OCCAM 2.0

1 Introduction

A process starts, performs a number of actions, and then either stops or terminates. Each action
may be an assignment, an input or an output. An assignment changes the value of a variable, an
input receives a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or
more of its channels. Each channel provides a one¢ way connection between two concurrent
processes; one of the processes may only output to the channel, and the other may only input from
it.

Communication is synchronised. If a channel is used for input in one process, and output in
another, communication takes place when both processes are ready. The inputting and outputting
processes then proceed, and the value to be output is copied from the outputting process to the
inputting process.

A process may be ready to communicate on any one of a number of channels. Communication
takes place when another process is ready to communicate on one of the channels.

Inmos Limited -1- Confidential




2 Notation
The following examples illustrate the notation used in the description of occam.

The meaning of

<variable> := <expression>

<assignment>

is "An <assignment> is a <variable> followed by := followed by an <expression>".

The meaning of

<action> <assignment> | <input> | <output>

is "An <action> is an <assignment> or an <input> or an <output>". This may also be written:

<action> = <assignment>
<action> = <input>
<action> uE= <output>

The notation { <process> } means "a list of zero or more processes on separate lines" and
{ ,<expression> } means "a list of zero or more expressions separated from each other by ,"

Inmos Limited -2- Confidential




3 Process

<process> z=  SKIP | STOP |
<action> |
<construction> |
<block> |
<instance>
<action> i= <assignment> | <input> | <output>
<construction> 1= <sequence> | <conditional> | <loop> |
<parallel> | <alternative>
STOP starts but never proceeds, and never terminates.

SKIP starts, performs no action, and terminates.

<assignment> u= <variable> := <expression>

An assignment evaluates the expression and assigns the result to the variable, provided that the
type of the variable is that of the expression. Otherwise the assignment is invalid. All other
variables are unchanged in value.

<input> i=  <channel> ? <variable>

An input inputs a value from the channel, assigns it to the variable and then terminates. All
other variables are unchanged in value.

<output> = <channel> ! <expression>

An output evaluates the expression, outputs the result to the channel and then terminates.

Inmos Limited -3- Confidential




<sequence> = SEQ
{ <process> }

A sequence starts with the start of the first process. Each subsequent process starts if and when
its predecessor terminates. The sequence terminates on termination of the last process. A sequence
with no component processes behaves like SKIP.

<conditional> o IF
{ <choice> }

<choice> = <guarded choice> | <conditional>
<guarded choice> w=  <boolean>

<process>
<boolean> =  <expression>

The value of a boolean expression is either true or false. A guarded choice behaves like STOP if
its boolean is initially false. Otherwise it behaves like SKIP and the process, in sequence.

The choices are tested in sequence. The conditional behaves like the first of the choices which

can proceed, or like STOP if none of them can proceed. A conditional with no component choices
behaves like STOP.

<loop> RES WHILE <boolean>
<process>

A loop is defined by

WHILE b = IF
P b
SEQ
P
WHILE ¢
P
TRUE
SKIP

Inmos Limited -4- Confidential




<parallel> g= PAR
{ <process> }

All processes of a parallel start simultaneously, and proceed together. The parallel terminates
when all of the processes have terminated. A parallel process is ready to communicate on a
channel if any of its components is ready. A parallel with no component processes behaves like
SKIP.

If a channel is used for input in one process, and output in another, communication takes place
when both processes are ready. The inputting and outputting processes then proceed, and the
value of the expression specified in the output is assigned to the variable specified in the input.

No variable changed by assignment in any of the component processes of a parallel may be used in
any other component, no channel may be used for input in more than one component process, and
no channel may be used for output in more than one component process. A parallel is invalid
unless these non-interference conditions are satisfied.

<alternative> = ALT
{ <option> }
<option> t=  <wait option> | <alternative>
<wait option> 4= <wait>
<process>
<wait> = <input> |

<boolean> & <input> |
<boolean> & SKIP

A wait behaves like STOP if its boolean is initially false, and like the input or SKIP otherwise. A
wait option behaves like the wait and the process, in sequence.

