
XMOS Architecture
XS1 Chips

David May
XMOS



Introduction
Electronic products: design cycles shortening and product
diversity increasing

Replace hardware components with software components

Use standard concurrent hardware components to execute
diverse concurrent software components

Standard hardware exploits economies of scale in manufacturing

Software supports short design cycles, re-use, diversity,
open-source ...

www.xmos.com 2



Architecture

An architecture for a range of concurrent processing components

Multi-threaded XCore processors connected by links and switches

XCores interface directly with external devices via integrated ports

Deterministic execution and interface timing

Initial products optimised for embedded applications

Systems built on multi-core chips, in packages or on boards

www.xmos.com 3



Example System

Switch
Switch

Switch

Switch

Switch

Core
Mem

Core
Mem

Core
Mem

Core
Mem

Core
Mem

Core
Mem

Core
Mem

Core
Mem

Switch

Core
Mem

Switch

Core
Mem

Switch

Core
Mem

www.xmos.com 4



Programming
C-based language (along with C and C++) supporting
• deterministic concurrent and multi-core programming
• deterministic real-time and input-output programming

Simple concurrent programming using message-passing

Compiled directly to cores - no kernel or RTOS needed

Real-time performance guaranteed by tools and architecture

An alternative to complex, non-deterministic, cache-coherent
shared memory

www.xmos.com 5



Scalability
On-core memory, threads, links, ports can all
be varied

ISA supports different wordlengths - and
has space for new instructions

Switch-based interconnect with scalable
throughput

Memory, processing, communication, event-
handling scale with cores

From one to hundreds of cores per chip

www.xmos.com 6



Threads

Each XCore provides hardware resources for a number of
threads, including:
• a set of registers for each thread
• a scheduler which dynamically selects which thread to execute
• a set of synchronisers for thread synchronisation
• a set of channels for communication with other threads
• a set of ports used for input and output
• a set of timers to control real-time execution

Memory for code and data is shared between the threads

Threads are used for latency hiding or to implement ‘hardware’
functions such as DMA controllers and specialised interfaces

www.xmos.com 7



XCore Architecture

Mem

Regs
Thr 0

Channels

Timers

Synchr's

Ports

Regs
Thr 0
Thread
Regs

Pipe

Locks

Switch

www.xmos.com 8



Instruction set
Each thread has its own register set

Dedicated registers for program counter, stack pointer, data
pointer and constant pool

12 general purpose operand registers - allowing three operands to
be encoded using 11 bits (because 12×12×12 < 2048) leaving 5
opcode bits.

Most instructions encoded in 16 bits

Prefix instructions used to
• extend the immediate range for jumps and offsets
• provide up to 6-operand instructions

www.xmos.com 9



XCore Instruction Encodings

op6 op5 op4op4, 5 & 6

20 out of 32 27 out of 32 4 4 4

opcode op1, 2 & 3 op3 op2 op1

20 out of 32 5 out of 32 4 4 4

opcode op1 & 2 op2 op1opc

6 out of 22 1024

opcode immediate

13 out of 22 64

opcode immediateop1

3 operand

2/1/0 oper

Big offset

Reg+offset

Mostly arithmetic

Mostly resources

Function calls

Branches

Short 16b
Encodings
(80%)

1024

immediate

1 out of 32

ImmPrefix

InstrPrefix

Immediate extension

4, 5, and 6 operand

Long 32b
Encodings
(20%)

1 1 1 1 0 0

1 1 1 1 1

4 4 432

1 out of 22

www.xmos.com 10



Thread Scheduler
The thread scheduler maintains a set of runnable threads, run,
from which it takes instructions in turn.

A thread is not in the run set when:
• it is waiting to synchronise with another thread before

continuing or terminating.
• it has attempted an input but there is no data available.
• it has attempted an output but there is no room for the data.
• it is waiting for a timer.
• it is waiting for one of a number of events.

