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Introduction
Electronic products: design cycles shortening and product
diversity increasing

Replace hardware components with software components

Use standard concurrent hardware components to execute
diverse concurrent software components

Standard hardware exploits economies of scale in manufacturing

Software supports short design cycles, re-use, diversity,
open-source ...
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Architecture

An architecture for a range of concurrent processing components

Multi-threaded XCore processors connected by links and switches

XCores interface directly with external devices via integrated ports

Deterministic execution and interface timing

Initial products optimised for embedded applications

Systems built on multi-core chips, in packages or on boards
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Example System
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Programming
C-based language (along with C and C++) supporting
• deterministic concurrent and multi-core programming
• deterministic real-time and input-output programming

Simple concurrent programming using message-passing

Compiled directly to cores - no kernel or RTOS needed

Real-time performance guaranteed by tools and architecture

An alternative to complex, non-deterministic, cache-coherent
shared memory
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Scalability
On-core memory, threads, links, ports can all
be varied

ISA supports different wordlengths - and
has space for new instructions

Switch-based interconnect with scalable
throughput

Memory, processing, communication, event-
handling scale with cores

From one to hundreds of cores per chip
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Threads

Each XCore provides hardware resources for a number of
threads, including:
• a set of registers for each thread
• a scheduler which dynamically selects which thread to execute
• a set of synchronisers for thread synchronisation
• a set of channels for communication with other threads
• a set of ports used for input and output
• a set of timers to control real-time execution

Memory for code and data is shared between the threads

Threads are used for latency hiding or to implement ‘hardware’
functions such as DMA controllers and specialised interfaces

www.xmos.com 7



XCore Architecture
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Instruction set
Each thread has its own register set

Dedicated registers for program counter, stack pointer, data
pointer and constant pool

12 general purpose operand registers - allowing three operands to
be encoded using 11 bits (because 12×12×12 < 2048) leaving 5
opcode bits.

Most instructions encoded in 16 bits

Prefix instructions used to
• extend the immediate range for jumps and offsets
• provide up to 6-operand instructions
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XCore Instruction Encodings

op6 op5 op4op4, 5 & 6

20 out of 32 27 out of 32 4 4 4

opcode op1, 2 & 3 op3 op2 op1

20 out of 32 5 out of 32 4 4 4

opcode op1 & 2 op2 op1opc

6 out of 22 1024

opcode immediate

13 out of 22 64

opcode immediateop1

3 operand

2/1/0 oper

Big offset

Reg+offset

Mostly arithmetic

Mostly resources

Function calls

Branches

Short 16b
Encodings
(80%)

1024

immediate

1 out of 32

ImmPrefix

InstrPrefix

Immediate extension

4, 5, and 6 operand

Long 32b
Encodings
(20%)

1 1 1 1 0 0

1 1 1 1 1

4 4 432

1 out of 22
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Thread Scheduler
The thread scheduler maintains a set of runnable threads, run,
from which it takes instructions in turn.

A thread is not in the run set when:
• it is waiting to synchronise with another thread before

continuing or terminating.
• it has attempted an input but there is no data available.
• it has attempted an output but there is no room for the data.
• it is waiting for a timer.
• it is waiting for one of a number of events.

An XCore can power down when all of its threads are waiting -
event-driven processing
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Thread Scheduler
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Concurrency and Thread Scheduler
Fast initiation and termination of threads - forking and joining.

Fast barrier synchronisation - one instruction per thread

Guarantee that each of n threads has 1/n core cycles.

A chip with 128 cores each able to execute 8 threads can be used
as if it were a chip with 1024 cores each operating at one eighth of
the clock rate.

Each core behaves as symmetric multiprocessor with 8 cores
sharing a memory with no access collisions and with no caches
needed.
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Instruction Execution
Each thread has a short instruction buffer sufficient to hold at least
four instructions.

