
SPECIAL FEATURE

/ t ~~Zork:
A Computerized Fantasy
Simulation Game
P. David Lebling
Marc S. Blank

* Timothy A. Anderson

MIT Laboratory for Computer Science

Is magic real? Do swords glow if the enemy is nearby?
In the demonic world of Zork, a simulated universe entices

the player into a new form ofproblem solving.

Beyond this nondescript kitchen, above and below
the surface of the earth, lie scores of rooms, some con-

i~~~. <., ~~~~~taining traps, some containing puzzles. Hundreds of
~ | ||||objectsare scattered throughout this maze, some val-

.OUJI#i l I lIEW *bgwblteh9tw l U~ uable treasures, some magical tools. The little white
I~w~4 a O"* . " I I IIhousein the forest clearing is the entrance to Zork, a

game developed by the authors. Zork is one example
of a new type of game: the Computerized Fantasy
Simulation game.
In this type of game, the player interacts conversa-

... l l "7 llCQtionally with an omniscient"Master of the Dungeon,"

sequences. If the player says "Go north," he may
move north, or the dungeon mastermay say "There is
no way to go in that direction." If the player says

~~ ~ ~~~"Open the window," the dungeon master may re-
Ei3# | I | g|gspond "The window is locked. "The results depend on

the design of the game, its architecture and fur-
Kh.~ l l l gnishings, so to speak: in one game picking a sword
g l l l Z i 1might be fatal, in another it might confer magical

s powers. The design and implementation of such
" l games is as much an exercise in creative writing as in

programming.
The interest in playing Zork (or any other CFS

4 ic l I " 10game)is two-fold. First, the object of the game is
usually to collect treasure, and this may be done only
by solving problems; in the above example, the player
would garner 10 points by being clever enough to
open the window and enter the house. (Zork itself has
more than two dozen distinct problems to solve, some

0018-9162/79/0400-0051$00.75 (1979 IEEE 51April 1979

presented in several stages.) Second, a great deal of
the enjoyment of such games is derived by probing
their responses in a sort of informal Turing test: "I
wonder what it will say if I do this?" The players (and
designers) delight in clever (or unexpected) responses
to otherwise useless actions.

Overview: simulating the universe

The heart of any CFS game is its ability to mimic
omniscience. By this we mean that the game should
simulate the real world sufficiently well so that the
player is able to spend most of his time solving the
problems rather than solving the program. If, for ex-
ample, the vocabulary is too small, the player must
always wonder if his problem is only that he hasn't
yet found the right word to use. Similarly, it is annoy-
ing for a possible solution to a problem to be ignored
by the game. In other words, the program must
simulate the real world.
Obviously, no small computer program can encom-

pass the entire universe. What it can do, however, is
simulate enough of the universe to appear to be more
intelligent than it really is. This is a successful
strategy only because CFS games are goal-directed.
As a consequence, most players try to do only a small
subset of the things they might choose to do with an
object if they really had one in their possession.

Zork "simulates the universe" in an environment
containing 191 different "rooms" (places to be) and
211 "objects." The vocabulary includes 908 words,
of which 71 are distinct "actions" it handles. By con-
trast, a person's conversational vocabulary is a factor
of two (or more) larger. How then does a limited pro-
gram make a creditable showing in the conversational
interaction that characterizes Zork?
The technique Zork uses for simulating the uni-

verse is that of universal methods modified for par-
ticular situations. For example, when a player tries to
take some object, he expects to end up carrying it.
There are, as in the real world, exceptions: some ob-
jects are "nailed down," and one's carrying capacity
is limited. These restrictions are included in the
general TAKE function. However, the designer might
want a special action in addition to, or instead of, the
general TAKE: a knife might give off a blinding light
when taken; an attempt to take anything in a temple
might be fatal. These exceptions would not appear in
the general TAKE function, but in functions asso-
ciated with the knife and the temple.
The details of this method of exceptions will be

taken up later. The effect of it is that "the expected
thing" usually happens when the player tries to (for
example) take something. If the object he is trying to
take is not special, and the situation is not.,special,
then "it works," and he gets the object. In Zork, there
are quite a few of these basic verbs. They in-
clude "take," "drop," "throw," "attack," "burn,"
"break," and others. These basic verbs are set up to
do reasonable things to every object the player will
encounter in the game. In many cases, objects have
properties indicating that a certain verb is meaningful