An XCore can power down when all of its threads are waiting -
event-driven processing

www.xmos.com 11



Thread Scheduler

4
5

N
:

6

Core
Threads

0
0

0
0
1
0
0

0

0
1
2
3

1
1

1
0
1
1
1

1

Inuse
Waiting

...

...

...

...

...

...

...

...

Register Read

R Write/Decode

ALU 2

ALU 1

Thread 0

Thread 1

Thread 4

Thread 5

Scheduling queue
Threads 6..N

Execution pipeline

www.xmos.com 12



Concurrency and Thread Scheduler
Fast initiation and termination of threads - forking and joining.

Fast barrier synchronisation - one instruction per thread

Guarantee that each of n threads has 1/n core cycles.

A chip with 128 cores each able to execute 8 threads can be used
as if it were a chip with 1024 cores each operating at one eighth of
the clock rate.

Each core behaves as symmetric multiprocessor with 8 cores
sharing a memory with no access collisions and with no caches
needed.

www.xmos.com 13



Instruction Execution
Each thread has a short instruction buffer sufficient to hold at least
four instructions.

Instructions are issued from the runnable threads in a round-robin
manner - at most one instruction per thread in the pipeline.

Instruction fetch is performed within the execution pipeline, in the
same way as data access.

If an instruction buffer is empty when an instruction should be
issued, a no-op is issued to fetch the next instruction.

Most no-ops are eliminated by compiler instruction scheduling.

www.xmos.com 14



XCore pipeline

Register Read

Decode Register Write

Resource Test

Memory LD/ST/Fetch Resource Op & Schedule

Memory Address

ALU 2

ALU 1

www.xmos.com 15



Communication
Communication is performed using hardware channels, which
provide bidirectional data transfer between threads
• in the same core
• in different cores on the same chip
• in cores on different chips

A channel can be used as a destination by any number of threads
- server threads can be programmed

The channel addresses are system-wide and can themselves be
communicated

Channel protocol provides control and data tokens; applications
optimised protocols can be implemented in software.

www.xmos.com 16



Channels and Interconnect

Each core has several bidirectional links to a switch enabling
several simultaneous data streams

A route is opened by sending a destination channel address and
closed by sending an end-of-message token.

The interconnect can be used under software control to establish
virtual circuits or perform dynamic packet routing.

A set of links can be configured to provide several independent
networks - important for diverse traffic loads - or can be grouped
to increase throughput

www.xmos.com 17



Communication: Addressing

0
1

N
:
2

Core 16

Channels

Switch

0
1

N
:
2

Core 17

Channels
0
1

N
:
2

Core 18

Channels

Switch

16 2
1

18 2

16 118
17 2

016

Switch

www.xmos.com 18



Communication: Messages & Streams

0
1

N
:
2

Core 16

Channels

Switch

0
1

N
:
2

Core 17

Channels
0
1

N
:
2

Core 18

Channels

Switch

16 2
1

18 2

16 118
17 2

016

Switch

IN r0, 0
CHKCT 0, END

CHKCT 2, END OUT 2, 0x12345678
OUTCT 1, END
OUTCT 2, END

12

34
5678END

END

www.xmos.com 19



Communication: Sharing

0
1

N
:
2

Core 16

Channels

Switch

0
1

N
:
2

Core 17

Channels
0
1

N
:
2

Core 18

Channels

Switch

118
17 2

016

Switch

IN r0, 0
CHKCT 0, END

OUT 0, 0x12345678 OUTCT 2, END
OUTCT 0, END

12

345678
END

016XXX

www.xmos.com 20



Routing

Simple hardware operating on the first few bits of each message

Incoming bits compared with switch address, bit-by-bit

If all pairs match, then a core on this switch is the destination

If not, the number of the first non-matching pair is used to select
an outgoing direction from the switch via a lookup table

