lø32ø
lø33ø
tø34ø
t0550

lg36ø
LîT37ø

1ø38ø
1ø39ø
lø49ø
tø41ø
tø42ø
1ø430
tø44ø
r045ø
1ø46ø
tø47ø
1ø48ø
tø49ø

1ø5øø
toSlø
10520
10530
1ø54ø
lo55ø
tø56ø
lø57ø
rø58ø
tø59ø
lø6øcr

trÐ6tø
tø62Íl
tø63ø
t1Ð64ø
I ø650
tÍì66ø

t1à67ø
I068ø

I øé90
trÃ7øø
tø7 tÍÐ
tø72ø

rø73ø
Lø74ø
Lø7ãø

trà7610
tø771â
tø7aø

lrÐ79ø
tøsøø

DATA ArPRrYou cån måké no 6enBt of tht mrrkingi but y
ou cån se€ they are well carved.
DATA T'leavet*
DATA A,GO,U
DATA ErUr*, IO
DATA L,13
DATA Dr+rIn the churchyård.
DATA T rdiçrgråverheadstonertomb r*
DATA, ATPRTCåreful.,. they bury qreve robberg åround h
ere !

DATA Trn,northrchurchr*-F4
DATA ArPRrYou trip over ð blåck cat which appears fro
m behind a headstone!
DATA A,Zl.12
DATA A,AF.4.T
DATA A,IC,0l,2Cl
DATA T rchurch,*
DATA A,60,N
DATA T,woodsr*
DATA A'GOrl¡l
DATA CrNr*r lø
DATA CrWr*r lg
DAÎA L, 14
DATA Dr*rThe roåd.
DATA D,*-Vl4,You know this road well. To the north it
passes by the mill on its way to town.
DAI-A T,r{.west.*FB
DATA A,PR,I.THOOPS! You tripped ånd spilt the water.
DATA A,AF,g,F
DAïA Trfollow roadretong roðdr*
DATA A,GO,N
DATA C't¡rr*r4
DATA CrNr*, l5
ÞATA L. 15
DATA Dr*.On å bridge ovÊr å Btreðo.
DATA l rwater rstrean.rf ill rdownrdr*
DATA ArFRrThe ¡trcåm t¡ tot¡lly fnrccarr.blr frorn hEr
e.
DATA CrSr*, t4
DATA CrNr*r 16
DATA Lt T6
DATA D,*,The mi I I .
DATA 1.¡¡s¡p¡.**F7
DATA A.PRrYou can hear e {aint scurrylng noise. You w
onder if it is a rat.
DAïA Trräftersr*-F7
DATA A.PRrSo¡nething is måking noitse3. You wonder i{ i
t is å råt.
DATA TrretrretBr*-F7
DATA ArPRrRat! Pah! I'm a mouge you fool.
DATA T.feed mouse.drop cheeser*C4
DATA ArPR,The nouse scurries dov¡n ånd nfbbles the chc
e9€t.
DATA A,AF ITTT
DATA A.ZO.4
ÞATA T,catch mousergrt mousertake mousÉipick up mouset
*F7.Cl.-(Wt/FB)
DATA A,GE
DATA A,PR,You caught the mougc in the hat,
DATA T,catch monserget nousettlkc ,nctu3rrpick up ,llouset
*F7
DATA ArPR,He slips through your fingËrs.
DATA 1,cheeset*F7. (Oê/C6,

150

roBlø
tøÊ2ø
tø83ø
lø84ø
¡øasa

lø860

DATA A,PR.The mouse holds onto the cheese.
DATA Trf lourrsackrgrainrbaetmill t*-p9
DATA A,PR,The niller growls at you!
DATA TrEive,*F8.-F9
DATA ArPRr"The miller puts the såck downr tåkes the h
at and drinks some water.
DATA A'FR.He Eays "Tå Làd." ånd then pours the rest o
ver hiÉ heäd. As he does this you notice that the hat is
too små11 for hin to r¡eår.

DAïA Ar IS, lø
DATA' A,AF,B,F
DATA ArZ¡,let
DATA A.AF,9.T
DATA I rqivetiFE¡.F9
DATA ArFRrHe s.niles ånd says "6o away creep."
DA-ÌA Crg¡r*, t5
DAïA C,l,¡,*,l7
DA'IA L,17
DAïA Dr*rBy the stréåm.
DA'[A Dr*-Vl7,A loud sploshing sound comes {rom the wat
er wheel. Ihe water looks es fregh and clear as ever.
DAïA 1 ,f i ¡ I ,*Cl. - (l¡ltlC6)
DATA A.PR,I+ you insist.
DATA ArAF,8,1
DATA Tt+ill hätr*l{l
DATA A.PR,Gargle...gergle...bubblel You are unable to
hold yor.rr breath åny longer and take your head out of t

he stream,
DATA lrmillr*
DATA ATGO'E
DATA C,Er*r ló
DATA L, IB

tøa7ø
røABø
tøtJgø
109øø
lø91ø
IrÐ92ø
lø95ø
Lø94ø
I ø954r
lø96ø
tÍÀ971à

109401
1899ø
I løøø
r rø1ø
r ro20

I tø3ø
I lø40
I rø5ø
r røóø
ttø7ø
I tø40
t lø9ø
111øø
I I l lct
I I l2ø
I I lSAt
I t 14ø
tllSø
1l r60
1lt7ø
rr18ø
r r t9ø
ttzøa
L t2tø
It22ø
I r 25At
I t24ø
t 125ø
t12éø
It27ø
I I zBÍt
I t29ø
I t30ø
I l3lø
I t32ø
I l33et

DATA D.
DATA DT
DATA C,
DATA C,
DATA L, I
DAÏA Þt
DATA CT
DATA C,
DATA C,
DATA LT2ø
ÞATA Dr*r ln the
DATA CrW, * t23
DATA erNr*r 19
DATA C rS, *,22
DATA erEr*r2l
DATA L,2I
DATA Dr*, In the
DATA CrWr*r20
DAïA C.Er*r2l
DATA CrSr*t23
DATA L.22
DAïA D.*r ¡n the
DATA CrNr*r2Ql
DATA C.Er*,23
DATA L,23
DATA D.*. IN thE
DATA Dr*-V23¡As
e rlln åwåy.

*rIn the deep dårk woods.
*-VlErCareful ! You night get lost.
Er*r l3
l|¡r*tl9
I
*rln the deep dark woods.
Ernr lS
Sr*r2ø
Wr*r2l

I I54O DATA
T I35ø DATA
11360 DATA

deep dark v¡oods.

deep dårk woods.

deep dårk woods.

deep dårk Hood5.
you arrived you thought y(]u Ea¡, soñeon

CrNr*t2ø
CrEr*r24
CrWr* r22

151

l t4lo
I t42rà
I 143ø
I 1440
I r456
I r46ø
I t471Ð
I r4Sø
t 149ø

t t37ø
I I38ø
I 139ø

r 14ø0

DA'I'A
DAlA
DATA

5Un
DATA
th,
DATA
DAfA
DATA
DATA
DAÏA
DâfA
DATA
DATA
DATA

had

DATA
DATA
DATA

hat !

