
Version 1.0

Thumb Instructions and Kernels
David May: April 23, 2013

The Instructions

The main features of the instruction set used by the ARM X compiler are as fol-
lows.

• The instructions are a subset of ARM Thumb. The short (16-bit) instruc-
tions allow efficient access to the stack and other data regions allocated by
compilers; these also provide efficient branching and subroutine calling.

• The memory is byte addressed; however all accesses must be aligned on
natural boundaries so that, for example, the addresses used in 32-bit loads
and stores have the two least significant bits zero.

• Input and output is performed using memory mapped registers accessed in
the normal by load and store instructions. A supervisor call instruction is
provided.

Some instructions contain immediate operands which are used to access locations
relative to the program counter pc or the stack pointer sp. As the pc is used to ac-
cess two byte (16-bit) locations, the operands of instructions that access locations
relative to the pc are multiplied by 2. Similarly, As the sp is used to access four
byte (32-bit) locations, the operands of instructions that access locations relative
to the sp are multiplied by 4.

The normal state of a program is represented by 8 operand registers and some
special purpose registers.

The eight operand registers r0 - r7 are used by instructions which perform arith-
metic and logical operations and access data structures.

The special purpose registers are:

David May: April 23, 2013 1



Version 1.0

register use

pc the program counter
lr the link register
sp the stack pointer
rs the result register

Instruction set Notation and Definitions

In the following description

mem represents the memory

pc represents the program counter
sp represents the stack pointer
lr represents the link register

rs represents the result register

r0 . . . r7 represent specific operand registers

x (a single small letter) represents one of r0 . . . r7
u5 is a 5-bit unsigned source operand in the range [0 : 31]
u7 is a 7-bit unsigned source operand in the range [0 : 127]
u8 is an 8-bit unsigned source operand in the range [0 : 255]
s8 is an 8-bit signed source operand in the range [−128 : 127]
s11 is an 11-bit signed source operand in the range [−1024 : 1023]
s22 is a 22-bit signed source operand in the range [−1048576 : 1048575]

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDRSPI d← mem[sp + u8×4] load word from stack
STRSPI mem[sp + u8×4]← s store word to stack
ADDSPI d← sp + u8×4 load address of word in stack

Another is similar, but provides access via the data pointer.

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or load them from a constant pool.

David May: April 23, 2013 2



Version 1.0

MOVI d← u8 load constant
LDRPCI d← mem[pc + u8×4] load word from constant pool
ADDPCI d← pc + u8×4 load address in program forward

Access to data structures is provided by instructions which use any of the operand
registers as a base address, and combine this with a scaled offset. In the case of
word accesses, the operand may be a small constant or another operand register,
and the instructions are as follows:

LDRI d← mem[b + u5×4] load word
STRI mem[b + u5×4]← s store word

LDR d← mem[b + i] load word
STR mem[b + i]← s store word

Expression evaluation

Expressions are evaluated by instructions which operate on values in the general
purpose registers r0 to r7. Some instructions have a constant operand, together
with one or two register operands.

ADDI d← d + u8 add immediate
ADDR d← l + r add
SUBI d← d− u8 subtract immediate
SUBR d← l − r subtract
NEGR d← −s negate

ANDR d← d ∧ r and
ORR d← d ∨ r or
XORR d← d⊕ r exclusive or
MVNR d← −1⊕ s not

SHLI d← l << u5 logical shift left immediate
SHL d← d << r logical shift left
SHRI d← l >> u5 logical shift right immediate
SHR d← d >> r logical shift right
ASHRI d← l >>sgn u5 arithmetic shift right immediate

MUL d← d× r multiply

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
These test the result register rs which holds the same value as the destination

David May: April 23, 2013 3



Version 1.0

register of the last arithmetic or logical instruction.

BEQ if rs = 0 then pc← pc + s8×2 branch relative equal
BNE if rs 6= 0 then pc← pc + s8×2 branch relative not equal
BLT if rs < 0 then pc← pc + s8×2 branch relative less than
BGE if rs ≥ 0 then pc← pc + s8×2 branch relative greater or equal

BU pc← pc + s11×2 branch relative unconditional

In some cases, the calling instructions described below can be used to optimise
branches; as they overwrite the link register they are not suitable for use in leaf
procedures which do not save the link register.