when applied tothem (weapons have a "weapon" prop-
erty, for example, that is checked by the verb "at-
tack"). Applying a verb to an object lacking the
necessary property often results in a sarcastic retort
("Attacking a troll with a newspaper is foolhardy."),
but the point is that it does something meaningful,
something the player might have expected.
Another way in which the game tries to be real is by

the judicious use of assumptions in the dungeon mas-
ter's command parser.. Suppose the player says "At-
tack." Assuming that he has a weapon and there is an
enemy to attack, this should work, and it does. As-
sumptions are implemented by the existence of verb
frames (stereotypes) and memory in the parser. In the
example, the parser picks up the verb frames for the
verb "attack." They indicate that "Attack 'villain'
with 'weapon' " is the expected form of the phrase.
Now, "villain" means another denizen of the dun-
geon, so the parser looks for one that is presently ac-
cessible, a "villain" in the same room as the player.
Similarly, the player must have a "weapon" in his
possession. Assuming only one "villain" is in the
room and the player has only one "weapon," they are
placed in the empty slots of the frame and the fight is
on.
Suppose that there is only one villain available, the

troll, but the player has two weapons: a knife and
sword. In that case, the dungeon master can't decide
for him which to use, so it gives up, saying "Attack
troll with what?" However, it remembers the last in-
put, as augmented by the defaults ("Attack troll").
Thus, if the user replies "With sword," or even
"Sword," it is merged with the leftover input and
again the fight is on. This memory can last for several
turns: for example, "Attack"; "Attack troll with
what?"; "With knife"; "Which knife?"; "Rusty
knife"; and so on.

Data structure and control structure

The underlying structure of Zork consists of the
data base (known as "the dungeon") and the control
structure. The data base is a richly interconnected
pointer structure joining instances of four major data
types: "rooms," locations in the dungeon; "objects,"
things that may be referenced; "actions," verbs and
their frame structures; and "actors," agents of ac-
tion. Each instance of these data types may contain a
function which is the specializing element of that in-
stance. The control structure of Zork is, at one level, a
specification of which of these functions is allowed to
process an input sentence and in what order.

In the simplest sense, Zork runs in a loop in which
three different operations are performed: command
input and parsing, command execution, and back-
ground processing. (Figure 1 is a flowchart of the
Zork program.)
The command input phase of the loop is relatively

straightforward. It is intended to let the user type in
his command, edit it if he needs to, and terminate it
with a carriage return.

COMPUTER52

The purpose of the Zork parser is to reduce the
user's input specification (command) to a small struc-
ture containing an "action" and up to two "objects"
where necessary.
The parser begins by verifying that all the words in

the input sentence are in its vocabulary. Then, it
must determine which action and objects, if any, were
specified. For an object to be referenced in a sentence,
it must be "available"-that is, it must be in the
player's possession, in the room the player is in, or
within an object that is itself available. Objects not
meeting these criteria may still be referenced if they
are "global objects," which are of two types: those
that are always available (such as parts of the
player's body), and those that are available in a
restricted set of rooms (such as a forest or a house).
Adjectives supplied with the sentence are used to
disambiguate objects of the same generic type (such
as knives and buttons) but are otherwise ignored. If
an object remains ambiguous, the parser asks which,
of the ambiguous objects was meant (for example,
"Which button should I push?").
Next is syntax checking, whereby the correct "ac-

tion" is used for any verb. Syntax checking makes
use of any supplied prepositions, differentiating be-
tween, for example, "look at" and "look under,"
which imply different actions. Finally, having deter-
mined the appropriate syntax for a given sentence,
the parser ensures that all required objects for a
given action were specified. The parser may, for ex-
ample, decide that the correct syntax for the sentence
"Give X" is "Give X to Y." An attempt is then made
to supply an appropriate "Y" to complete the sen-
tence. This is made possible by the definitions of the
actions themselves, which include the attributes of
the objects to be acted upon. In the present example,
the action for "Give" defines the indirect object ("Y")
to be another denizen of the dungeon; the parser at-
tempts to comply by seeing if one is available. If so,
the indirect object is found, and the parse is suc-
cessful. If not, the player is asked to supply the in-
direct object himself. ("Give X to whom?") Once this
phase is completed, the parse is finished and the
parser's output is returned.
The adjectives and prepositions that were in the

user's input are used only to determine the "action"
and the "objects," and are not part of the parser's
output. In addition, all articles are ignored, though
users may add them to increase the clarity (to them-
selves) of what they input. For example, an input of
"Knock down the thief with the rusty knife" reduces
to something like