DATA

L 124
P.*.In e clGårlnq in thc l¡ood3.
Dr*-!,llrlt is BhcltËrrd from thr ¡{lnd hrr..nd th.

iB.uncom+t)rtebly hot.
Dr*-V24rYou hear ¡ loud chopplnq sound to the sou

T.5. south r*-V25. t'¡t
A,lsr lg
Ar60.S

C tW rr' ,22
crsitr25

L,2ã
Dr*,The wood cutter'5 hut.
Tçhtttr*
ArFR.The woodcutter bars your wey. "I've ålreådy

my gold stolen. I'm not going to lose anythinq else
F.eep out !"

Nr*r24

1

I l5øø
I t5lø
I r 52At
I tSso
I 154ø
I l55ql
I 1564!
I 157ø
I r5Aø

I 159ø
I táøø
t 1ólø
I l62tì
I ló3ø
L 1641ì
I l65Al
r t 66al
tt67ø
t t 6Bcl
1 16901
t t7øø
ltTtØ
1 172ø
t 173ø
rl74ø
It7iø
tt76ø
I 177ø
I I TBC}
I t79ø
I lBBø
1l81et
I t82ø
I la3ø
I lB4qt
I 145ø
I t86ø
I I BTAt
1 lABø
r 189ø
I l9øA!
I t9tct
tt92ø

DAÎA O. I
DATA D.*-FBra witch'E hat.
DATA D,*Fgra witch's hat full o+ wåter.
DATA P.25
DATA N'håt

'
*

DATA S.EXr*!It has a label on the inside ¡¡hich
CÌ'lE Witch's Hat - SIZE 9', You wonder who wears

c,
oro

Pr

0,
D
P
N
S
s

geys'A
a size 9

s
s
c

s
o,

D
D
P
e

s
N
S
s

o,
D
P
N
s

DATA
DATA
DAIA
DAÏA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

¡GEt*
. DR, *- (FBlC6'
, PO, *- (FSIC6)

' f0'*
2
. *-F3. å smal I
,*FSra wet and
.E
, GE r *-F3
rDR,*

wart-covered toad.
frightened goat hcrd.

. toed r boy
'
herd r t

.EX'*-p3." very human looking toåd.
,EXr*F3ra very toady Iooking hunan.
3
*rseveral duckg.
7
ducks'dt¡ckr*
EXt*,They seem to be sitting on

4
somethi ng.DATA

DATA
DATA
DATA
DATA
DATA
DAÏA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
dto

,*.a small piece o{ cheese.
.3
, cheÊãe r *
,GE.*
.DR.*

S,EXr*rLooks a bit cheesy!
o,5
Dr*rä loef of Þreåd.
P.3
N.loaf¡breadt*
S,GE.*
S.DR'*

Ot6
Dr*-F7'something moving around in the råfters'
D:*F7.-C6,a pieèe of cheese with e mouse åttatche

it,

152

r 1930
I 194ø
I 195ø
I 196ø
t t97rô
r I98ø
I 199ø
r2øîaø
L2øtø
t2tì2ø

DATA DrtFT.C6rthe mouse end thÊ cheese in the håt.
DAIA P,1ê
DATA NrmougercheeBG!r*F7
DATA 9,ÊEr*
DATA S,DR,*
DATA O,7
DATA Dr*rå lårge brass bell.
DATA P,1 1

DATA N.bell.*
DATA S,EXr*,e large church b:ll inscribed with the let
ters 'ring mel'.

t2ø3ø
t2Íô41ù
l2ø50
t2øêÍì
t2ø7ø

DA
DA

TA OTB
TA Dr*re lot o{ go¡tÉ.

l2ø€lÍò
l2ø9rù

L2LøTÐ

t2t trì

DATA P,5
DATA Nrgoat,goåtE,*
DATA SiEX.*,They are tethered to pogts. Strange! They
see¡¡ to have eaten åll the good grass thcy cån rËech. Pe
rhaFs they håve not beien moved for a while?
DATA Or9
OATA Dr*-(FllF2ltå vary smatl prlr5t blcssfng the secr
et crypt.
DATA D,*Fl.-Fz.e very agitated prfest ¡ooking up ðt th
e belfrey.
DAI'A D,*F2rå priest weering å blåck hat over hI¡ head
and shoul ders I

DATA F, I2
DATA Nrpriest,*
DATA s,EXr*rHe looks vcry 5me¡l to you.
DATA O,lQt
DAIA Drt.å såck o+ flour,
DATA P,_I
DATA N,sack,båg, fl our,*
DATA S,GET*
DATA 5,DR.*
DATA S,Ex,*, It is labellcd 'llegaHlIl Flour Co. '
DATA O, I I
DATA D,*-V2s.an out of breeth woodcutter resting on hi
5 exe.
DATA Dr*-VzS,WlrSuddenly the woodcutter gnatches the h
åt ðnd trys it on. "¡ wonder if this will shield rne {rom
the sun ?" he seys, "Pity... not my sizrå," he grumbles

åncl replåces the hat on your heed.
DAI'A Dr*v25rthe woodcutter hård åt work.
DA'f A P.25
DATA N.woodcutter.*
DATA SrEXr*rA rather hot É}reåty ¡¡oodcutter.
ÞATA 0.12
DATA D,*F7ra friendly black cat drooling around your å
nk I es.
DATA D,*-F7,a friendly black cåt.
DAÎA P,-1
DATA N.cat. *
DATA SrEXr*rlt looks friendly.
DATA O.13
DATA Dr*rthe innkeeper.
DAÏA F.3
DATA N, i nnkeeper,*
DATA SrEX,*rHe is råther large.
DATA O.14
DATA Dr*rEomë gold coinEl
DAÏA P,-I
DATA Nrcoinstgold,*
DAÎA S,GËr*
DATA S.DR.*

t2t2ø
l2l3ø
t2l+rd
r 215ø
t2t6¡a
t2t71à
I2IBø
t2t9rì
tz?lÐra
t22lø
t222ø
1223tì

1225ø
1226ø
1227ø
!22gø
t229ø
t23øÍÐ

t224rô

125tø
t232ø
123s0
1234û
I 235ø
I 236ø
1237û
I 2388
t239ø
124øø
t24tø
1242ø
I 245ø
t244ø
I 245ø

153

r246rì DATA
rrst
DAÏA
DATA
DAÏA

12471û
t2 BtÐ
t249rÐ
125,øø
t25to
t252rÐ
I 253ø
t234ø
I 255ø
I 256ø
1237ø
I 258C1
r 259ø
t26øø
t26tø
r262ø
1263ø
\264ø