An alternative behaves like any one of the options which can proceed, and can proceed if any of
the options can proceed. An alternative with no component options behaves like STOP.

Inmos Limited -5- Confidential




4 Replicator

<sequence>

<parallel>

<conditional>

<alternative>

<replicator>
<base>

<count>

Let n be a name, and B and C be expressions of type INT with values b and c.

SEQ <replicator>
<process>

PAR <replicator>
<process>

IF <replicator>
<choice>

ALT <replicator>
<option>

<name> = <base> FOR <count>

<expression>

<expression>

Let X be one of

SEQ, PAR, ALT or IF and let Y(n) be a corresponding process, choice or option (in which n may

be used as a value of type INT) according to the syntax above. Then

SEQ n =B FOR 0
Y(n)

IF n=BFORO
Y(n)

PAR n =B FOR 0
Y(n)

ALT n
Y (n)

B FOR 0

Ifc>0

X n=BFORC
Y(n)

Ifc<0

X n=BFORC
Y(n)

Inmos Limited

= SKIP

= STOP

= SKIP

= STOP

= X

Y (b)
Y(b+1)

Y(b+c-1)

is invalid

Confidential




<type> 1= <primitive type> |
<array type> |
<procedure type>

<primitive type> CHAN |

TIMER |
BOOL |

BYTE |

INT |

<extra type>
A communication channel is of type CHAN. Each communication channel provides
communication between two concurrent processes. A timer is of type TIMER. Each timer provides
a clock which can be used by any number of concurrent processes. All other primitive types are
data types.

Every variable, expression and value has a data type, which defines the length and interpretation
of values of the type.

The values of type BOOL are true and false.

The values of type BYTE are nonnegative numbers less than 256.

A value of any integer type is interpreted as a signed integer n in the range
-(N/2) <= n < (N/2)

where N is the number of different values which may be represented by variables of the integer
type.

INT is the type of signed integer values most efficiently provided by the implementation.

Inmos Limited -7- Confidential




An implementation of occam must provide the primitive types types CHAN, TIMER, INT, BYTE
and BOOL. It may also provide extra types as extensions. However, an implementation which
provides extensions must also provide the user with the ability to disable them.

<extra type> i= INT16 |
INT32 |
INT64 |
REAL32 |
REALG64

A signed real value is of type REAL32 or REAL64, and is represented according to IEEE standard
P754 draft 10.0. A value v of type REAL32 is represented using a sign bit s, an 8 bit exponent ¢
and a 23 bit fraction f. The value v is positive if s=0, negative if s=1; its magnitude is:

(2 ** (e-127)) * 1.f if 0<e and e<255
(2 ** -126) * 0f if e=0 and f<>0
0 if e=0 and =0

Similarly, a value v of type REALG64 is represented using a sign bit s, an 11 bit exponent ¢ and a
52 bit fraction f. The value v is positive if s=0, negative if s=1; its magnitude is:

(2 ¥* (e-1023)) * 1.£ if O0<e and e€<2047

(2 **=1022) * 0.F if e=0 and {<>0

0 if e=0 and =0
<array type> t= [ <expression> | <type>

Array types are constructed from component types. An array type is a channel type, timer type or
data type, depending on the type of its components. Two arrays have the same type if they have
the same number of components and the types of their components are the same.

In the array type [e]T, the value of e defines the number of components in an array of the
array type, and T defines the type of the components. A component of an array can be selected
by a nonnegative value less than the size of the array.

Procedure types are described below together with procedure definitions.

Inmos Limited -8- Confidential




6 Scope

<block> i= <specification>:
<scope>

<specification> P <declaration> |
<abbreviation>
<definition>

<SCope> = <process>

A block behaves like its scope; the specification specifies a name, which may be used with this
specification only within its scope.