[<action STRIKE> <object THIEF>
<object RUSTY-KNIFE>]

If, however, the input were "Knock on the thief," the
parser would reduce that to

[<action RAP> <object THIEF>]

recognizing that the "action" to be peformed
depends, for the word "knock," on the syntax of the
input sentence: "knock down" turns into "strike,"
while "knock on" turns into "rap."

Once parsing has been completed, processing ofthe
command is started. The functional element (if any)
of each of the objects in the parsed input may be in-
voked. Additionally, some objects not specifically
referenced, but which define the situation, are part of

Figure 1. Zork flowchart.

April 1979 53

the processing sequence. The order in which these
functions are invoked is determined by a strategy of
allowing the exceptions an opportunity to handle the
input before performing the action associated with
the most general case. The processing order is as
follows:

(1) The actor performing the command, if any.
This allows, for example, a robot with a limited
range of actions.

(2) The vehicle the actor is in, if any. This allows
the vehicle to restrict movement. For example,
inside a freely drifting balloon the normal

movement commands (such as "Run north")
might be meaningless or even fatal.

(3) The verb, or "action."
(a) The indirect object of the sentence, if any.
(b) The direct object of the sentence, if any.

(4) The vehicle again, if any. The vehicle is called a
second time to enable it to act based on changes
in the state resulting from the action.

(5) The room the player is in.
Each of these functions is invoked in turn and given
the option of handling the command. If it decides to
handle the command, processing terminates at that

COMPUTER54

point, and the remaining functions are not invoked.
Otherwise, the sequence continues. Note that a func-
tion may do something (such as print a message)
without completely handling the input. The invoca-
tion of an object's function is under the control of the
verb; it may, after suitable checks, determine that the
player's request is not reasonable. ("Your load is too
heavy. You will have to leave something behind.")
This limits flexibility slightly, but it has the advan-
tage that it localizes the tests for a reasonable state.
Presumably, one of the functions will handle the

command and print an appropriate response. Should

that not happen, the response "Nothing happens" is
printed by default. However, care has been taken to
ensure that most input commands produce some
reasonable response. Indeed, much of the enjoyment
of the game is in being allowed to try ridiculous
things, and the surprise of having the game under-
stand them.
The functions described so far are invoked in direct

response to what the user typed. Background pro-
cesses, or "demons," are invoked after each input,
regardless of its nature. They allow the program to do
things independently of the player's actions.

April 1979 55

Playing with fire, attempting to burn the paint-
ing (in the end, the careless adventurer gets his
just deserts):

A demonstration of vehicles, specifically the
magic boat (various ridiculous things are at-
tempted).

>LOOK
Dam Base
You are at the base of Flood Control Dam #3,
which looms above you and to the north. The
River Frigid is flowing by here. Across the river
are the White Cliffs, which seem to form a giant
wall stretching from north to south along the
east shore of the river as it winds its way down-
stream.
There is an inflated boat here.
The magic boat contains:
A tan label

>BOARD THE MAGIC BOAT
You are now in the magic boat.
>NORTH
You can't go there in a magic boat.

;The room to the north is defined nQt to
allow boats.

>READ
Read what?
>LABEL
Taken.

!!!! FROBOZZ MAGIC BOAT COMPANYH!!!

Hello, Sailor!