1265ø

1266tÐ
L267ø
t268ø

t269ø
127øø
t27tø
t272ø

t273ø
t27 4ø
t273ø

DAÏA
DATA
DAIA
DATA O
DATA
DATA
DATA
DATA
DATA
DATA
DAÏA O
DATA
DATA
DATA
DATA
oxo'
DATA

S,EXr*rNo. They åre not sliced golden egg. They m

have come +rom somewhere else,
l5
r*.The mlller hunping ¡¡ck3.bout.
r 16
tmiller'*
rEXr*-F9rHe looks hot önd thirsty.
. EX , *F9, He I ooks v¡et.
t6
,*-Flø.The blackgmith herd at work,
,*Fl€trThe blacksmith in the stocks.
,9
, bl acksmi th r smi th

'
*

.EX.*-P16.¡e looks rather hot.
rEXr*Flø'He looks gtuck.
t7
,*rsoße stocks.

o,
D
P
N
s
s

D
D
P
N
s
S

D
P
N
s

.4
, stocks, *
,EX.*-FlB'There

engraved on it.
SrEXt*F1O'There

i¡ a bras¡ Flåqua with 'lhde bY

seemB to be a blackgnith in them!
t!
DATA E.ø
DATA A,PRr" "
DATA A.FR.A crowd of villågers gather round you. l'he p
riest points at the cåt ånd sayE "Look he has a black ca
t familiar! That proveg he is a ¡'¡itch,". They drag you a
way and test your inflammability.
DATA A,SC
DATA A,AU
DATA E, I
DATA A.FR,The church bell rings. It is middåy. The vil
¡agers drag you åwey ånd burn you. lt wes a really jol¡y
oÊcåBion and people came {rom miles around to see you.

DATA A,SC
DATA A t GIU
DAÏA F

154

GHEXSUM

The unique CHEXSUM program validation.

WHY
When a listing, such as this is keyed in, everybody invariably makes
reading and typing mistakes and then spends ages trying to sort out
where and what is causing the error (errors!).'

Even experienced programmers often cannot identify an error just
by listing the relevant line and need to do the tedious job of going back
to the book, especially with DATA statements.

Realising that this is a major cause of frustration in keying the pro-
grams, we decided to do something about it.

You should key in and save the following listings before you key in
the AKS listing.

Using the Chexsum routine you will be able to find out if you have
made any keying errors at all and in which lines, before you even run
the program.

This means that you need not waste time looking for keying errors,
you simply run the routine and look at the display to identify lines
containing errors. lt's that easy.

The principle behind the routines is a unique chexsum which is
calculated on each individual line of the program as you have keyed
it in. Compare this chexsum value with the value for that line in the list
at the end of the program listing; if they are the same the line is correct,
if not there is an error in that line.

WHEN
The simplest method is to enter the CHEXSUM program in now and
save it to tape or disk.

You can type in the chexsum program at any time, even if you have
started to type in a program. You cannot, of course LOAD in CHEXSUM
from tape or disk because it will erase all you have typed so far.

The obvious solution is to MERGE the programs. The CHEXSUM
program should be saved onto a separate cassette to allow easy
access.

HOW CAN YOU TELL IF CHEXSUM HAS
BEEN ENTERED CORRECTLY
After having keyed CHEXSUM the logical thing would be to chexsum

155

the program to make sure it is correct. But is it possible to to this? lf
you follow the instructions you will be able to check CHEXSUM.

1. Type and save CHEXSUM.
2. RUN Chexsum and it will check itself.
3. Check output against the table of values at the end of the program.
4. lf the program is incorrect, edit the incorrect lines and resave the

program.

Below is the listing of CHEXSUM and instructions on its use.

USING CHEXSUM
The greatest problem encountered when typing in programs from a
book is errors made by the user. Most of these are picked up when
the computer responds to the RUN command with the 'Syntax Error'
message. The user then has only to LIST the line and compare it with
the line in the book. Unfortunately, some errors are more subtle and
not fatal to program operation. These types of errors will cause the
program to run, but incorrectly, and the computer will not be able to
detect them as such.

ChexSum is a special program which generates a unique sum for
each line in a program and a grand total of all line sums. After each
program listing is a table of check sums. You need only compare the
numbers in the ChexSum table for each program with those generated
by ChexSum. lf two numbers differ, check that particular line.

1. Type in AKS. Save it to tape or disk with the statement; SAVE
.'AKS''

2. Reload the program if necessary, using the statement; LOAD
"AKS".

3. To join ChexSum to the end of your program, enter the statement;
MERGE "CHEXSUM''.

4. When merged, enter RUN 6ØØøØ to activate ChexSum. The pro-
gram will prompt:

oUTPUT TO PRTNTER (P) OR SCREEN (S)

Entering a P will cause output to go to the printer, and entering S
will cause output to go to the screen,

5. ChexSum will now output the check-sum table for the program.
To halt the program press the escape key once, and to restart the
output press any key other than escape. When ChexSum has
finished you may remove ChexSum from memory with the DELETE
instruction. For example:

DELETE 6ØØØØ - 6299Ø

156

6. Check your grand total with that in the book. lf they differ a line
has been entered incorrectly. Compare line numbers until you
locate the bad ones and then edit them.

7. Repeat steps 4 to 6 until the program is debugged.
9. When the program is running satisfactorily, delete the ChexSum

program as described above.
1Ø. Finally save the debugged version onto a clean tape or disk, with:

SAVE ''AKS".

lO-
7Ot
3O-
40-
5O-
éO-
7O-
BO-
90=

10O =
llO =
t?Ø =
l5O =
l4lì -
l3gl =
160 =
176 =
lECl =
19ø -
2øû -
2lg =
221À -
23ø -
235 =
24O =
25O -
26,ø =
27îÐ -
273 -
2AB =
2it =
3BO =
SlQl -
32O -
53O -
34O -
55Al -
3óO -
37O -
3BO -
39O -
4øø -
4lQl È
421ì -
43O -
441ì -

2e2
l25B
l2ø5
27r
2273

4S9l
c6ø
47rà
4Bø
49ø
50ø
5tø
521ì
53ø
540
59ø
5óø
57ø
5Aø
59ø
6$ø
6r ct
6214
63ø
641Ð
65ø
6ê10
ê7ø
6gø
69îÃ
7ørÐ
7tø
72ø
73ø
74û
75ø
7Éø
77ø
7Bø
796
80ø
Blø
a2Íì
a3ø
É4ø
Bso
860
87rÀ
aaø
B9ø
gøø

31 32
441¡2
4ó22
5ó75
52ô5
915
4794
rÐ

ø
(à

2493
6726
2t1À4
ø
2694
2696
ø
o
ø
ø
ø
6224
2øø3
ø
ê444
4695
t762
o
5953
rBt2
ø
4îò69
3755
5532
47 4l
t742
o
4578
ø
4939
1265
ø
932
rî
ø
o

