
Communicating Processors

Past, Present and Future

David May

Bristol University and XMOS

David May 1 NOCS, Newcastle April 9, 2008

The Past

INMOS started 1978: introduced the idea of a a communicating
computer - transputer - as a system component

Key idea was to simplify system design by moving to a higher
level of abstraction

A concurrent language based on communicating processes was
to be used as a design formalism and programming language

Programming language occam launched 1983; transputer
launched 1984

David May 2 NOCS, Newcastle April 9, 2008

CSP, Occam and Concurrency

Sequence, Parallel, Alternative

Channels, communication using message passing

Event Driven

Initially used for software; later used for hardware synthesis of
microcoded engines, FPGA designs and asynchronous systems

David May 3 NOCS, Newcastle April 9, 2008

Processes

Idea of running multiple processes on each processor - enabling
cost/performance tradeoff

Processes as virtual processors

Scheduling Invariance - arbitrary interleaving model

Language and Processor Architecture designed together

Distributed implementation designed first

David May 4 NOCS, Newcastle April 9, 2008

Transputer overview

VLSI computer integrating 4K bytes of memory, processor and
point-to-point communications links

First computer to integrate a large(!) memory with a processor

First computer to provide direct interprocessor communication

Integration of process scheduling and communication following
CSP (occam) using microcode

David May 5 NOCS, Newcastle April 9, 2008

What did we learn?

We found out how to

• support fast process scheduling (about 10 processor cycles)
• support fast interprocess and interprocessor communication
• make concurrent system design and programming easy
• implement specialised concurrent applications (graphics,

databases, real-time control, scientific computing)

and we made some progress towards general purpose
concurrent computing using recongfigurablity and high-speed
interconnects

David May 6 NOCS, Newcastle April 9, 2008

What did we learn?

We also found that

• we needed more memory (4K bytes not enough!)
• we needed efficient system wide message passing
• we needed support for rapid generation of parallel

computations
• 1980s embedded systems didn’t need 32-bit processors or

multiple processors
• most programmers didn’t understand concurrency

David May 7 NOCS, Newcastle April 9, 2008

General Purpose Concurrency

Need for general purpose concurrent processors
• in embedded designs, to emulate special purpose systems
• in general purpose computing, to execute many algorithms -

even within a single application

Surprise: there is a well defined - and realisable - concept of
Universal parallel computing (as with sequential computing)

But this needs high performance interconnection networks

David May 8 NOCS, Newcastle April 9, 2008

Routers

We built the first VLSI router - a 32×32 fully connected packet
switch

It was designed as a component for interconnection networks
allowing latency and throughput to be matched to applications

Note that - for scaling - capacity grows as p× log(p); latency as
log(p)

Network structure and routing algorithms must be designed
together to minimise congestion (Clos networks, randomisation
...)

David May 9 NOCS, Newcastle April 9, 2008

General Purpose Concurrency

Key architectural ideas emerged:
• scale interconnect throughput with processing throughput
• hide latency with process scheduling (multi-threading)

Potentially these remove the need to design interconnects for
specific applications

Emerging software patterns: Task Farms, Pipelines, Data
Parallelism ...

But no easy way to build subroutines and libraries!

David May 10 NOCS, Newcastle April 9, 2008

Emerging need for a new platform

Post 2000, divergence between emerging market requirements
and trends in silicon design and manufacturing

Electronics becoming fashion-driven with shortening design
cycles; but state-of-the-art chips becoming more expensive and
taking longer to design ...

Concept of a single-chip tiled processor array as a
programmable platform emerged

Importance of I/O - mobile computing, ubiquitous computing,
robotics ...