Instructions for use:

To get into boat, say 'Board'
To leave boat, say 'Disembark'

To get into a body of water, say 'Launch'
To get to shore, say 'Land'

>LAUNCH
Frigid River
You are on the River Frigid in the vicinity of the
Dam. The river flows quietly here. There is a
landing on the west shore. You are in the magic
boat.
>DOWN
Frigid River
The Riverturnsacornerhere making it impossi-
ble to see the Dam. The WhiteCliffs loom on the
east bank and large rocks prevent landing on the
west.
You are in the magic boat.
>UP
You cannot go upstream due to strong currents.
>PUT BOAT IN BOAT
How can you do that?
>DISEMBARK
You realize, just in time, that disembarking here
wouid probably be fatal.
>DOWN
Frigid River
The river is running faster here and the sound
ahead appears to be that of rushing water. On the
west shore is a sandy beach. A small area of
beach can also be seen below the Cliffs.
You are in the magic boat.
There is a red buoy here (probably a warning). [
[in the roomj
>EAT BUOY
Taken.
I don't think that the red buoy would agree with
you.

;The verb function has done all the pro-
cessing.

>INVENTORY
You are carrying:
A pair of candles
A matchbook
A torch
A painting
A lamp
>LIGHT CANDLES WITH TORCH
You realize, just in time, that the candles are
already lighted.
>EXTINGUISH CANDLES
The flame is extinguished.
>LIGHT CANDLES WITH TORCH
The heat from the torch is so intense that the
candles are vaporized.

;The 'candles' function has handled being
lit with the torch.

>LIGHT MATCH
One of the matches starts to burn.
>BURN PAINTING WITH MATCH
The painting catches fire.
Unfortunately, you were holding it at the time.

Demonstration of the parser, and a number of Its
features, Including the remembering of pre-
vious inputs and the use of ALL and ALL EX-
CEPT:

>WEST
Living Room
You are in the living room. There is a door to the
east, a wooden door with strange gothic letter-
ing tothewest, whichappears to be nailed shut,
and a large oriental rug in the centerof the room.
There is a trophy case here.
A battery-powered brass lantern is on the trophy
case. On hooks above the mantelpiece hangsan
elvish sword of great antiquity.
>TAKE ALL BUT PAPER AND RUG
sword:

Taken.
lamp:
Taken.

>READ
Read what?
>THE DOOR
The engravings translate to 'This space inten-
tionally left blank'
>LOOK UNDER RUG
Underneath the rug is a closed trap door.
>MOVE THE RUG
With a great effort, the rug is moved to one side
of the room.
With the rug moved, the dusty cover of a closed
trap-door appears.
>OPEN
Open what?
>DOOR
Which door should open?
>THE TRAP DOOR
The door reluctantly opens to reveal a rickety
staircase descending into darkness.
>GO DOWN
It is pitch black. You are likely to be eaten by a
grue.
Your sword is glowing with a faint blue glow.
>WHAT'S A GRUE?
The grue is a sinister, lurking presence in the
dark places of the earth. Its favorite diet is
adventurers, but its insatiable appetite is
tempered by its fear of light. No grue has ever
been seen by the light of day, and few have sur-
vived its fearsome jaws to tell the tale,
Your sword is glowing with a faint blue glow.
>TURN ON LAMP
The lamp is now on.
Cellar
You are in a dark and damp cellar with a narrow
passageway leading east, and a crawlway to the
south. On the west is the bottom of a steep
metal ramp which is unclimbable.
The trap door crashes shut, and you hear some-
one barring it.

;The room function closes the trap door to
bar escape.

emzi"AK

The robber, demonstrating his sadistic streak:

You are in a tiny cave with entrances west and
north, and a dark, forbidding staircase leading
down.
There is a suspicious-looking individual,
holding a bag, leaning against one wall. He is
armed with a vicious-looking stiletto.
>INVENTORY
You are carrying:
A lamp
A sword
A platinum bar
A jade figurine
The butt of his stiletto cracks you on the skull,
and you stagger back.

;The fighting 'demon' just ran.
The other occupant just left, still carrying his
large bag. You may not have noticed that he
robbed you blind first.

;The thief 'demon' just ran.
>INVENTORY
You are carrying:
A lamp
>SIGH
You'll have to speak up if you expect me to hear
you!