9tO =
i?rÀ =
93O -
94O '
95O -
1ó,û t
i7ftr a
9BQl =
991À -

IOOØ -
lOlO -
lO2O -
lO3@ -
lø4O =
lOsO -
I øå9t Ê
lø7îÐ =
lOgO -
lØ96 -
llOO =
I I lcl -
lr2Ø =
tl30 =
It4Ø =
llSO =
l16ø =
1171Ã =
l lSf¿ =
l19ø =
t 20tll -
l2ltÃ =
122Ø -
l23O -
1246 =
125ø ¿
126û o
l27O =
l2Bø -
l29O *
ISOO =
13lO =
l32O -
153Íl =
l34O -
l35O *
156O o

l38
I 662
1 342
I 736
2673
rgla
2løø
24s6
2r3
l9l
2o26
2BAt
rs57
o
ø
ø
ø
I BQIB

7l¡Ð
s92ø
tBé2
I asø
BøA
2955
2244
2r3
1962
2øt
rò

ø
o
ø
9çJ7
5255
324 I
t4t2
2øl
rù

ø
tÐ

ø
7tÐ7
2283
I 783
293ø
22F34

1570
T38ø
1390
I4øQ¡
l4 tø
142ø
t 43ø
I 44ø
t45ø
t46ø
t47ø
I 48ø
I 49ø
r 5øø
l5tø
t.52ø
¡ 53ø
154ø
155ø
156ø
157ø
lSao
159ø
t6øø
t6t o
t62ø
163ø
164ø
1650
tÉ6fD
167ø
I68ø
t69ø
t7øø
t7 tø
172ø
I 73ø
t74ø
t7âø
t76ø
177ø
L7Bø
l79rÐ
laoo
lstø
ta2ø

l6sQt
aø8
2t3
t95ó
2c,1
r¿

ø
ø
ø
984
5246
3235
2273
tB62
22FJ4
165C1
aø6
3164
213
5t 7r
t 4ø6
2øL
o
ø
0
(ù

684
6754
2øø3
20r
rì
ø
ø
ø
t2éo
t2ø7
165ø
BøB
3334
22t34
2¡3
?ol
ø
ø
ø
ø

ø
ø
ø
ø
o
0
o
ø
o
ø
o
3l
o
o
B
o
ø
o
o
ø
o
o
0
1â

6
ø
ø
o
o
ø

BO

E

E

I

a

I

¡

t

-

2721à
1567
3009
ø
1Ð

47ø
o
ø
o
3482
337 I

157

lg3gl o
l84Ct =lgstl !
186Ø -
lB7ø -
lgBO =
lB9O =
t9OO =
l9to -
l92O -
l93O =
l94O -
195ø =
1966 -
197ø á
l9BO -
1996 =
2OOO =
2rì10j -
2ø2tò -
2ø3ø =
2ø4ÍÐ -
2O5E g
21Ã61Ã =
2rÀ7ø =
2ø8O o
2ø9ø -
2tOO -
2116 -
212Ø =
213ø -
2141ì -
2l5el o
216ø -
217ø =
2l8O =
219ø =
221àØ =
221ø =
222ø -
223ø =
2?4Ø =
22ãØ -
226ø =
227ø =
22âû =
229ø =
25OO =
23tø =
?52Qr -
235Ø =
254O =
235O -
25691 =
2371À
2sBqt
239ø
24rìø

691
5526
3375
2524
2øt
B
ø
ø
o
1862
t773
176
199ø
lsl9
t76
1 993
2t25
t76
2øørÐ
2236
t76
2Íìt
o
ø
ø
rì
I 28S
4297
3223
2L4t
t464
221ìt
72øL
t7r,
2øt
B
ø
ø
o
I 793
452
(â

o
T 868
2273
1958
ré5ø
808
3565
I 55ó
3553
2294
213
201

24110 -
242rì -
2436 -
244Ø =
245,1Ã -
246fù o
2471â =
248ri -
2490â =
256O =
251Ø =
232O =
253O =
2540j =
2556 =
256O =
237ø =
25BO -
2590 -
26pø n
26le =
262Ø -
263O o
264rÐ =
2å5Cl =
26ÉrÃ =
267fÐ o
26fJø =
2êi1À =
27OO =
27lrÐ =
2t2O =
273ø -
274O =
27ãØ =
276fÐ =
277O =
27eø I
279ø =
2AO0 =
2B\rã -
2B2O ¡
2€3O -
2fJ4Ø =
2B5O =
2tJ61ì a
2[J7Ø a
2€BO *
2çJ9ø =
29ûrì =
291Ír =
292ø =
2930 =
294Ø -
295ø =
296Ø =
297tÐ =
29AØ =

33t6
5rs4
4l 84
2ø7â
577 I
213
I 443
l9t r
5ø84
3787
4524
333ø
213
2r3
942
1650
2øt
o
ø
ø
I 37ø
2.2øl
379ø
t76
2rùt
0
ø
tô

B
sø5
t6t9
2ø1

4øé4
38 l5
3ø84
I 7ê8
t762
2699

2s59
I 43ø
t429
sa9ø
o
t472
27ø3
2791
4235
2r3

299fì =
SEOO -
3OlO =
5o2O =
3ø3O -
5O4O *
3O5O -
3O66 =
5ø7O -
SOBO -
309O -
SlOQl -
SllO -
3l2el -
3l3O =
3l4O *
315C1 -
3160 =
317Ø *
3rAO -
3l9O -
32BO -
321ø -
3226 -
323O -
324Ø -
3250 -
3260 -
327ø -
328ø -
3290 -
33QtO -
351ø -
5329 =
333O -
334Q1 ¡
53501 o
3360t -
337O =
338O =
339O r
340tcl e
34lO -
342Ø -
343ø -
344O -
345et =
346O =
347â =
S4B0l ã
349O =
35ø0 =
35lO =
352Ø =
353O o
5540 -
s55O =
356ø =

1567
21Ãt
ø
ø
o
ø
1773
3084
1473
5148
5B9l
2øt
ø
o
ø
ø
7zEJ
3421
26ø1ò
1fJ74
42å6
1r723
213
461 I
1535
2963
21Àt
ø
o
ø
ø
t 464
2742
2BåS
3229
2?24
4Bøø
4tJt7
5665
2øI
ø
o
ø
ø
1919
r s39
t729
I 384
5799
215
2rìt
ø
o
o
fù

372rÃ
¡383
t732

3570 -
35801 -
359Q1 -
3óOO ¡
561ø -
362O -
Så3O o
5ó4Cl *
3ó5Cl -
366O -
367fì -
3éBO -
3é9O o
57øet -
37lO -
37211 -
373ø -
S74o -
375C1 -
57óø -
377ø -
STBB ¡
379O -
38OO e
SBIO ¡
3B2O -
3B3O ¡
S84O '
SBSQI É
586O -
3970t a
588ø '
3B9O -
39OØ -
391C1 -
592O -
393O -
394ø E
395O -
396ø r
397O =
398O e
3990l !
4OOO =
4ølO =
4fÀ2ø -
4O3ø -
4Ø4rD -
4O5ø r
4ø6el =
4ø7ø -

