NMOS ¢
OCCAM

OCCAM enables an application to be described in terms of

— concurrent processes
— communication channels

Each process describes the behavior of one component of the
implementation

Each channel describes a connection between components

INMOS £

VLSI

Many identical devices can be manufactured economically

OCCAM can be implemented using identical VLSI devices, each
programmed with an OCCAM process

!

A4

Programmable
component
— Transputer Processor

Memory

W

o

Serial communication links

INMOS
OCCAM

Same language used for:

Transputer System description
Programming of individual Transputers

Language primitives chosen to ensure efficient distributed
implementation

Transputer designed to match OCCAM primitives

e

MMOS
Transputer and OCCAM

OCCAM program describes system using
— concurrent processes
— communication channels

OCCAM program can be implemented:

— process <-—> Transputer
—channel <-> Link

AT

NMOS ¢

Transputer and OCCAM
Also
— many concurrent
processes <-> Transputer
—channels <-> Memory locations

The same OCCAM program can be implemented by

— many Transputers (high performance)
—one Transputer (low cost)

MMOS

OCCAM
OCCAM programs are built from three primitive processes:
vi=e assign expression e to variable v
cle output expression e to channel c
c?V input variable v from channel c

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional
WHILE iteration
PAR parallel
ALT alternative

A construct is itself a process, and may be used as a
component of another construct.

Communication

Channel is

— point-to-point
— one way

Communication is synchronised

— one process walits for the other

When both processes are ready

— data is copied
— both processes continue

MNMOS

MMOS
Sequential Constructor

The sequential constructor causes processes to be executed
one after another

Example:

WHILE TRUE
VAR x; buffer.in % buffer.out
SEQ — »

buffer.in ? x
buffer.out ! x

This simple buffer repeatedly inputs a value, then outputs it.

The sequential constructor causes the output to take place
after the input is completed.

MMOS

Parallel Constructor

The parallel constructor causes processes to be executed together

Example:

CHAN comms:
PAR buffer.in comms 0 buffer.out

WHILE TRUE — - A
VAR Xx:
SEQ
buffer.in ? x
comms ! X
WHILE TRUE
VAR x:
SEQ
comms ? X
buffer.out ! x

Here two simple buffers are executed together, allowing up to two
values to be buffered.

MMOS
Sequential Processes

Programmable sequential computer efficiently implements
simple programs:

variables

expression evaluation
assignment

SEQ

IF

WHILE

Transputer processor provides a simple set of instructions for
sequential program execution

Y

AT

MOoS
Sequential Execution
Instructions
— Locals — e
_ — = Function| Data
Registers —
B] 7 4 3 0
g N Load local
C r Store local
Workspace Load constant
Instruction -
Jump
Operand

=

Forming a Long Operand
Function | Data
Y

Operand register

NMOS ¢

Load data into operand register

PFIX

Shift operand register
left four places

Other instructions

Perform function
using operand register

Clear operand register

IIMOS {

Expression Evaluation
Registers
A ‘ Expressions are evaluated
= ‘ on a short stack
C t No need to specify registers
Workspace Compiler introduces necessary
Instruction temporary variables
Operand Addresses also evaluated on stack
Instruction
OPR operand selects an
OPR | data operation on the stack
Add Prefixing OPR expands

Mult the number of operations

IIMOS ¢
Concurrent Processes

OCCAM process executed by a single transputer may consist
of any number of concurrent processes

A sequential process may include a parallel:

PAR

out ! x*x out ! x=x in ? nextx
in ? nextx \I/
X o= TieKi X : = nextx
\
Space for concurrent processes is allocated by the OCCAM
compiler

=> No storage allocation overheads

Special instruction ensures correct termination of PAR

i

Concurrent Process Execution

Transputer executes concurrent processes using a linked list
of processes awaiting execution
At any time, a concurrent process may be

active - being executed
— on the list awaiting execution

inactive - waiting (ready) to input
— waiting (ready) to output
— waiting until a specified time

Inactive processes do not consume any processor time

IIMOS ¢

| 1]

Parallel Execution

OCCAM

PAR

Registers

Front

Workspaces

P

Back

Scheduling

A

B

C

Workspace

Instruction

Operand

NMOS ¢

Program

NMOS £

Communication

OCCAM input and output are implemented directly
by transputer instructions

Channel between two processes can be implemented by

— word in memory
— serial link

Same instructions are used in each case

INMOS &2
]] #-_J
Communication
OCCAM channel:
a one way communication path between two concurrent
processes

Communication is synchronised and unbufferred:
when both the inputting and outputting processes are ready
the data is copied

=2

Channel needs

Nno message queue
NO Process queue
no data buffer

NMOS
Internal Communication

Any memory location can be used as an internal channel

Both processes must be ready before communication takes place

When first process becomes ready:

it is descheduled

its identity is stored in the channel
When second process becomes ready:

message copied by the processor
first process rescheduled
channel returned to empty state

Either the inputting or the outputting process may become ready first

il

Communication on a Transputer

NMOS ¢

P Q
Count
Pointer
Channel —> Empty
- P
i pointer Count
Pointer
Pointer P <«—— 1 Channel
Copy
Empty
i pointer

List

NMOS
External Communication

Each transputer link provides one channel in each direction

The transfer of data is performed by autonomous link
controllers in the transputer

Both inputting and outputting processes

— descheduled whilst transfer takes place

— rescheduled when transfer complete

Either the inputting or the outputting process may become
ready first

1

Communication Between Transputers

NMOS

P Q
Count Link Count
Pointer gl . Pointer
Channel Channel

PP Link | | Q
i pointer Pointer "] < Pointer i pointer
Count - | Count
Copy
i pointer i pointer
List List

sEEcias

Transputer Link

Synchronised communication
— data must be acknowledged
— need at least one signal wire in each direction

Transputer Serial Link
— only one signal wire in each direction
—one OCCAM channel in each direction

Signal wire carries
— data packets for one channel
— acknowledge packets for the other

Data: Acknowledge
1 (1 Data 0 110

mMos

SHAE

Protocol

Message transferred as a sequence of bytes
=> wordlengths of sender and receiver may differ

Each byte acknowledged before the next is sent
=>> need only a one byte buffer to receive message

Acknowledge may be sent as soon as reception starts,

provided that
— there is a process waiting for input
— there is room to buffer another byte

=>>transmission may be continuous

nMoSs

A

INMOS ¢

Performance
OCCAM MicroSeconds
PAR
P P+Q+1
Q
PAR
clx 1.5

c?y