A not atypical run-inand battle with the troll (un-
fortunately, this one results In the death of the
adventurer):

>EAST
The Troll Room
You are in a small room with passages off in all
directions.
Bloodstains and deep scratches (perhaps made
by an axe) mar the walls.
A nasty-looking troll, brandishing a bloody axe,
blocks all passages out of the room.
Your sword has begun to glow very brightly.
iKILL TROLL WITH SWORD
A mighty blow, but It misses the troll by a
mile.
The axe gets you right in the side. Ouch!
>SWING BOTTLE AT TROLL
Trying to attack a troll with a glass bottle is
suicidal.
The axe crashes against the rock, throwing
sparks!
>JUMP OVER TROLL
The troll is too big to jump over.
You stagger back under a hail of axe strokes.
>TIE UP TROLL
with what?
>ROPE
The troll struggles and you cannot tie him up.
The troll hits you with a glancing blow, and you
are momentarily stunned.
>DIAGNOSE
You havealightwound, whichwill becured after
29 moves.
You can be killed by one more light wound.
The troll swings his axe, but it misses.

;The troll, no gentleman, keeps fighting
while you examine your wound.

>SCREAM
Aaaar-r-gggggggggggggghhhhhhhhhhhhhh!
The axe crashes against the rock, throwing
sparks!
>WAKE UP THE TROLL
The troll isn't sleeping.
The axe sweeps past as you jump aside.
>JUMP
Wheeeeeeeeeel!!!!
The troll's axe stroke cleaves you from the nave
to the chops.
It appears that that last blow was too much for
you. I'm afraid you are dead.

A demonstration of the Clock Demon, with the
Gnome of Zurich appearing a specifled number
of moves following entrapment In the Small
Room:

Small Room
You are in a small, bare room with no dis-
tinguishing features. There are no exits from
this room.
>NORTH
There is a wall there.
>EAST
There is a wall there.
>SOUTH
There is a wall there.
>WEST
There is a wall there.
>UP
There is no way up.
>DOWN
There is no way down.
>FOO
Well, FOO, BAR, and BLETCH to you too!
>CLIMB UP WALLS
Climbing the walls is of no avail.
An epicene Gnome of Zurich wearing a three-
piece suit and carrying a safety-deposit box
materializes in the room. 'You seem lo have
forgotten to deposit your valuables,' he says,
tapping the lid of the box impatiently. 'We don't
usually allow customers to use the boxes here,
but we can make this ONE exception, I sup-
pose. .' He looks askance at you over his wire-
rimmed bifocals.
>HELLO GNOME!
The gnome appears increasingly impatient.
>INVENTORY
You are carrying:
A lamp
A clove of garlic
A knife
>GIVE GNOME THE GARLIC
'I wouldn't put THAT in a safety deposit box,'
remarks the gnome with disdain, tossing it over
his shoulder, where it disappears with an under-
stated 'pop.'
>STAB GNOME WITH KNIFE
The gnome says 'Well, never.. .' and disap-
pears with a snap of his fingers, leaving you
alone.
>LOOK
Small Room
You are in a small, bare room with no dis-
tinguishing features. There are no exits from
this room.

Currently, there are four demons. The first is the
"fighting" demon. The residents of the dungeon are
frequently hostile; this demon allows them to assault
the player unprovoked, and to keep fighting him even
if he ignores them.
Next is the driving process behind the "thief,"

described as a "seedy looking gentleman carrying a
large bag." The thief's purpose is to make life diffi-
cult for the player by absconding with treasures or
other randomly selected objects. In many ways he
acts like another, rather hostile and powerful, player
in the dungeon.
The third demon is used to warn the player of the

presence of hostile forces by causing his sword (if he
has it) to glow if there are enemies nearby. It looks at
the player's vicinity and prints an appropriate mes-
sage if the "state of alert" changes; since the thief
moves on his own, it is not sufficient to look for hos-
tiles when the player moves.
Last is the "clock" demon. It is the mechanism by

which the concept of future time is introduced into
the game; arbitrary events can be scheduled for ar-
bitrary future times. For example, the lamp can burn
-out after being on for some number of moves, and
wounds inflicted in a fight will eventually heal. Out of
consideration for poor typists, the clock does not tick
after unparsable input.