David May 11 NOCS, Newcastle April 9, 2008

The Present

We can build chips with hundreds of processors

We can build computers with millions of processors

We can support concurrent programming in hardware

We can define and build digital systems in software

David May 12 NOCS, Newcastle April 9, 2008

Architecture

Regular, tiled implementation on chips, modules and boards

Scale from 1 to 1000 processors per chip

System interconnect with scalable throughput and low latency

Streamed (virtual circuit) or packetised communications

David May 13 NOCS, Newcastle April 9, 2008

Architecture

High throughput, responsive, input and output

Support compiler optimisation of concurrent programs

Power efficiency - compact programs and data, mobility

Energy efficiency - event driven systems

David May 14 NOCS, Newcastle April 9, 2008

Interconnect

Support multiple bidirectional links for each tile - a 500MHz
processor can support several 100Mbyte/second streams

Scalable bisection bandwidth can be achieved on silicon using
crosspoint switches or multi-stage switches even for hundreds of
links.

In some cases (eg modules and boards), low-dimensional grids
are more practical.

A set of links can be configured to provide several independent
networks -important for diverse traffic loads

David May 15 NOCS, Newcastle April 9, 2008

Interconnect Protocol

Protocol provides control and data tokens; applications
optimised protocols can be implemented in software.

A route is opened by a message header and closed by an
end-of-message token.

The interconnect can then be used under software control to
• establish virtual circuits to stream data or guarantee

message latency
• perform dynamic packet routing by establishing and

disconnecting circuits packet-by-packet.

David May 16 NOCS, Newcastle April 9, 2008

Processes

A processor can provide hardware support for a number of
processes, including:
• a set of registers for each process
• a scheduler which dynamically selects which process to

execute
• a set of synchronisers for process synchronisation
• a set of channels for communication with other processes
• a set of ports used for input and output
• a set of timers to control real-time execution

David May 17 NOCS, Newcastle April 9, 2008

Processes - use

Allow communications or input-output to progress together with
processing.

Implement ‘hardware’ functions such as DMA controllers and
specialised interfaces

Provide latency hiding by allowing some processes to continue
whilst others are waiting for communication with remote tiles.

The set of processes in each tile can also be used to implement
a kernel for a much larger set of software scheduled tasks.

David May 18 NOCS, Newcastle April 9, 2008

Process Scheduler

The process scheduler maintains a set of runnable processes,
run, from which it takes instructions in turn.

A process is not in the run set when:
• it is waiting to synchronise with another process before

continuing or terminating.
• it has attempted an input but there is no data available.
• it has attempted an output but there is no room for the data.
• it is waiting for one of a number of events.

The processor can power down when all processes are waiting

David May 19 NOCS, Newcastle April 9, 2008

Process Scheduler

Guarantee that each of n processes has 1/n processor cycles.

A chip with 128 processors each able to execute 8 processes
can be used as if it were a chip with 1024 processors each
operating at one eighth of the processor clock rate.

Share a simple unified memory system between processes in a
tile.

Each processor behaves as symmetric multiprocessor with 8
processors sharing a memory with no access collisions and with
no caches needed.

David May 20 NOCS, Newcastle April 9, 2008

Instruction Execution

Each process has a short instruction buffer sufficient to hold at
least four instructions.

Instructions are issued from the instruction buffers of the
runnable processes in a round-robin manner.

Instruction fetch is performed within the execution pipeline, in
the same way as data access.

If an instruction buffer is empty when an instruction should be
issued, a no-op is issued to fetch the next instruction.

David May 21 NOCS, Newcastle April 9, 2008

Execution pipeline

Simple four stage pipeline:

1 decode reg-write
2 reg-read
3 address ALU1 resource-test
4 read/write/fetch ALU2 resource-access schedule

At most one instruction per thread in the pipeline.

David May 22 NOCS, Newcastle April 9, 2008

Concurrency

Fast initiation and termination of processes

Fast barrier synchronisation - one instruction per process

Compiler optimisation using barriers to remove join-fork pairs

Compiler optimisation of sequential programs using multiple
processes (such as splitting an array operation into two half size
ones)

David May 23 NOCS, Newcastle April 9, 2008

Fork-join optimisation
while true

{ par { in(inchan,a) || out(outchan,b) };

par { in(inchan,b) || out(outchan,a) }

}

par

{ while true

{ in(inchan,a); SYNC c; in(inchan,b); SYNC c }

|| while true

{ out(outchan,b); SYNC c; out(outchan,a); SYNC c }

}

David May 24 NOCS, Newcastle April 9, 2008

Concurrent Software Components

while true

{ par { in(nextx) || in(nexty) || nextr := f(x, y) || out(r) };

x, y, r := nextx, nexty, nextr

}

while true

{ par { in(nextx) || in(nexty) || nextr := f(x, y) || out(r) };

par { move(nextx, x) || move(nexty, y) || move(nextr, r) }

}

Components can be composed to implement deterministic
concurrent systems.