Let x and y be names, and let P(x) and P(y) be processes which are similar except that P(x)
contains x wherever P(y) contains y, and vice versa. Let S(x) and S(y) be specifications which are
similar except that S(x) is a specification of x and S(y) is a specification of y. Then

S(x): S(y):
P(x) P(y)

Using this rule it is possible to express a process in a canonical form in which no name is
specified more than once.

<declaration> e <type> <name>

A declaration T x declares x as a new channel, variable, timer or array of type T.

<abbreviation> i=  <specifier> <name> IS <element> |
<specifier> <name> IS <operation> |
VAL <specifier> <name> IS <expression>

An abbreviation S n IS <element> specifies n as an abbreviation for a variable, channel, timer,
procedure, array or value. Any subscript within the element takes the value it has at the start of
the block.

An abbreviation S n IS <operation> specifies n as an abbreviation for the value taken by the
operation at the start of the block.

An abbreviation VAL S n IS <expression> specifies n as an abbreviation for the value taken by
the expression at the start of the block. The abbreviation is valid only if the expression is of
primitive type.

<specifier> i=  <type> |

[1 <specifier>
The type of the element, operation or expression in an abbreviation must be compatible with the
specifier. A type T is compatible with a specifier T. A type [n]T is compatible with a specifier

[IT.

Let x be an element, operation or expression and S a compatible specifier. Then VAL n IS x is a
syntactic abbreviation for VAL S n IS x, and n IS x is a syntactic abbreviation for S n IS x.

Inmos Limited -9- Confidential




7 Procedure

<definition> =  PROC <name> ( {, <formal> } )
<body>
<formal> = <specifier> <name> |
VAL <specifier> <name>
<body> =  <process>

The definition

PROC n ( { ,<formal> })
B

defines n as the name of a procedure.

<instance> = <name> ( { ,<actual> } )

<actual> = <element> |
<operation> |
<expression>

Let X be a program expressed in the canonical form in which no name is specified more than
once. If X contains a procedure definition P ( FO, F1, .., Fn ) with body B, then within the scope
of P

P ( A0, Al, ..., An) = FO IS A0 :
F11IS Al:

Fn IS An :
B

provided that each definition Fi IS Ai is valid.
<procedure type> = PROC ( {, <specifier> })
A procedure type specifies the formal parameters of a procedure of the procedure type. Procedure

types are used only in abbreviations and definitions, and enable procedures to be used as
procedure parameters.

A procedure can always be compiled either by substitution of its body as described above or as a
closed subroutine.

Inmos Limited -10- Confidential




8 Element

An element has a type, which may be a channel type, timer type or data type. An element of data
type also has a value. Elements enable channels, timers, variables, values or arrays to be selected
from arrays.

<element> 5 <element> [ <subscript> | |
[ <element> FROM <subscript> FOR <subscript> ] |
<name> |
<literal> |
<constructor>

<subscript>

<expression>

Let v be of type [n]T, and e an expression of type INT and value s. Then v[e] is valid only if
0O<=s and s<n; it is the component of v selected by s.

Let v be of type [n]T. Then [v FROM b FOR c] is valid only if ¢>0, b>=0 and (b+c)<n; it is an
array of type [c]T with components v[b], v[b+1], ... v[(b+c)-1].

The type of an element consisting of a name is that of the name, and the type and value of an
element consisting of a literal is that of the literal.

<constructor> x= [ { ,<expression> } |

The value of a constructor is an array in which the value and type of each component is the value
and type of the corresponding expression in the constructor.

Literals and constructors may not be changed by assignment or input.

Inmos Limited -11- Confidential




9 Variable, Channel. Timer and Expression

<variable> a= <element>

Every variable has a value which may be changed by assignment or input. The value of a
variable is the value most recently assigned to it, or is arbitrary if no value has been assigned to
it.