The procedure call instructions include a relative call and a call using an address
in a register. The relative call is encoded as two instructions and can therefore
support most calls within a single program module.

BL lr ← pc; branch and link relative forward
pc← pc + s22×2

BLR lr ← pc; branch and link via register
pc← s

Calling normally requires saving and restoring the link register lr and may require
modification of the stack. Typically, the link is saved and the stack is extended on
procedure entry; the stack is contracted and the pc is restored from the stack on
exit. The instructions to support this are shown below.

PUSH sp← sp− 1×4; push link to stack
mem[sp]← lr

POP pc← mem[sp]; pop link from stack to pc
sp← sp + 1×4

DECSP sp← sp + u7×4 extend stack
INCSP sp← sp− u7×4 contract stack

At the start of a program, and in some other situations, it is necessary to set the
stack pointer to a new value.

SETSP sp← s set stack pointer

David May: April 23, 2013 4



Version 1.0

Supporting a Kernel

The instructions above were selected to support sequential programs with no
memory protection; they do not support an operating system - or an operating
system kernel running application programs and operating system components.

An interesting question is: what needs to be added to support a kernel?

A key issue is to be able to contain errors in application programs, preventing
them giving rise to further errors in other programs or in the kernel itself.

The instruction set architecture has to:

• protect the kernel from an error in an application program

• protect an application program from an error in another application program

• enable the kernel to remove failed application programs

• protect the external environment from errors in applications programs (by
performing input and output via the kernel)

• enable the kernel to allocate resources such as memory and input-output to
applications programs

A starting point is to provide some registers to define the region of memory used
by a currently executing application program, along with a (boolean) register to
record whether the processor is executing kernel software or application software:

register use

ab the base address of the application memory
as the size of the application memory

ink the executing in kernel flag

Some instructions are needed to set these registers. They must only be executed
by the kernel; otherwise an application program could change its own memory
region.

KSETAB if ink then ab← s else error set application base

KSETAS if ink then as← s else error set application size

David May: April 23, 2013 5



Version 1.0

This makes it possible to re-define some of the instructions so as to prevent an
application program from corrupting (or branching into) the kernel; for example:

STR if ink
then mem[b + i]← s
else
if (b + i) < as
then mem[ab + b + i]← s
else error

LDR if ink
then d← mem[b + i]
else
if (b + i) < as
then d← mem[ab + b + i]
else error

BU if ink
then pc← pc + s11
else
if (pc + s11) < as
then pc← pc + s11
else error

All of the instructions that access memory must be modified in this way, including
the stack access and PUSH and POP instructions; also all of the branch instruc-
tions must be modified.

Notice that this has resulted in application programs being relocatable; they can
be moved around in memory by the kernel because all of the addresses they use
are offsets relative to the ab register.

Switching to the Kernel

There are three potential reasons for switching to the kernel:

• An error has been detected in an application program

• An application program has made a request to the kernel (a system call)

• An input-output device has made a request to the processor

All of these perform a similar operation on kernel entry, selecting different ad-
dresses within the kernel corresponding to the different reasons for entry. The

David May: April 23, 2013 6



Version 1.0

same kernel return instruction can be used to return to an application program
(which may be different from the one on kernel entry) regardless of the reason for
switching to the kernel.