The history of Zork

The-existence of Zork is a direct consequence of the
existence of two excellent games: Dungeons and
Dragons, a fantasy simulation game (not computer
based) invented by Dave Arneson and G-ary Gygax,
and Adventure, a computerized fantasy simulation
game originally written by Wil Crowther and later ex-
tensively expanded by Don Woods.
Adventure itself was inspired by D&D (as it is

familiarly known), in particular aD&D variation then
being played out at Bolt Beranek and Newman, a
Cambridge, Massachusetts, computer firm. It even-
tually was released to the public, and it became one of
the most popular computer games in recent memory.
One laboratory that acquired a copy of Adventure

was MIT's Laboratory for Computer Science, with
which the designers ofZork (the authors and Bruce K.
Daniels) were all then affiliated. In the process of
"solving" Adventure, however, the game's deficien-
cies and the competitive spirit that often animates
computer researchers kindled the desire of the
authors to write a successor game.
Our natural choice of language was MDL, which is

one of the languages in use at LCS. MDL recommend-
ed itself for other reasons, however. It is a descendent
of LISP and is functionally extensible. It also permits
user-defined data types, which is important in a game
of "rooms," "objects," "verbs," and''actors." Finally,
MDL makes it easy to imbed implicit functional in-
vocations in data structures to tailor the game as
described above. The initial version of the game was
designed and implemented in about two weeks.

The first version of Zork appeared in June 1977.
Interestingly enough, it was never "announced" or
"installed" for use, and the name was chosen because
it was a widely used nonsense word, like "foobar."
The original version of the game was much smaller,

both geographically and in its capabilities. Various
new sections have prompted corresponding expan-
sions in the amount of the universe simulated. For ex-
ample, the need to navigate a newly added river
prompted the invention of vehicles (specifically, a
boat). Similarly, the addition of a robot prompted the
invention of other actors than the player himself: be-
ings that could affect their surroundings, and so on.
Fighting was added to provide a little more random-
ness in a fairly deterministic game.

The future of computer fantasy
simulation games

Zork itself has nearly reached the practical limit of
size imposed by MDL and the PDP-10's address
space. Thus the game is unlikely to expand (much?),
further. However, the substrate of the game (the data
types, parser, and basic verbs) is sufficiently indepen-
dent that it would not be too difficult to use it as the
basis for a CFS language.
There are several ways in which future computeriz-

ed fantasy simulation games could evolve. The
most obvious is just to write new puzzles in the same
substrate as the old games. Some of the additions to
Zork were exactly this, in that they required little or
no expansion of the simulation universe. A sufficient-
ly imaginative person or persons could probably do
this indefinitely.
Another similar direction would be to change the

milieu of the game. Zork, Adventure, and Haunt (the
CFS games known to the authors) all flow back to
D&D and the literary tradition of fantasy exem-
plified by J. R. R. Tolkien, Robert E. Howard, and
Fritz Leiber. There are, however, other milieus;
science fiction is one that comes to mind quickly, but
there are undoubtedly others.
A slightly different approach to the future would be

to expand the simulation universe portrayed in the
game. For example, in Zork the concept of "wearing
something" is absent: with it there could be magic
rings, helmets, boots, etc. Additionally, the player's
body itself might be added. For example, a player
could be wounded in his sword arm, reducing his
fighting effectiveness, or in his leg, reducing his abili-
ty to travel.
The preceding are essentially trivial expansions to

the game. A more interesting one might be the intro-
duction of magic spells. To give some idea of the
kinds of problems new concepts introduce to the
game, consider this brief summary of problems that
would have to be faced: If magic exists, how. do
players learn spells? How are they invoked? Do they
come in different strengths? If so, how does a player
qualify for a stronger version of a spell than he has?

COMPUTER58

What will spells be used for (are they like the magic
words in Adventure, for example)? How does a player
retain his magic abilities over several sessions of a
game?
As can be seen, what at first seems to be a fairly

straightforward addition to a game that already has
magical elements raises many questions. One of the
lessohs learned from Zork, in fact, is one thatshould
be well known to all in the computing field: "There is
no such thing as a small change!"
A still more ambitious direction for future CFS

games is that of multiple-player games. T4W simplest
possible such game introduces major problems, even
ignoring the mechanism used to accomplish commu-
nication or sharing. For example, there are impres-
sive problems related to the various aspects of simul-
taneity and synchronization. How do players com-
municate with each other? How do they coordinate
actions, such as attacking some enemy in concert?
Putting aside implementation problems, a' multi-

ple-player game would need to have (we believe) fun-
damentally different types of problems to be inter-
esting. If the game were cooperative (as are most
D&D scenarios), then problems requiring several
players' aid in solving them would need to be devised.
If the game were competitive and like the current
Zork, the first player to acquire the (only) correct tool
for a job would have an enormous advantage, to give
just one example. Other issues are raised by the sta-
tistic that the average player takes weeks and many
distinct sessions to finish the game; what happens to
him during the time he is not playing and others are?
We believe there is a great future for this type of

game, both for the players and for the implementers
and designers of more complex, more sophisticated,
and-in short-more real simulation games.