Instructions are issued from the runnable threads in a round-robin
manner - at most one instruction per thread in the pipeline.

Instruction fetch is performed within the execution pipeline, in the
same way as data access.

If an instruction buffer is empty when an instruction should be
issued, a no-op is issued to fetch the next instruction.

Most no-ops are eliminated by compiler instruction scheduling.
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XCore pipeline
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Communication
Communication is performed using hardware channels, which
provide bidirectional data transfer between threads
• in the same core
• in different cores on the same chip
• in cores on different chips

A channel can be used as a destination by any number of threads
- server threads can be programmed

The channel addresses are system-wide and can themselves be
communicated

Channel protocol provides control and data tokens; applications
optimised protocols can be implemented in software.
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Channels and Interconnect

Each core has several bidirectional links to a switch enabling
several simultaneous data streams

A route is opened by sending a destination channel address and
closed by sending an end-of-message token.

The interconnect can be used under software control to establish
virtual circuits or perform dynamic packet routing.

A set of links can be configured to provide several independent
networks - important for diverse traffic loads - or can be grouped
to increase throughput
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Communication: Addressing
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Communication: Messages & Streams
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Communication: Sharing
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Routing

Simple hardware operating on the first few bits of each message

Incoming bits compared with switch address, bit-by-bit

If all pairs match, then a core on this switch is the destination

If not, the number of the first non-matching pair is used to select
an outgoing direction from the switch via a lookup table

This is sufficient to perform deadlock-free routing in all
n-dimensional grids - and many other structures
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Routing Example

001

001

11
0000
DDRR

0001
DDRL

0010
DDLR

0011
DDLL

0100
DURR

0101
DURL

0110
DULR

0111
DULL

1000
UDRR

1001
UDRL

1010
UDLR

1011
UDLL

1100
UURR

1101
UURL

1110
UULR

1111
UULL

Binary addresses

Leftmost bit mismatch
determines next
'direction':

  D: Down
  U: Up
  L: Left
  R: Right

Example routes
  0100 to 1010
  1111 to 0001
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0000000001
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Link Protocol
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Ports, Input and Output
Inputs and outputs using ports provide
• direct access to I/O pins
• accesses synchronised with a clock
• accesses timed under program control

An input can be delayed until a specified condition is met
• the time at which the condition is met can be timestamped

The internal timing of input and output program execution is
decoupled from the timing of the input and output interfaces.

Ports and threads can implement ‘hardware’ interfaces
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Event-based scheduling
A thread can wait for an event from a set of channels, ports or
timers

An entry point is set for each resource; a wait instruction waits
until an event transfers control directly to its associated entry point

The data needed to handle each event have been initialised prior
to waiting, and will be instantly available when the event occurs

Compilers optimise repeated event-handling in inner loops. The
thread is operating as a programmable state machine and events
can often be handled by short instruction sequences

This is much faster and more energy-efficient that interrupts.
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Events
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Applications
Customers in audio, industrial control, motor control, robotics,
vision, and other real-time and embedded domains

Example: AVB endpoint
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XMOS XS1-G4

Four cores 400 MHz, 1600 MIPS; 32 threads
DSP > 400 MMACs per second
Events 400 MEvents per second
Switch 4 links per core; 16 external links
Links 16 at 400Mbits/second
SRAM 64k bytes per core
Synchronisers 7 per core
Timers 10 per core
Channels 32 per core
Ports 1, 4, 8, 16, 32-bit
Node 90 nm
Costs less than $10 in volume
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XMOS XS1-L1

One core 500 MHz, 500 MIPS; 8 threads
DSP > 125 MMACs per second
Events 125 MEvents per second
Switch 4 links for the core; 8 external links
Links 4 at 400Mbits/second
SRAM 64k bytes per core
Synchronisers 7 per core
Timers 10 per core
Channels 32 per core
Ports 1, 4, 8, 16, 32-bit
Node 65 nm
Costs less than $2 in volume
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