¡9r9
292t
t729
l5a5
6ø33
1994
t422
t3B3
213
t422
2râl
ø
6
6
o
2465
2îlt
o
ø
(À

ø
I 643
1990
5735
4869
5268
2t3
r7ø9
29€J2
3043
475o
4426
2øt
ø
ø
ø
6
l7ø9
4437
3654
t 437
r90ø
o
1709
4439
3r t7
312ø
ø
35Cr6
t422
2øl

ø
ø
6
o
I 874

rà

o
ø
o
t t02

4øBø
4ø9ø
4tøø
4t 1ø

-ø
r@
=ø-øEø

rO
rO
ÉO

2437
2522
s5a9

158

412ø -
413ø *
4l4Q! Ë

4150
4t6ø
4t7ø
4 r80
4t90
42Aø
42tø
4?2rì
423îD
4249
423rà
426ø
427Ír
42grì
429ø
4SOg
43tø
4320
4330
4340
435ø
4360
437ø
434ø
4390
44tìø
44tø
442ø
4430
444rÀ
445ø
4460

7ø44
44BO
449ri
4ãøO
45r ø
452ø
453ø
4540
455ø
456ø
4â7rD
45AO
4590
46tÀ1Ð
461ø
462îÐ
4ô30
46410
465ø
46ó'ø
4ê7rì
4680 -
4691à n
47øø -
471ø -
4721à -

2øt
ø
0
ø
ø
2523
4754
2457
2øl
o
tù

o
o
o
1ì

t74tJ
l9l
I Bl2
29jt
ø
o
ri
ø
ø
t47A
4øa.2
4633
6l 25
2rLl
ø
G

o
6
2275
3l å4
16sO
s0B
5464
22B4
2t5
2øL
o
ø
ø
îì
1565
1945
74t3
2ê7€J
796
53ó3
74t3
213
t565
4639
3942
213
6ø51

473ø
474ø
473rù
476Íô
477ø
47Arì
479ø
48BO
48lø
4821ì
4S5ø
4fJ4ø
4€5ø
486ÍÐ
4A7rò
4Bgø
4S9ø
49øø
491ø
492ø
493ø
494ø
495ø
4961i
497ø
498ø
49910
50øø
ãølø
5020
5038
5ø40
5ø5ø
506ø
so70

I28ã
2øt
rì
ø
îà

ø
2ørÀrù
s93ó
2533
3423
2236
3ó85
r 3å3
t7{'
2tÐt
o
o
ø
ø
fÐ

6
ã291
t47B
st72
2tt4
I 857
t41Ð6
2t3
3461
t4ø7
t85S
4999
2rÐl
ø
o
o
ø
2273
3øSS
1656
aøs
3462
22FJ4
2r3
2tÐt
1Ð

o
o
ø
2tl4
t 37ø
2273
29ø1ì
r650
sos
stã9
22e4
2t5

53tO
532ø
53SO
5340
5550
536ø
537ø
53Aø
5590
5400
s410
5420
5430
544ø
545ø
5460
5470
544ø
549ø
55øø
5510
552ø
553ø
554A
5s5ø
55óø
557ø
558ø
5590
560ø
5èlø
5ê2ø
563ø
564ø
5è3ø
56óø
367ø
5égø
5690
570ø
57 10
572Íù

2øt
ø
o
o
o
Bll
3733
2rôt
ø
o
at

o
5628
2sss
2334
3227
Lt21ô
st lø
5357
67ø
255s
SOBø
2423
2g7E
3t28
2472
2277
2733
237€J
2330
2549
2Arû2
2SB3
3162
323ø
2677
2637
2444
2337
2t3
20t
ÍT

ø
o
o
2áø2
2îît
g
ø
ø
o
2372
3302
l9ø5
22øt
4423
44b
3705

5890
59øO
391ø
392fì
5930
594ø
595ø
59610
á9710
598ø
599ø
âøøtÐ
6ø1ø
6,ø2t
êo3ø
6'rÐ4rÀ
605ø
6ø6tÐ
6¡ì7ø
6ø8,rì
âø91À
610ø
ê11ø
612ÍÐ
613ø
6L4ø
6150
êt60
6t7ø
6taø
ât910
62øø
é21ø
É22ø
6239ô
é24ø
ê25ø
6261ì
627ø
62ÍJø
é29ø
63øø
á3tø
ós2ø
635O
ó54ø
635ø
636râ
637ø
658ø
é59ø
64øtÐ
641ø
642ø
643ø
644ø
645e1
6461à

2g2t
t76
2rùl
o
o
o
o
t5s7
2øl
ø
ø
o
ø
óBO
?294
21Dt

6383
26t
ø
ø
ø
ø
aa7
r793
t736
l9t
2tìt

2ørÐ3
2ø29
2ÍA\
ø
ø
ø
677
25SO
1565
2273
3251
1650
BOB
22e7
22e4
213
6ø79
2øt
o
ø
ø

6
1ù

ø
n
17 l5

Íò

0
ø
o
tlsz

5øBO
ã69ø
5IBø
5t 1ø
5r20
5130
514ø
515ø
5160
5t70

573ø

9ø5l
5laø

á741Ð
ã750
á761â
:5771À
!57B10
á7qø
58øø
SBlO
5820
5830
584ø
585ø
596ø
5A7ø
sSSO

5200
52lO
522ø
523ø
s24ø
5230
5.26t
5.27ø
52BO -
529O -
53øø -

159

647ø n
6488 -
649fI -
65Qlø !
ê5lO -
652îì -
è53O -
ó54O -
655Ø =
ó560 -
6ã7ø -
658O =
ê59O -
éáûØ -
661O =
662rÐ =
é63Ø -
6ó4O =
6å50 -
6ó60 -
6o78 =
å68O =
é6iØ -
671Ðø -
67lrÐ n
67210 -
673rù =
674Ø =
ê73ø =
67éø =
677rÐ -
67tJ6 -
ê79Ø =
6A8@ -
68lO -
682Ø -
óB3O -
684O =
685Ø =
ó86ø =
687ø -
6A8ø -
óB9O -
69OAl =
69lO =
692ø =
693O =
694îÐ =
695Ø -
ê96?j -
697Ø o
698ø =
6i91Ã n
7fÐøø o
7ØlØ o
762îì =
7O3ø =
7ø4ø =