David May 25 NOCS, Newcastle April 9, 2008

Communication
Communication is performed using channels, which provide
full-duplex data transfer between channel ends

The channel ends may be
• in the same processor
• in different processors on the same chip
• in processors on different chips

A channel end can be used as a destination by any number of
processes - server processes can be programmed

The channel end addresses can themselves be communicated

David May 26 NOCS, Newcastle April 9, 2008

Communication

Channel communication is implemented in hardware and does
not involve memory accesses

This supports fine grained computations in which the number of
communications is similar to the number of operations.

Within a tile, it is possible to use the channels to pass addresses.

Synchronised communication is implemented by the receiver
sending a short acknowledgement message to the sender.

David May 27 NOCS, Newcastle April 9, 2008

Ports, Input and Output

Inputs and outputs using ports provide
• direct access to I/O pins
• accesses synchronised with a clock
• accesses timed under program control

An input can be delayed until a specified condition is met
• the time at which the condition is met can be timestamped

The internal timing of input and output program execution is
decopled from the operation of the input and output interfaces.

David May 28 NOCS, Newcastle April 9, 2008

Ports, Input and Output example
proc linkin(port in 0, in 1, ack, int token) is

var state 0, state 1, state ack;

{ state 0 := 0; state 1 := 0; state ack = 0; token := 0;

for bitcount = 0 for 10 do

{ select

{ case in 0 ?= ¬state 0: state 0 => token := token>>1

case in 1 ?= ¬state 1: state 1 => token:=(token>>1)|512

};

ack ! state ack; state ack := ¬state ack

}

}

David May 29 NOCS, Newcastle April 9, 2008

Timed ports example

proc uartin(port uin, byte b) is

{ var starttime;
in ?= 0 at starttime;

sampletime := starttime + bittime/2;

for i = 0 for 8

t := t + bittime; (uin at t) ? >> b ;

(uin at (t + bittime)) ? nil

}

David May 30 NOCS, Newcastle April 9, 2008

Event-based scheduling
A process can wait for an event from one of a set of channels,
ports or timers

An entry point is set for each resource; a wait instruction is used
to wait until an event transfers control directly to its associated
entry point.

A compiler can optimise repeated event-handling in inner loops -
the process is effectively operating as a programmable state
machine - the events can often be handled by (very) short
instruction sequences

David May 31 NOCS, Newcastle April 9, 2008

Events vs. Interrupts

A process can be dedicated to handling an individual event or to
responding to multiple events.

The data needed to handle each event have been initialised prior
to waiting, and will be instantly available when the event occurs.

This is in sharp contrast to an interrupt-based system in which
context must be saved and the interrupt handler context restored
prior to entering it - and the converse when exiting.

David May 32 NOCS, Newcastle April 9, 2008

Summary
Concurrent programming can be efficiently supported in
hardware using tiled multicore chips.

They enable systems to be defined and built using software.

Each process can be used
• to run conventional sequential programs
• as a component of a concurrent computer
• as a hardware emulation engine or input-output controller

Event-driven hardware and software enable energy efficient
systems.

David May 33 NOCS, Newcastle April 9, 2008

XMOS XS1 tile

Processor 500 MHz; 8 threads
SRAM 64k bytes
Synchronisers 7
Timers 10
Channel ends 32
Ports 1,4,8,16,32-bit
Links 4 at 100Mbyte/second

Prototype has 4 tiles communicating via a fully-connected switch

David May 34 NOCS, Newcastle April 9, 2008

The Future

Some people will bet on scalable shared memory systems - if
they don’t care about cost, power and performance.