It is not possible to use the link register lr to hold the return address when switch-
ing to the kernel because it may already be in use having been loaded by a BL
instruction but not yet saved by a PUSH instruction. Consequently, a new register
spc is needed to hold the saved pc.

error spc← pc; kernel entry from error
pc← mem[kepe + e]
ink ← true

KCALL spc← pc; kernel entry from system call
pc← mem[kepc + u8]
ink ← true

intreq spc← pc; kernel entry from input-output request
pc← mem[kepi + i]
ink ← true

KRET pc← spc kernel exit
ink ← false

Finally, it should be possible to write the kernel itself in a high level language
using the stack in the normal way. This requires a register to define the top location
of the kernel stack:

register use

ksp the top location of the kernel stack

It also requires some instructions to switch to and from the kernel stack:

KSETSP if ink set up kernel stack pointer
then {mem[ksp]← sp; sp← ksp }
else error;

KRESTSP if ink restore application stack pointer
then sp← mem[sp]
else error;

and to save and restore the spc, lr and rs registers:

David May: April 23, 2013 7



Version 1.0

PUSHSPC sp← sp− 1×4; push saved pc to stack
mem[sp]← spc

POPSPC spc← mem[sp]; pop spc from stack
sp← sp + 1×4

POPLR lr ← mem[sp]; pop lr from stack
sp← sp + 1×4

PUSHRS sp← sp− 1×4; push rs to stack
mem[sp]← rs

POPRS rs← mem[sp]; pop rs from stack
sp← sp + 1×4

It is now possible to write a kernel. A typical kernel procedure would look like:

KSETSP switch to kernel stack
PUSHSPC save the application spc
PUSH save the application lr
PUSHRS save the application rs
... procedure body here
POPRS restore the application rs
POPLR restore the application lr
POPSPC restore the application spc
KRESTSP switch to application stack
KRET return to application

Interrupts

An interrupt can, in principle, occur between any two instructions. However, there
are places where this would cause difficulties:

• during entry to the kernel as a result of a system call or an error, but before
the spc (for example) has been saved

• during a kernel instruction sequence which is modifying a data structure
(such as a buffer) used to communicate with the interrupting input-output
device.

One way to avoid these problems is not to permit interrupts when executing the
kernel. An interrupt request from an input-output device is accepted by the pro-
cessor only when ink is false. This means that, for responsive input-output, the

David May: April 23, 2013 8



Version 1.0

kernel procedures must be kept short; some of the longer procedures can be treated
as application programs.

David May: April 23, 2013 9



Version 1.0

Instruction set summary

LDRSPI d← mem[sp + u8×4] load word from stack
STRSPI mem[sp + u8×4]← s store word to stack
ADDSPI d← sp + u8×4 load address of word in stack
MOVI d← u8 load constant
LDRPCI d← mem[pc + u8×4] load word from constant pool
ADDPCI d← pc + u8×4 load address in constant pool
LDRI d← mem[b + u5×4] load word immediate offset
STRI mem[b + u5×4]← s store word immediate offset
LDR d← mem[b + i] load word
STR mem[b + i]← s store word

ADDI d← d + u8 add immediate
ADDR d← l + r add
SUBI d← d− u8 subtract immediate
SUBR d← l − r subtract
MULR d← d× r multiply
NEGR d← −s negate
ANDR d← d ∧ r and
ORR d← d ∨ r or
XORR d← d⊕ r exclusive or
MVNR d← −1⊕ s not

SHLI d← l << u5 logical shift left immediate
SHL d← d << r logical shift left
SHRI d← l >> u5 logical shift right immediate
SHR d← d >> r logical shift right
ASHRI d← l >>sgn u5 arithmetic shift right immediate

David May: April 23, 2013 10



Version 1.0

BEQ if rs = 0 then pc← pc + s8×2 branch relative equal
BNE if rs 6= 0 then pc← pc + s8×2 branch relative not equal
BLT if rs < 0 then pc← pc + s8×2 branch relative less than
BGE if rs ≥ 0 then pc← pc + s8×2 branch relative greater or equal
BU pc← pc + s11×2 branch relative unconditional
BL lr ← pc; pc← pc + s22×2 branch and link relative
BLR lr ← pc; pc← s branch and link via register

PUSH sp← sp− 1×4; push link to stack
mem[sp]← lr

POP pc← mem[sp]; pop link from stack to pc
sp← sp + 1×4

DECSP sp← sp + u7×4 extend stack
INCSP sp← sp− u7×4 contract stack
SETSP sp← s set stack pointer

David May: April 23, 2013 11