Let v be a variable of type [n]T, and e an expression of type T. If O<=s and s<n, then v[s] := ¢
assigns to v a new value in which the value of the component selected by s is replaced by the
value of e, and all other components are unchanged. Otherwise the assignment is invalid.

Let v be a variable of type [nT. Let s be [v FROM b FOR c] and e an expression of the same type
as s, [c]T. The assignment s := ¢ assigns to each component of s the corresponding component of e,
provided that b>=0 and (b+c)<n. Otherwise s := e is invalid.

Let x be a channel, s be [v FROM b FOR c], ¢ an expression. The combined effect of x?s and xle

is s := €.

<channel> <element>

<timer> <element>

A channel element used for input or output is invalid unless it is of type CHAN. A timer element
used for timer input or delayed input is invalid unless it is of type TIMER.

<expression> = <element> |
<operation>

An expression has a data type and a value, which are those of the element or operation.

Inmos Limited -12- Confidential




10 Literal

A literal has a data type and a value.

<literal> P <integer> |
<byte> |
<integer>_ <type> |
<real> <type> |
<string> |
TRUE | FALSE

<integer> n= <digits> |

- <digits> |

# <digits>
<byte> == ’<character>’
<real> S <digits>.<digits> |

<digits>.<digits>E<exponent>
<exponent> g= +<digits> | -<digits>
An integer literal is a signed decimal number, or # followed by a hexadecimal number. A byte
literal is an ASCII character enclosed in single quotation marks: ’.
An integer literal is of type INT, and a byte literal is of type BYTE. Let x be an integer or byte
literal, and T be BYTE or an integer type. A literal x_T is a value of type T and value x,

provided that x can be exactly represented as a value of type T. Otherwise x T is invalid.

Let T be a real type. A literal f_T is of type T and value f. A real fEe T is of value
fiE (10 ¥* &),

A string is represented as a sequence of ASCII characters, enclosed by double quotation marks: ".
Let s be a string of n characters. The value of s is an array of type [n]BYTE; the value of
each component of the array is the value of the corresponding character of the string.

The literals TRUE and FALSE represent the Boolean values true and false respectively.

Inmos Limited -13- Confidential




11 Operation

An operation has a data type and a value. Expressions are constructed from elements of data
type, operators and parentheses.

<operation> a= <monadic operator> <operand> |
<operand> <dyadic operator> <operand> |
<conversion>

<operand> t=  <element> | (<operation>)

The type and value of an operation enclosed in parentheses are those of the operation.

The arithmetic operators +, -, *, /, REM yield the arithmetic sum, difference, product, quotient
and remainder, respectively. Both operands of an arithmetic operator must be of the same integer
or real type, and the result is of the same type as the operands. The arithmetic operators treat
integer operands as signed integer values, and produce signed integer results. The value of - x is
T(0 - x), where T is the type of x.

Let m and n be integers. The result of m / n is rounded towards zero, being positive if both m
and n are of the same sign, negative otherwise. The result of m REM n is the remainder of m / n,

and its sign is the same as the sign of m. Regardless of the signs of m and n and provided that n
is nonzero

m = ((n* (m/n)) + (m REM n))

The result of a real arithmetic expression e of type t is the value of e, rounded to the nearest
value of type t, provided that the value of e differs from a value of type t by at most one half in
the least significant bit position. If two values of type t are equally near, the one in which the
least significant bit is zero is chosen. If x and y are real, the result r of x REM y is x - (y * n),
where n is the integer result of x /y rounded to its nearest value; REM can therefore yield a
negative value.

The operators +, -, *, /, REM are invalid if the result cannot be represented as a signed value of
the same type as the operands.