Some people will bet on complex heterogeneous architectures
and compilers that do magical optimisations - if they don’t know
that compilers take much longer to develop than hardware

Some people will bet on ‘abstraction layers’ to allow legacy
software to be ported to parallel machines - if they haven’t yet
discovered why their mobile phone takes so long to boot.

David May 35 NOCS, Newcastle April 9, 2008

Realisation

The full potential of concurrency can be delivered directly to the
user.

We can use processors with tightly integrated communications
as system components - we now have the technology and the
need for them

The language and formalism already exist - based on concurrent
processes

We need to learn how to use them to build scalable concurrent
computers and embedded system components

David May 36 NOCS, Newcastle April 9, 2008

Concurrent Languages

Focus on data, control and resource dependency

Contrast:

Conventional programming languages: over-specified
sequencing

Hardware design languages: over-specified parallelism

Need a single language to trade-off space and time (by designer
or compiler); also need a semantics to do this automatically.

David May 37 NOCS, Newcastle April 9, 2008

Architecture
Process scheduling, communications and I/O should be part of
the processor.

Interconnect should be scalable - maintaining throughput
between node and network - and bounded latency.

Low latency at low load is important for initiating processing; low
- bounded - latency at high load is important for latency hiding

‘Determinism’ is essential except where it’s explicitly not
essential!

David May 38 NOCS, Newcastle April 9, 2008

Architecture

Key: ratio of executions/second to communications/second.This
will be the lower of e/c (node throughput to node communication
throughput) and E/C (total execution throughput to total
communication throughput).

Bounded network latency l: hard bound for real-time; high
expectancy for concurrent computing.

Compiler: parallelise or serialise to match e/c; this produces p
processes with communication blocks of interval i.

Loader: distribute the p processes to at most p× i/l processors

David May 39 NOCS, Newcastle April 9, 2008

Layering
Expect to run concurrent applications on top of concurrent
system software on top of concurrent hardware

Note that processor allocation may be done by compiler or at
runtime - that processes may be mobile - want compact,
position-independent code

Need scalable software for system-wide forking and joining,
synchronisation, resource allocation, load-balancing ... along
with support for shared memory models.

Note that many-one channels (server channels) allow software
implementations of concurrent accesses, connection servers etc

David May 40 NOCS, Newcastle April 9, 2008

Optimising distribution

For hundreds of processors, we want to distribute computations
rapidly:

tree(t, n, h) is if n=1 then node(t, h) else
par { tree(t, n/2)

|| on t+n/2 do tree(t+n/2, n/2, h)
}

node(t, h) is
{ par i = 0 for h

connect t : c[i] to (t xor (1 << i)) : c[i]
...

}

David May 41 NOCS, Newcastle April 9, 2008

Barrier synchronisation

sync(d) is
par { c[d] ! nil

|| c[d] ? nil
}

seq d = 0 for h
sync(d)

which takes log(p) communication steps

David May 42 NOCS, Newcastle April 9, 2008

Load balancing

Load balancing can be done the same way by

balance(d) is
seq { par { c[d] ! myload

|| c[d] ? hisload
}

... move |(myload-hisload)| / 2 processes
}

seq d = 0 for h
balance(d)

David May 43 NOCS, Newcastle April 9, 2008

Concurrent computers and
processors

Millions of processes/computer; 100s of processors/chip

General purpose embedded components with behaviour defined
by concurrent software

These will enable rapid design of innovative consumer products
- and chipless, fabless electronics companies

There is a potential to use new technologies such as plastics

David May 44 NOCS, Newcastle April 9, 2008

Concurrency

Emphasis on process structures will replace emphasis on data
structures

A paradigm shift in computer science and engineering - a
universal computer is an infinite array of finite processors, not a
finite array of infinite processors

Our design languages should reflect exactly those features
common to both hardware and software

It’s time to educate a generation of concurrent thinkers!

David May 45 NOCS, Newcastle April 9, 2008