ø
9Bø
2739t
I 49ø
t556
21ù23
2øt
ø
o
ø
o
2934
2249
7Bâ9
2tùt
ø
o
1à

ø
2944
2249
9É42
2øt
ÎD

ra

ø
6
29sS
2249
6857
2øt
rì
(Ð

o
ra

2937
2249
723fì
2rùl
ø
ø
ø
at

2931
2249
r2249
2t t4
2øt
ø
ø
ø
ø
I 4ø6
2t47
2491
2ÍÐt
ø
ø

7ø3ø -
7o6Ø =
70,71Ð -
7øtJrD '
7ÍÃ9Ø =
7løø =7llø -
7l2O -
7l3O =
714Ø *
7t3Ø =
716Ø =
717ø -
7tBø =
7 l9Ql -
72rÃØ -
72lO -
722ø -
723ø o
724rÐ =
72ã0| -
726Ø *
727ø o
72Efì -
7290ô t
731àO =
731Q1 =
732fÐ -
733ø =
734Ø -
755Ql É
73ÉØ =
737Ø o
738Ct È

739Ø -
74OØ -
741ø -
742Ø =
743O -
744O -
745e1 -
746Ít -
747Ø -
74BA -
749Íà -
75,øfÐ á
75lO =
7s2ø =
753O -
754ø -
7559 -
7ââ1À -
7576 =
75BO =
759Ø -
76øø =
TblO =
7626 o

68l
969l
21ò29
zrDt
ø
ø
ø
ø
éBt
4966
2ø29
20¡1
ø
ø
ø
o
t 549
5ø1
76t
5ø49
3977
4Al2
s496
5t59
r3a
20t
o
o
ø
o
1549
762
5tø3
4031
4EJé,ê
35Sø
5213
t37
2øt
o
ø
tì
o
4448
513ø
454
46lA
7ãéè
455

763ø o
764rÐ =
763Ø -
76610 -
7671ì n
76gÍÐ n
769Ø -
77ØO =
771ÍÀ -
772O =
7731ì =
774ø -
7731ì ê
776ø -
777Íù =
77f,ø -
779Ø -
7eOØ -
7AlØ =
742Íâ =
743ø =
7FJ4Ø =
7âãØ =
7âé'Ø -
7t¡7ø =
7880 =
78iØ =
79OØ =
79tfì -
7921ì =
793îì -
794O =
7i5Íl -
796ø =
7976 ¿
79FJø -
7991b =
BOO0 =
AØ1O =
Bfâ26 -
EelSø -
8O4O -
8Ql5Cl ã
AO6O -
AØ7Ø -
ACtACt E
Aø9ø =
91O01 =
BllO =
A12O =
B13O ¡
81 401 -
8156 -
BléO -
Bt7Ø =
BTBø =
Bt9O -
82øø =

2øt
o
o
ø
ø
I 996
34ø
l2t7
553
5,A7
tø95
553
tøB.2
544
5S7
96ø
544
r 23ø
JJO

547
I tøg
s5B
tt22
5â2
587
rooø
562
498
56ø
587
776
5éO
tø92
543
5A7
97ø
543
I 459
44ø
r 852
444
2458
421
261ÐI
431
259 I
438
191g
432
926
431
aø2
436
575
gjt7
429
2t7rÀ
t7ø6

g2lø -
8221ì o
E231ò -
824Ø -
A25O -
€J26Íò -
e.27ø '
828C1 -
e29Ø =
B3OO -
BSIO -
B32O =
B33el -
B34O *
S3501 =
836Q1 g
437ø =
838Q1 =
B39O -
B4Oø r
B41E -
842Ø =
B43O -

341
147?
1 Bå9
7øø
14ø3
391 I
54et9
578
626
548
593
5t2
1S59
4417
2426
1949
857
451
447
34t
353S
rBóI1
Bgø
544
I 453
4895
1342
544
6S6
7rÐ3
l3ø€
555
696
7ø3
t2t3
3á2
éaó
7rÀ3
t32t
558
é86
7ø3
545
550
532
553
342
294rò
ó5r 3
1 338ó
32ø9
ã666
641
543
1 E¡å9
29?3
537
627

îÃ

(Ð

aøl
2566
2ør
rò

ø
ø
ø

844ø
a45ø
846ø
tJ47ø
S4Bø
849ø
s5øB
851ø
8520
453ø
4540
855ø
856O =
A57O =
g5Bet =
B59O -
869O -
86lO =
862O =
8636 -
B64gt ¡
8è5ø =
866ø -
867ø -
868Ø =
869Ø =
A7ØfÐ =
ATle =
fJ72Ø =
875Ø =
474ø =
875Ø -
476ø -
477Ø =
878ø =

160

F]79ø
BBøø
BBIø
8A2rô
aa30
sB4ø
B856
aB6g¡
BB7ø
BBEø
ss9ø
B9øø
B9l ø
ag2ø
893ø
fJ94ø
a?5ø
€Jqéø e
Ê97fò -
B9B0 -
899ø =
9øOO -
9O16 =
i1û2O =
9OSQI =
9ø41Ð =
9O56 =
9O6O =
9tà7Ø =
9gBO =
9ø91i E

91ØO =
9ltø =
912Ø n
91301 -
914ø Ê

9l5O -
916Ø a
il7Ø n
91BO -
9l9O Ê

92îòÍÐ o
92tø n
9221ù =
923O -
924ø -
9231ù o
926fÐ =
9271Ð -
92€Jîì ¿
9291Ð -
93øO ¡
931O -
932Ø =
933ø =
934O =
935Ø -
956ø -

544
I ø55
537
627
42t
I 573
1øø61
I 52S
6379
1ø713
57El
562
537
627
ê42
t29C
5é2
533
549
s43
269:J
9243
157é
42t
I 138
6Íì22
I 155
t r54ø
626
591
r 490
37 trÐ
tô52
562
550
344
3gl I
rBBSS
3ø63
Lt79
2Í¿96â
379
431
447
EøS
544
545
sB3
345
25tet
t574
4t47
546
t92â
4ø3Þ
547
s5l
346

9550
956er
937Íì
958ø
9590
96ø0
961ø
9é21ì
963ø
964ø
9å5ø
9àbtD
967ø
96fJ0,
969ø
97ÍÀtÐ
97 tli
97zlj
9736
97 4rD
973ø
976ø
977rô
97fJø
979ø
9eørÐ
98lø
9ê2ø
9856
9840
9856
996ø
ga7ø
9BBø
9A9ø
99¡Ðø

4t44
7726
rø23
s62
1ø23
558
556
540
ã93
347
3222
4rìø1
4734
431
t5'rÀ77
639
534
2383
799t
545
ã47
549
534
tg77
sB73
552
34S
t7é3
t2337
54ó
557
536
349
2757
1272A
5162
9686
6724
379
ó85
éBø
3r55
4195
558
3€9
2ø7q
1499å
tocts
929
537
å23
551
42t
25,76
948
543
I ø3ø
56Cr