Both operands of the modulo operators PLUS, MINUS and TIMES must be of the same integer
type, and the result is of the same type as the operands. Let r be the number of different values
which may be represented using the type of the expression. The modulo operators obey the
following rules:

(m PLUS n) = (m + n) + (k *r)

where k is the unique integer for which

(m + n) + (k * 1) >= -(r/2) and
(m+n)+(k *r) < (/2)

Similarly:

(m MINUS n)=(m -n) +k *r
(m TIMES n) =(m *n) + k *¥r

Inmos Limited -14- Confidential




The operator AFTER is defined by:

(m AFTER n) = (m MINUS n) > 0

The bitwise operators BITAND, BITOR, >< yield the bitwise and, or and exclusive or of their
operands. Both operands must be of the same integer type, and the result is of the same type as
the operands. Each bit of the result is produced from the corresponding bits of the operands
according to the following rules:

b><0=0» Os<l=1 1< 1=0
b BITAND 0 =0 b BITAND 1 =0
b BITOR 0 =0 b BITOR 1 = 1

where b is 0 or 1.

The bitwise operator BITNOT yields the bitwise not of its operand, which must be of integer type.
Each bit of the result is produced from the operand as follows:

BITNOT 1 =0 BITNOT 0 =1

In a shift expression n << ¢ or n >> ¢, n and the result are of the same integer type, and ¢ is of
type INT. The shift operators yield results according to the following rules:

n PLUS n
m, where m>=0 and ((m << 1) + (n BITAND 1)) = n

n<<1
n>>1

Let O be << or >>, and let b be the number of bits needed to represent a value of type n. Then

(n00)=n
ifc<Qorc>bHb n O c is invalid
if ¢c>0 nOc=(nO01)0 (c-1)

The boolean operators NOT, AND, OR yield boolean results according to the following rules:

NOT false = true NOT true = false
false AND b = false true AND b=Db
false OR b=Db true OR b = true

where b is a boolean value.

Inmos Limited -15- Confidential




The relational operators =, <>, <, <=, >, >= yield a result of type BOOL. Both operators of a
relational operator must be of the same primitive type. The operands of = and <> may be of any
primitive type. The operands of <, <=, >, >= must be of the same integer or real type. The result
of x =y is true if the value of x is equal to that of y. The result of x <y is true if the signed
integer value of x is strictly less than that of y. The other operators obey the following rules:

(x <> y) = NOT (x = y) (x >=y) = NOT (x < V)
(x> y)=(y <x) (x <=y) = (y >= x)
where x and y are any values.
The operand of the monadic operator SIZE must be an array type. Let x be of type [n]T. The

expression SIZE x is of type INT; its value is n.

<conversion> t= <type> <operand> |
<type> ROUND <operand> |
<type> TRUNC <operand>

The type of a conversion Te, T ROUND ¢ or T TRUNC ¢ is T; its value is the value of e
converted to a value of type T. Both T and the type of e must be primitive types.
Let T be any integer type, or BYTE. Then:

T TRUE BOOL 1
T FALSE =0 BOOL 0

Il
—

TRUE
FALSE

Let ¢ be an expression of value v, and of integer or BYTE type. Let I be an integer type and N
the number of values representable in type I The value of I(e) is v, provided that
-(N/2) <= v < (N/2). The value of BYTE e is v, provided that 0 <= v < 256. Let R be a real type.
The value of R ROUND e is the value of type R nearest to v, and the the value of R TRUNC e is
the value of type T nearest to and not larger in magnitude than v. R e is invalid.

Let e be an expression of value v, and of real type. Let R be a real type, and T an integer or real
type. The result of the conversion R e is v, provided that v is exactly representable as a value of
type R. The value of T ROUND ¢ is the value of type T nearest to v, and the value of
T TRUNC e¢ is the value of type T nearest to and not larger in magnitude than v.

The conversion T ROUND ¢ is invalid unless the value of ¢ differs numerically from a value of

type T by at most one half in the least significant bit position. If two values of type T are
equally near to the value of e, the one in which the least significant bit is zero is chosen.

