NMOS ¢
OCCAM

OCCAM enables an application to be described in terms of

— concurrent processes
— communication channels

Each process describes the behavior of one component of the
implementation

Each channel describes a connection between components
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VLSI

Many identical devices can be manufactured economically

OCCAM can be implemented using identical VLSI devices, each
programmed with an OCCAM process

!

A4

Programmable
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OCCAM

Same language used for:

Transputer System description
Programming of individual Transputers

Language primitives chosen to ensure efficient distributed
implementation

Transputer designed to match OCCAM primitives
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Transputer and OCCAM

OCCAM program describes system using
— concurrent processes
— communication channels

OCCAM program can be implemented:

— process <-—> Transputer
—channel <-> Link
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Transputer and OCCAM
Also
— many concurrent
processes <-> Transputer
—channels <-> Memory locations

The same OCCAM program can be implemented by

— many Transputers (high performance)
—one Transputer  (low cost)
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OCCAM
OCCAM programs are built from three primitive processes:
vi=e assign expression e to variable v
cle output expression e to channel c
c?V input variable v from channel c

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional
WHILE iteration
PAR parallel
ALT alternative

A construct is itself a process, and may be used as a
component of another construct.




Communication

Channel is

— point-to-point
— one way

Communication is synchronised

— one process walits for the other

When both processes are ready

— data is copied
— both processes continue

MNMOS
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Sequential Constructor

The sequential constructor causes processes to be executed
one after another

Example:

WHILE TRUE
VAR x; buffer.in % buffer.out
SEQ —  »

buffer.in ? x
buffer.out ! x

This simple buffer repeatedly inputs a value, then outputs it.

The sequential constructor causes the output to take place
after the input is completed.
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Parallel Constructor

The parallel constructor causes processes to be executed together

Example:

CHAN comms:
PAR buffer.in comms 0 buffer.out

WHILE TRUE — - A
VAR Xx:
SEQ
buffer.in ? x
comms ! X
WHILE TRUE
VAR x:
SEQ
comms ? X
buffer.out ! x

Here two simple buffers are executed together, allowing up to two
values to be buffered.
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Sequential Processes

Programmable sequential computer efficiently implements
simple programs:

variables

expression evaluation
assignment

SEQ

IF

WHILE

Transputer processor provides a simple set of instructions for
sequential program execution
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Sequential Execution
Instructions
— Locals — e
_ — = Function| Data
Registers —
B ] 7 4 3 0
g N Load local
C r Store local
Workspace Load constant
Instruction -
Jump
Operand

=




Forming a Long Operand
Function | Data
Y

Operand register
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Load data into operand register

PFIX

Shift operand register
left four places

Other instructions

Perform function
using operand register

Clear operand register
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Expression Evaluation
Registers
A ‘ Expressions are evaluated
= ‘ on a short stack
C t No need to specify registers
Workspace Compiler introduces necessary
Instruction temporary variables
Operand Addresses also evaluated on stack
Instruction
OPR operand selects an
OPR | data operation on the stack
Add Prefixing OPR expands

Mult the number of operations
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Concurrent Processes

OCCAM process executed by a single transputer may consist
of any number of concurrent processes

A sequential process may include a parallel:

PAR

out ! x*x out ! x=x in ? nextx
in ? nextx \I/
X o= TieKi X : = nextx
\
Space for concurrent processes is allocated by the OCCAM
compiler

=> No storage allocation overheads

Special instruction ensures correct termination of PAR

i




Concurrent Process Execution

Transputer executes concurrent processes using a linked list
of processes awaiting execution
At any time, a concurrent process may be

active - being executed
— on the list awaiting execution

inactive - waiting (ready) to input
— waiting (ready) to output
— waiting until a specified time

Inactive processes do not consume any processor time
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Parallel Execution

OCCAM

PAR

Registers

Front

Workspaces

P

Back

Scheduling

A

B

C

Workspace

Instruction

Operand
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Program
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Communication

OCCAM input and output are implemented directly
by transputer instructions

Channel between two processes can be implemented by

— word in memory
— serial link

Same instructions are used in each case




INMOS &2
] ] #-_J
Communication
OCCAM channel:
a one way communication path between two concurrent
processes

Communication is synchronised and unbufferred:
when both the inputting and outputting processes are ready
the data is copied
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Channel needs

Nno message queue
NO Process queue
no data buffer
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Internal Communication

Any memory location can be used as an internal channel

Both processes must be ready before communication takes place

When first process becomes ready:

it is descheduled

its identity is stored in the channel
When second process becomes ready:

message copied by the processor
first process rescheduled
channel returned to empty state

Either the inputting or the outputting process may become ready first
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Communication on a Transputer
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P Q
Count
Pointer
Channel —> Empty
- P
i pointer Count
Pointer
Pointer P <«—— 1 Channel
Copy
Empty
i pointer

List
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External Communication

Each transputer link provides one channel in each direction

The transfer of data is performed by autonomous link
controllers in the transputer

Both inputting and outputting processes

— descheduled whilst transfer takes place

— rescheduled when transfer complete

Either the inputting or the outputting process may become
ready first
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Communication Between Transputers

NMOS

P Q
Count Link Count
Pointer gl . Pointer
Channel Channel

PP Link | | Q
i pointer Pointer "] < Pointer i pointer
Count - | Count
Copy
i pointer i pointer
List List
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Transputer Link

Synchronised communication
— data must be acknowledged
— need at least one signal wire in each direction

Transputer Serial Link
— only one signal wire in each direction
—one OCCAM channel in each direction

Signal wire carries
— data packets for one channel
— acknowledge packets for the other

Data: Acknowledge
1 (1 Data 0 110
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Protocol

Message transferred as a sequence of bytes
=> wordlengths of sender and receiver may differ

Each byte acknowledged before the next is sent
=>> need only a one byte buffer to receive message

Acknowledge may be sent as soon as reception starts,

provided that
— there is a process waiting for input
— there is room to buffer another byte

=>>transmission may be continuous
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Performance
OCCAM MicroSeconds
PAR
P P+Q+1
Q
PAR
clx 1.5

c?y