995C1 -
996Ø -
997ø o
99gø =
999Ø -

IO@BO -
lOØr6 -
lfìrìzfÛ -
rOø3O =
lCtEl40l E
I Ct0t5ø ¡
1OO6O =
lrDrò7ø =
1OBBO =
IAO9O -
IOIOO -
lQll lO -
lOl2O -
rOl3O -
lgll40' -
lgllS0l -
1el16Cl =
lø1701 -
r6tB¿l =
lØ19û -
lrâ21ârâ -
lø2101 -
tØ221â =
1O23O -
lO24O =
lø25ø !
lØ268 -
lø27ø -
1el280 =
lØ296 -
rø5øO =
lOSlO ¡
lO32O -
1ø33ø -
1O34O -
1O356 -
1036ø -
lO37O -
IOSAO -
1ø39ø É
1646ø -
lO4rO -
lO42Ø -
1O43O -
lO44O o
tO45O -
lO46O -
lrì47rì -
lO48O ¡
11À49ø -
1O5OO -
IOSIO -
1O526 -

54ã
996
5Bø
596
39ø
L62B
4tÀ43
1677
4ø1Ð7
679
s962
é37
t263
I 5øø
2411ì
62â5
57ÍJ
ó34
543
24s5
3ó.2t
67t
lSst
543
37A
39r
2224
1øtå1
28øI
6554
2ørò9
297ø
ta36
7329
9tr
56ø
595
392
2053
274gJ
48øI
t943
ó383
s[J7
640
655
lø23
553
942
5É2
5AA
605
393
t 159
7794
t t26
4ø46
63ø

lolssct -
los4Qt o
1O55O =
lø56ct !
19t57ø =
IOSBØ =
1O596 =
lQl6Qlgl Ë

1ø61Ø =
lØâ21À -
lCl63O -
rO64O =
1ø65ø -
106åø -
lrÃè71ù -
10åBø ¡
1O69O =
lø7filÀ -
1O716 -
tØ72Ø *
lfì73fÐ n
lø741Ð -
lØ751À -
lØ7é,rÃ =
tø7710 n
lø78ø =
lø79ÍÐ -
IOBOØ -
tOAt6 -
1O82El r
1ø83ø -
IOB4O -
lclgso -
lø86ø *
IOBTO =
rOBAO =
10189ø E
lO9OØ -
lQl9lø -
1ø92O -
lO93O -
lØ94f0 -
lO95O -
tB?éct -
LØ97Ø n
lø9get -
1ø990 -
ll0øø É
l lOlO -
I 1020 =
r lO36 =
I lO4O -
t IOSO =
I 1O60 =
lUã71ì =
rrOBO =
r tOgO -
lllOO -

252ë
5s3
552
5?3
394
2676
2724
4764
5'97
594
395
I t67
l2t I
á243
lSrs
5393
I 3å9
3019
2629
4903
é43
546
55é6
421
34øs
4923
337 r
lã6ø
34å3
296t
zBt4
tt37
6683
r TSBB
579
63ø
5S5
645
I112
5517
598
ê1Ð4
396
t ó40
925S
t 40I
t7g7
644
t294
tøs27
€t6
544
585
397
243ö
3143
5S2
6ø6

937tÀ
93BO
9590r
94ÍÐ¡ì
94trì
942ø
9430
944ø
945ø
946ø
947ø
944ø
949ø
9508
951ø
932ø
9530

4ø95

I

I

991ø
992ø
9930
994ø

161

tlllø -
I lt20 -
I I tso i
I I l4O È

1115O -
ll16ø -
11170 -
l l lBO -
tll9O -
l l2elø r
11216 -
lL22ø -
ll23O -
ll24fù -
1125O -
I 126O -
L1271à n
ll2BO -
ll?9ø -
llSOø -
1l3r0 -
rr52ø =
lr53O *
1154O -
I 135Q1 *
1156O -
I 1379 -
I tsBø "
1139ø -
1l4OO -
1141Ø -
11420ô =
I l43gl -
1144O e
1145ø -
I l4óO -
rt47ø -
I l48O -
I l49O -
t 15O6 =
l l5l0 -
ll52O -
1153ø !
tl540 =
t l55O -
11569 -
ll57O -
ll58ø û
r t59O =
I lôOO =
1lél0 -
1162Ø -
1163ø -
I lê4O -
11ó5O -
Ité66 -
l167ø -
t 1680 -

39S
2436
587
594
599
39ø
24sb
êøl
597
596
58t
391
2436
598
58l
397
392
243ó
549
5S3
393
2436
5547
589
584
60ø
394
27AS
é895
4691
lâ24
578
558
êîôrì
599
395
2356
725
rø4to
593
343
34s
344
t7é2
30øB
s97
697
9129
525
955
9ê4
548
345
2?7 t
3359
s52
ó9t
535

I 1ó9ø
LtTrirÛ
I 171ø
tt72ø
I 173ø
I L7 41Ð

Ll7ã1ù
tL76ø
tt77Íà
I I78ø
tt7grt
I rsoø
I tBlø
I ts2ø
I la3ø
t ts40
I 185ø
I tg6ø
I t87ø
I IBBø
I r89ø
I t90ø
I t9lø
t L92rì
I 193ø
I t94ø
t !95ø
1 196ø
tt97lÀ
I l9BO
1 199Q1

t2øørÂ
Lzlrlø
t2ø2ø
t2ø3ø
t2ø4ø
r2ø56
r2ø6rÐ
t2ø7ø
I2øBø
t2ø9ø
t2tørÀ
l2l tø
t2t2ø
12t50
tzr4ø
1215ø
L2térà
L2t7ø
12180

164 1

3 193
326i
346
t7 4îã
351
l3B5
4ø51
347
2550
347
løø1
ã23
535
2257
548
t73fô
347
1352
525
535
349
4321À
497€¡
39ø8
s99
t723
525
535
s5ø
2øFl6
594
793
ss28
351
t699
349
I 393
t34ø7
352
5ls7
5314
5757
395
rø43
3084
392
1792
s9ø
t 73å
525
ã3s
3574
393
ãøsl
t7t92
3237
399

L2271â -
l22BîÃ -
t22i1ì n
l23OO -
L23lÍÐ o
1232O -
1233O -
l234gl *
1235O -
1256O -
12371à -
l23BO -
L239fô n
l24lÃO -
l24ttD -
1242fì -
1243ø -
t2441À -
1245,ø t
l246Ql -
1247Ø -
t24Êlì -
1249Ø -
l25OO -
1251ø -
1232rÀ -
1253O -
1254Ø -
12558 -
l256el *
L2376 -
1258O -
12590 È

126O1Ð -
L2619| -
t2621Ã -
12ê31ì n
l2ô4O -
1265O =
126ê1ù -
12b7Ø a
1268e' =
I269Q -
l27OØ -
t27lØ -
t272ø n
L27sîù =
1274ÍÃ -
1275ÍÀ -

I 494
3575
394
5t56
246t
590
â92
2299
395
I 750
347
r 341
229ø
596
IBé5
39ø
r386
52s
535
7499
397
33lA
599
tÍì23
30s6
I BB4
39S
3142
3257
353
2øSt
2b42
2t42
599
t 547
344
to43
5452
4347
353
5S7
17373
431
447
334
t 4å19
431
447
242

TOTAL - 217519712191Ð -
122ø9J n
122t1À -
t2221Ð n
t223ø n
12240, -
1223Ø -
1226Ø -

162

6ø1TÍAø

60018

6øø2fì
åøø3ø
60040
óøø50

6øø6ø
6Írø7rò
6ø0BO

å0ø90

åo1øø
6011ø
6rÀt20

é0150
é8t40

6øl 5ø
6Íò16rà

6øt7ø
60r80
6løÍìrâ

FRINT *B.CHR$(27)¡"G"¡ ! CLS: LOCATE 11. I ¡ PRINT "CH
EXSUH.PROGiRAT,I"
LOCATE l. 5 : PRINT "OUTPUT-TB^PRINTER^(P)^OR-SCREEN.(S
) .?t'¡
X:8=INKEYIS: I
IF X$ = "P" OR
IF X$ = nsrr OR
LOCATE I r
L(X$) >
TOTAL a Cl

l0!