Inmos Limited -16- Confidential




12 Timer input

<input>

<timer input> |
<delayed input>

<timer input> <timer> ? <variable>

A timer input sets the variable to a value of type INT representing the time. The value is derived
from a clock, which changes at regular intervals. The successive values of the clock are produced
by:

clock := clock PLUS 1
<delayed input> = <timer> ? AFTER <expression>

A delayed input is unable to proceed until the value of the clock satisfies (clock AFTER e¢), where
¢ is the value of the expression.

Inmos Limited -17- Confidential




13 Character set

The occam characters are:

Alphabetic characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Digits
0123456789
Special characters
M#& () *+,-./5<=>2[]_

The space character

Strings and character constants may contain any occam character (except * * and "). Certain

characters are represented as follows:

*¢ carriage return

*n newline

* horizontal tabulate

*s space

* quotation mark

— double quotation mark
i asterisk

Any character can be represented by an asterisk followed by a two digit hexadecimal constant.

A name consists of a sequence of alphabetic characters, decimal digits and underscores (_), the

first of which must be an alphabetic character.

An implementation may provide other characters for use in strings and character constants.

Inmos Limited -18-

Confidential




14 Notation

Let T be a type and N1, N2, ..., Nn names. Then

T N1:

T N2:

&= T N1, N2, ..., Nn:
T Nn: P

P

Let S be a specifier and N1, N2, .., Nn names. Then

S N1 IS X1:
S N2 IS X2:
= S N1 IS X1, N2 IS X2, ..., Nn IS Xn:
S Nn IS Xn: P
P
= N1 IS X1, N2 IS X2, ..., Nn IS Xn:
P
and
VAL S N1 IS X1:
VAL S N2 IS X2:
= VAL S N1 IS X1, N2 IS X2, ..., Nn IS Xn:
VAL S Nn IS Xn: P
P
= VAL N1 IS X1, N2 IS X2, ..., Nn IS Xn:
P
Let F be a <formal>. Then
F x1, F x2, ..., F xn = F x1, x2, ..., xn

Let ¢ be a channel, el, e2, .. en be expressions and v1, v2, .. vn be variables. Then

SEQ
clel
cle2 = clel; e2; ... ; en

clen
SEQ
c?vl
c?v2 = c?vl; v2; ... ; vn
c?vn
c?vl
SEQ

c?v2 = c?vl; v2; ... ; vn

c?vn

Inmos Limited -19- Confidential




and if e is an expression

e & ¢?vl
SEQ
c?v2

e & c?vl; v2; ... ; vn
c?vn
Let O be one of the operators AND, OR.
e10e20..0en = (1020 (...0en)..))

In an implementation which provides the characters \ and ~:

\ = REM

A\ =  BITAND
\/ =  BITOR
- =  BITNOT

Inmos Limited -20- Confidential




15 Configuration

Configuration does not affect the logical behavior of a program. However, it does enable the
program to be arranged to ensure that performance requirements are met.

<parallel> u= PLACED PAR
{ <placement> } |
PLACED PAR <replicator>
<placement>

<placement> 0= PROCESSOR <expression>
<process>

Each placement is executed by a separate processor. The value of the expression in a placement is
the number of the processor executing the component process. The variables and timers used in a
placement must be declared within the placement.

PRI PAR
{ <process> } |

PRI PAR <replicator>
<process>

<parallel>

Each process is executed at a separate priority. The first process is the highest priority, the last
the lowest. If P and Q are two concurrent processes with priorities p and q such that p < g, then
Q is only allowed to proceed when P cannot proceed.

PRI ALT
{ <option> } |

PRI ALT <replicator>
<option>

<alternative>

If several options can proceed, the alternative behaves like the first in textual sequence.

<process> u=  <allocation> :
<process>
<allocation> i=  PLACE <name> AT <expression> |

PLACE <name> IN <element> |
WORKSPACE <clement>

An allocation PLACE n AT ¢ allocates the variable, channel, timer or array n to the physical
address e.

Let s be an array of type [n]JINT. An allocation PLACE p IN s, where p is the name of a
procedure or an abbreviation of a constant, places the value of the constant or the compiled
instructions for the procedure in the array s.

