
Architectures for Ubiquitous Computing

David May

Bristol University

David May 1 January 2004 January 19, 2005



Zero Power Computing

David May

Bristol University

David May 2 January 2004 January 19, 2005



Why Zero Power?

Power embedded computers from the environment
... or from batteries which last for the product lifetime

Put 1000 computers on a chip
... and 1,000,000 in a server

David May 3 January 2004 January 19, 2005



Ubiquitous Computing

Aim is to design quickly: computer-based devices
are becoming fashion items

But:

� Design cost is increasing, especially verification

� Manufacturing set-up cost is increasing

Need for standard programmable and/or configurable platforms
... programmed at a high level

David May 4 January 2004 January 19, 2005



Event-driven systems

Low power doesn’t mean low performance

1 milliwatt-second = 1 watt-millisecond

Many systems will be idle most of the time, waiting
for an event - a change of environment state

This may result in a massive amount of activity,
involving thousands of processors

David May 5 January 2004 January 19, 2005



What does low power involve?

Low voltage circuits

Low power logic design

Dynamically switching off stuff when it isn’t in use

Minimal operations including data transfers

Event driven systems including software

David May 6 January 2004 January 19, 2005



Where does the power go?

Clocks

Cache access

Memory access

Register file access

... ?

David May 7 January 2004 January 19, 2005



An experiment

� Simple architecture

� Simple language

� Some modern compiler optimisations

� Efficient concurrency

� Efficient communication and input-output

David May 8 January 2004 January 19, 2005



Instruction set architecture

� How many bits in a word? ... instruction?

� How many instruction types?

� What data-types?

� What operations?

� How many registers?

David May 9 January 2004 January 19, 2005



Language

� skip, assignment, call, while, if

� input, output, parallel, alternative

� no jumps, no exits

� no pointers

� no aliases, no sharing

David May 10 January 2004 January 19, 2005



Compiler

� Exploit absence of aliases and sharing

� Exploit simple control structure

� Analyse dependencies and liveness

� Minimise register - memory transfers

� Optimise concurrency, communication and input/output

David May 11 January 2004 January 19, 2005



An architecture

All language implementations need dedicated registers

� PC

� Stack pointer

� Frame pointer

� ...

So we might as well optimise access to them instead of
making them general purpose registers

David May 12 January 2004 January 19, 2005



Instruction coding
Suppose we use 16 registers of which 4 are dedicated (PC, FP,
SP, GP).

The 12 remaining general purpose registers can be used for
base addresses, arithmetic, parameter passing ...

It’s possible to encode a complete (small) instruction set using
(only) 16-bit instructions - and it’s wordlength independent

With appropriate compiler optimisations, this seems to result in
instruction profiles similar to 32-bit RISC instruction sets

David May 13 January 2004 January 19, 2005



Compiler

Prevent aliases: every object (variable, process, channel ...) has
only one name

Parameters can be passed copy-in, copy-out or by reference

Prevent sharing: every object belongs to at most one process -
so free variables can be accessed by copying or by reference

Keep track of which objects are live - optimise register usage

David May 14 January 2004 January 19, 2005



Event-driven systems

Processors switch off when they have nothing to do

Input-output systems switch off when they have nothing to do

Nothing iteratively watches for events (no polling)

Only a few transistors need to be active, watching for a
state-change in the environment

... and this shouldn’t need special power-management software

David May 15 January 2004 January 19, 2005



Experiment - Multiprocessing
8 hardware process contexts, feeding a short execution pipeline

16 internal communication channels

16 external communication ports for connection to other
processors

n external configurable input-output ports to provide interfaces to
physical devices (pins)

(A channel is two connected ports; it is point-to-point)

David May 16 January 2004 January 19, 2005



Why is multiprocessing useful?

Do more than one thing at once!

Overlap input-output and processing

Overlap communication and processing

Keep execution pipeline full

Hide latency of memory access

Hide latency of branches and calls

David May 17 January 2004 January 19, 2005



Synchronisation

Each process context is identified by a bit in an 8-bit value.

A set of processes is an 8-bit value.