NEXTFIEI'I - PEEK(l''lEt'|, + 25ó * PEEK(l'4814 + I) + NEXTT4EFI

LN - PEEI¡:(l"lEl"l + 2, + 256 * PEEK(l*lEl'l + 5) ! IF LN >=
LLIH¡T 1HEN 62øelø ELSE IF LN < LSTART THEN t'lEH = NExTHEl"l

¡ B0TO óøø8ø
HEtl = Ì,tEh + 4 : CHXSUII = O : QUOTE = ø
IF PEEK(llEtf) = 52 THEN HEl.l = ÌlEl"l + I ! GOTO 6gtltQt
tF PEEK(F'lEt'l) = I OR PEEK(MEI'I I - li7 THEN tlEt4 = NEXT
I'IEH ¡ GOTO 6lgl¿!ø
þ,HILE I,IEH { NÉXI'}.IE},l
rOr.EN ¡ PEEK(HEt'l) ¡ IF TOKEN - 34 THEN OUOTE = BUOTE
xoR I
¡F OUOTE = I OR IOKEN <> 32 THEN 6ø17ø
LASTOK - FEEk(l"lEM - I) : NEXTOK - PEEK(llEl'l + I) ! G
OSUB 61500 r ¡F IGNORE - I THEN 6O18B
CHXSUI'I = CHXSUI'I + IOkEN
HEI'I-MEH+ I: WEND
PRINT *STREA''I, USING ''#*II*{T"r LN¡ : PRINT *STREAI"I.

"=^"¡ trHXSUM
IOTAL - ÎOTAL + trHXSUl{ ! GìOTO 6OOBA

IGiN0RE - Cl

IF LASTOK = 44 OR LASTOK = 32 OR LASTOK ' 4Qt OR LASTOK
= 1 OR (LASTOR > 237 AND LASTOK < 25O , THEN IGNORE =
t ! RETURN
IF NEXTOK = 4l OR NEXTOK = I OR (NEXTOR > 237 AND NEX
TgK (25ø) THEN IBNORE - I ¡ RETURN
RETURN

PRINT llSTREAll ¡ PRINT *STREAI'|. "TOTAL-=^"¡ TOTAL
a

F X$ = "" THEN óeløzø
X* - "Þ" THEN STREAH o g !
X:3 = rrsr THEN STREAM = O : PRINT "S'
INPUT 'STARTIN6.LINE-NUI1BER": X9 : lF VA

ø THEN LSTART - VAL(Xî) ELSE 6ø05ø
: LLI]'|IT - 6299Ø ! I'IEH - 368 : NEXTl'lEl'l - t1EM

6t ø10
6r49ø
6150ø
ót5lø

å152ø

ó153ø
6t99ø
ó.2ørôrì
6299ø

6rìØØØ -
600lø =
61ìØ2fà a
6OO3O -
êøø4ø =
óOO50 =
6ø0êø =
6îàØ7rD -
éOØ€Ø =
é€0?6 e
6ØlOO =
ÉrìllîD -
6Íù12Ø =
6O13O -
6ø¡4ø =
éOl5O æ

6O16O =

2Arì9
3059
2ø6t
33r5
3297
57t3
4243
ø
4367
9ãt r
3256
3432
4964
t687
5092
28 l9
6l t3

éÍàl7rÙ =
60lAø =
6rO60 =
ålølø =
ó149O =
é1501ø =
6l5lO =
ó152Ø -
6153ø -
o199Ø -
é2O1ÐØ -

2585
1576
5897
2èø4
0
tø22
9964
745ã
2øl
ø
2964

TOTAL = 97746

163

Þ9t

APPE]IDIX B
BIBLIOGRAPHY

The following is a short list of some useful and interesting books and
articles which will provide more information about areas we have cov-
ered in this book. lf you have found some of the more advanced
techniques we have mentioned intriguing, then these sources will be
well worth looking at.

Blanc, M. S. and Galley, S. W., 1980: How to fit a large program into
a small machine. Creative Computing VOL 6 no 7, 80-87.

Daynes, R., 1982: The video disk interfacing primer. Byte, June,48-
59.

Jackson, Principles of Program Design. Academic Press.
Knuth, Donald. Fundamental Algorithms. Addison Wesley.
Lebling, P. D., Blanc, M. S. and Anderson, T. 4., 1979: ZORK: A com-

puter fantasy simulation game. IEEE Computer, April, 51-59.
Lister, A. M. Fundamentals of Operating Systems. Macmillan Publishers

Ltd.
Reed, K., 1980: Adventure ll - an epic game for non-disc systems.

Practical Computing, August 68-75.
Tolkein, J. R. R. The Lord of the Rings. Unwin Paperbacks.
Winston, P. H. Artificial lntelligence. Adison Wesley.

165

AKSCASSETTE
A cassette containing the Adventure Kernel System is available on
cassette from:

Bookpoint Ltd.,
39 Milton Trading Estate,
Abingdon,
OXON, OX14 4TD.

Please send 80p (post & pack) plus € 3.95

166

Writing Adventure Games On The Amstrad

Customer Registration Card

Please fill out this page (or a photocopy of it) and return it so that we
may keep you informed of new books, software and special offers.
Post to the appropriate address on the back.

Date.19
Name

Street & No. .

City. . Postcode

Model of computer owned

Where did you learn of this book?:

fI FRIEND fI NETRII SHOP

tl MAcAztNE (give name)

rl OTHER (specify)

Age? E I o-l s |J l0-t g l)zo-zq ff 25 and over

How would you rate this book?

QUALITY: [] Excellent ff Good ff Poor

VALUE: fJ Óverprice fJ Good fJ Underpriced

What other books and software would you like to see produced for
your computer?

ED|T|ON7654321

167

Melbourne House addresses

Put this Registration Card (or photocopy) in an envelope and post it to
the appropriate address:

United Kingdom
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

Australia and New Zealand
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

	cover front
	Writing Adventure Games on the Amstrad.pdf
	back cover