Let w be an array of type [n]JINT. Then WORKSPACE w : P allocates w as the workspace for the
process P.

Inmos Limited -21- Confidential




16 Invalid processes

In a checked implementation invalid processes which are not detected by the compiler behave like
STOP; in an unchecked implementation an invalid process which is not detected by the compiler
may do anything.

Similarly, in a checked implementation a process containing an invalid expression operation
behaves like STOP; in an unchecked implementation an inavlid expression has an arbitrary value.

17 External input and output

<type> = <type> PORT

<port> = <element>

A process may communicate with external devices which are connected to the processor’s memory
system. A port specification is similar to a variable specification, and the type used in a port
specification must be a data type.

<input> = <port> ? <variable>

<output> n=  <port> ! <expression>

A port input inputs a value from the port, assigns it to the variable and then terminates. A port

output evaluates the expression and outputs the result to the port. A program is invalid if any
port is used for input or output in more than one component of a parallel.

18 Retyping

<definition> i=  <specifier> <name> RETYPES <element>

The representation of values and variables in an implementation is defined by the representation
function REP(e), where ¢ is an element.

Within the scope of the definition S n RETYPES e, either REP(n) = REP(e) or the definition is
invalid. Any subscript within the element ¢ takes the value it has at the start of the block.

The definition T n RETYPES e specifies n as an element of type T, and [T n RETYPES e
specifies n as an element of type [x]T.

A procedure may be converted to a data value using a retyping conversion, provided that all
identifiers used in the procedure are defined within the procedure.

The use of the retyping conversion will normally result in implementation dependant processes, as
the definition of REP will vary from one implementation to another.

Inmos Limited -22- Confidential




TRANSPUTER IMPLEMENTATION

1 Representation and Retvping

The length and alignment of values of each primitive data type for a 16 bit transputer are

T length(T) alignment(T)
BOOL 1 1
BYTE 1 1
INT 2 2
INT16 2 2
INT32 2 2
INT64 2 2
REAL32 2 2
REALG4 2 2

and those for a 32 bit transputer are

T length(T) alignment(T)
BOOL 1 1
BYTE 1 1
INT 4 4
INT16 2 2
INT32 4 4
INT64 4 4
REAL32 4 4
REALG64 4 4

The length of an array [n]T is n * length(T) and its alignment is that of T. The alignment of a
procedure is that of INT.

Let ¢ be an element of type E. The definition T n RETYPES E is valid provided that
length(T) = length(E), and (alignment(E) REM alignment(T)) = 0.

The definition [JT n RETYPES E is valid provided that (length(E) REM length(T)) =0 and
(alignment(E) REM alignment(T)) = 0.

The length of any element e is the value of SIZE n, where n is specified by [[BYTE n RETYPES e.

Inmos Limited -23- Confidential




2 Standard Procedures

The following arithmetic procedures are provided. They all treat their parameters as unsigned

integer values.

LongAdd ( INT Sum, INT A, INT B, INT Carry_In)

LongSum ( INT Carry_ Out, INT Sum, INT A, INT B, INT Carry_In)
LongSub ( INT Diff, INT A, INT B, INT Borrow_ In)

LongDiff ( INT Borrow_ Out, INT Diff, INT A, INT B, INT Borrow_In)
LongProd ( INT Carry_ out, INT Prod, INT A, INT B, INT Carry In)
LongDiv ( INT Quot, INT Rem, INT Dvd_hi, INT Dvd_lo, INT Dvsr )
ShiftRight ( INT S_ hi, INT S_lo, INT A_hi, INT A_lo, INT Places )
ShiftLeft ( INT S_hi, INT S_lo, INT A_hi, INT A lo, INT Places )

Normalise ( INT Places, INT N_ hi, INT N_ Lo, INT A hi, INT A Lo )

Inmos Limited -24-

Confidential