INITP context, pc : supply new pc
INITS context, sp : supply new stack
END : terminate
STARTP set : activate set of processes
WAITP set : wait for all of set to terminate

David May 18 January 2004 January 19, 2005



Communications

Split communications

� STARTIN - commit to accept data; continue

� STARTOUT - put data in buffer; continue

� ENDIN - take data or wait; ack

� ENDOUT - wait for data taken

Rules

� ENDIN completes after STARTIN

� ENDOUT completes after STARTOUT

David May 19 January 2004 January 19, 2005



Concurrent communication
Example:

{ { in ? next STARTIN next
& out ! last STARTOUT last
& compute(this) compute this
} ENDOUT last; ENDIN next

; last,this := this,next last,this := this,next
}

The communication overlaps with the computation

David May 20 January 2004 January 19, 2005



Concurrent communication
Example:

{ { input (next) STARTP input next
& out (last) STARTP output last
& compute(this) compute this
} WAITP input, output

; last,this := this,next last,this := this,next
}

Again, the communication overlaps with the computation - extra
processes are used as generalised DMA units

David May 21 January 2004 January 19, 2005



Communication and processing
Example:

var xbuf[], ybuf[], zbuf[];
...
while true do
{ { input(xbuf) & compute(ybuf) & output(zbuf) }
; { input(zbuf) & compute(xbuf) & output(ybuf) }
; { input(ybuf) & compute(zbuf) & output(xbuf) }
}

This can be optimised using barrier instructions

David May 22 January 2004 January 19, 2005



Alternative
Example:

{ count < max : put ? (x) do
{ .. store data .. ; count := count + 1 }

| count > min : get ? (y) do
{ .. get data .. ; count := count - 1 }

}

How can we implement Alternative?

David May 23 January 2004 January 19, 2005



Alternative
Example:

{ when temperature > alarm_level do
{ .. sound_alarm ! temperature .. }

| set_alarm ? alarm_level do
{ .. }

}

How can we implement Alternative?

David May 24 January 2004 January 19, 2005



Implementing Alternative

Identify set of guard events (potentially ready inputs)

Mask with guard conditions

Wait until (at least) one guard is ready (with power off)

Select one guarded body for execution

Jump to code of the selected guarded body

... most computers can’t do this efficiently

David May 25 January 2004 January 19, 2005



Instructions for Alternative

Each port can have an associated register to hold the address
of a corresponding guarded body

These are loaded by a LDEVNT instruction

Each port has an enable bit which is set/cleared depending
on the guard condition by a SETEVNT instruction

When the guards are enabled, an EWAIT instruction
is executed ... which (eventually) returns a ready guard

David May 26 January 2004 January 19, 2005



Optimising Alternative

Observe that alternatives are often iterated

... and guard conditions are changed within guarded bodies

We don’t need to recompute all guards and re-enable/disable the
ports on every iteration

We can move a guard condition evaluation - and resulting
modification of the wait condition(s) - to the place(s) where the
values change

David May 27 January 2004 January 19, 2005



Software input-output

Even at 100-200MHz, we can execute a lot of instructions in a
microsecond!

So we should be able to keep up with all but the fastest
input-output using high-level language programs executing
input, output and alternative

And high-level language ‘DMA controllers’ should be able to
sustain at least 10Mbytes/second

David May 28 January 2004 January 19, 2005



Pipelined communications
It’s convenient to use a process to communicate a data
structure:

� traversing

� encoding/decoding

� compression/decompression

� encryption/decryption

This process will perform a series of communications on the
same channel; this can be optimised as

� a series of unsynchronised communications

� a final synchronising communication

David May 29 January 2004 January 19, 2005



Mobility
We want to move processes to other processors efficiently

To do this, we need mobile processes

As there are no aliases we can safely - and efficiently -
communicate

� processes

� objects

� ports

We can move data objects and processes by copying or by
passing a reference; moving ports needs a simple protocol

David May 30 January 2004 January 19, 2005



Speeding it up (1)

If we need to go faster, we can allow combinations of
instructions to be executed together

� communicate + inc + branch

� memory + alu + branch

� shift + i/o + branch

Data can be streamed at one object (bit/byte/halfword/word)
every two cycles

Multiply-accumulate runs at two operations every three cycles

David May 31 January 2004 January 19, 2005



Speeding it up (2)

If we need a cache, we can use a partitioned direct-map
cache. These

� prevent interference between processes

� prevent interference between data structure access

� support streaming efficiently

� are relatively small

(but they have to be controlled by compilers)

David May 32 January 2004 January 19, 2005



Chips full of processors

By replicating a simple processor, we can create programmable
processor arrays

These can support a variety of concurrent programming styles

We can migrate data and processes to minimise latency and
power

We can dynamically re-use processing resources

David May 33 January 2004 January 19, 2005



How fast can a computation spread?
If we want to write parallel subroutines, we have to
be able to distribute sub-computations rapidly

This issue has been ignored in all (?) parallel
computer designs, which is why they are so hard to use

A good way to do this is to use a worm, which spreads
by replicating itself

We can optimise this with wormhole computing - executing a
program - which starts to forward itself - whilst it’s still arriving

David May 34 January 2004 January 19, 2005



Summary

It is almost certain that we can build much more power
efficient computers than anything we currently have

It’s already clear that we can achieve zero-power
in the sense of simple computers powered from the
environment

... but there’s lots more to do!

David May 35 January 2004 January 19, 2005