Zork distribution

Zork is available from two sources. The most up-to-
date version is available from P. David Lebling,
Room 205, 545 Technology Square, Cambridge, MA
01239. This version is compatible with the ITS,
Tenex, and Tops-20 operating systemS for the Digital
Equipment Corp. PDP-10. To obtain this version,
you must enclose a magnetic tape and return post-
age. Another version, translated fromMDL into For-
tran, is available through DECUS, (the Digital
Equipment Computer Users Society), One Iron Way,
Marlboro, MA 01752. This version is compatible with
PDP-11 and VAX operating systems. U

Bibliography

S. W. Galley and Greg Pfister, MDL Primer and Manual,
MIT Laboratory for Computer Science, 1977.
P. David Lebling, The MDL Programming Enuironment,
MIT Laboratory for Computer Science, 1979.

Gary Gygax and Dave Arneson, "Dungeons and
Dragons," TSR Hobbies, Inc., Lake Geneva, Wisc.

April 1979

P. David Lebling is a staff member of
the MIT Laboratory for Computer
Science, where he works on data-
intensive planning systems and com-
puter message systems. He was
previously involved in Morse code
transcription and understanding
system. He holds SB and SM degrees in
political science from MIT.

Marc S. Blank is a medical student at
the Albert Einstein College of
Medicine; he expects to graduate ih
June. He is employed from time to time
as a consultant at the MIT Laboratory
for Computer Science, where he works
onMDL databasesandsystemmainte-
nance. A graduate of MIT with a BS in
biology, he is a member of Phi Beta
Kappa and Phi Lamdba Upsilon.

Timothy A. Anderson is a member of the research staff at
Computer Corporation of America, Cambridge,
Massachusetts, where he works on the distributed data
base system SDD-1. As a graduate student at MIT
Laboratory for Computer Science, Anderson was involved
in research on Morse code understanding. He is a member
of ACM, Sigma Xi, Tau Beta Pi, and Eta Kappa Nu, and
holds SB and SM degrees in cbmputer science from MIT.

COMPUTER
PROFESSIONALS

Career Development requires careful planning! Winter,
Wyman and Company is a full service Employment
Consulting firm well equipped to specialize in the placement
of computer professionals. Winter, Wyman should be your
first step in planning your career.

Even if you are not considering an immediate job change, your
planning begins now. The following is only a partial listing of
positions for which we are seeking qualified applicants.

DATA BASE SYSTEMS MANAGEMENT To $30K
Choose a vendor or consulting environment Indexed sequential access
methods. query languages. etc IMS IDMS. TOTAL. NOMAD, etc

LANGUAGES/COMPILER DEVELOPMENT To S38K
Consulting companies and manufacturers - in-depth knowledge of
JOVIAL, PASCAL. PL/,I. FORTRAN helpful. Positions also available
for those who wish td enter the field.

OPERATING SYSTEMS To $28K
Some exceptional positions. Experience in on-line or real time. Some
microprocessor development opportunities available.

DIGITAL DESIGN ENGINEERS To S35K
Ground floor opportunities in small growing companies or design major
systems for top vendors BS/MSEE 2 + years experience. Logic and
circuit design. TTL, DTL. etc. a plus.

DIAGNOSTICS SPECIALISTS To S32K
North or South: choose the climate and the technical environment.
Supervisory positions available.

FIRMWARE DESIGN To S30K+
Design and implement real-time microprocessor systems. Many Southern
locations as well as Greater Boston area.

CONTACT: SALLY SILVER
(617) 235-8505

If qualified you are invited to call or send your resume in com-
plete confidence. Collect calls accepted.

1vvman

Wellesley, Mass. 02181 tW,
Phone (617) 235.8505

Reader Service Number 5

59