This is sufficient to perform deadlock-free routing in all
n-dimensional grids - and many other structures

www.xmos.com 21



Routing Example

001

001

11
0000
DDRR

0001
DDRL

0010
DDLR

0011
DDLL

0100
DURR

0101
DURL

0110
DULR

0111
DULL

1000
UDRR

1001
UDRL

1010
UDLR

1011
UDLL

1100
UURR

1101
UURL

1110
UULR

1111
UULL

Binary addresses

Leftmost bit mismatch
determines next
'direction':

  D: Down
  U: Up
  L: Left
  R: Right

Example routes
  0100 to 1010
  1111 to 0001

0

0

0000000001

0010

www.xmos.com 22



Link Protocol

00

01

10

11

E

Data token 00 10 00 11 Control token END&RTZ

0

1

Data token 0 0 1 0 0 0 1 1 then RTZ

00 00

10

11

RTZ

RTZ

E E

DATA 0 0 0 0 0

1 1 1 RTZ

Two
Wire

Five
Wire

www.xmos.com 23



Ports, Input and Output
Inputs and outputs using ports provide
• direct access to I/O pins
• accesses synchronised with a clock
• accesses timed under program control

An input can be delayed until a specified condition is met
• the time at which the condition is met can be timestamped

The internal timing of input and output program execution is
decoupled from the timing of the input and output interfaces.

Ports and threads can implement ‘hardware’ interfaces

www.xmos.com 24



Event-based scheduling
A thread can wait for an event from a set of channels, ports or
timers

An entry point is set for each resource; a wait instruction waits
until an event transfers control directly to its associated entry point

The data needed to handle each event have been initialised prior
to waiting, and will be instantly available when the event occurs

Compilers optimise repeated event-handling in inner loops. The
thread is operating as a programmable state machine and events
can often be handled by short instruction sequences

This is much faster and more energy-efficient that interrupts.

www.xmos.com 25



Events

4
5

N
:

6

Core
Resources

0
0

1
0
1
1
1

0

0
1
2
3

0
0

0
0
1
0
0

0

Enabled
Interrupt

10140

4
0

7
0
7
0
7

0

10160

10150

    SETV 0, 10140
    SETV 2, 10160
    SETV 4, 10150
    SETC 0, INTERRUPT
    EEU 0
    EEU 2
    EEU 4
    WAITEU
10140:
    IN r1,0
    ...
    WAITEU
10150:
    IN r1,4
    ...
    WAITEU
10160:
    ...
    KRET

Code for thread 7:

Owner

1
0

1
0
1
1
1

0

In useVector

Current PC

www.xmos.com 26



Applications
Customers in audio, industrial control, motor control, robotics,
vision, and other real-time and embedded domains

Example: AVB endpoint

MII and MAC

PTP Engine
(IEEE1588)

LCD 
Controller

PHY

I2S and 
Buffering

I2
S Stereo

DAC

LC
D 320x240

LCD

FFT & Buffer

1722 Packet
Analyser

Clock Recovery
and Generation

M
II 

T
x

M
II 

R
x

C
lk

www.xmos.com 27



XMOS XS1-G4

Four cores 400 MHz, 1600 MIPS; 32 threads
DSP > 400 MMACs per second
Events 400 MEvents per second
Switch 4 links per core; 16 external links
Links 16 at 400Mbits/second
SRAM 64k bytes per core
Synchronisers 7 per core
Timers 10 per core
Channels 32 per core
Ports 1, 4, 8, 16, 32-bit
Node 90 nm
Costs less than $10 in volume

www.xmos.com 28



XMOS XS1-L1

One core 500 MHz, 500 MIPS; 8 threads
DSP > 125 MMACs per second
Events 125 MEvents per second
Switch 4 links for the core; 8 external links
Links 4 at 400Mbits/second
SRAM 64k bytes per core
Synchronisers 7 per core
Timers 10 per core
Channels 32 per core
Ports 1, 4, 8, 16, 32-bit
Node 65 nm
Costs less than $2 in volume

www.xmos.com 29



www.xmos.com

www.xmos.com 30


	
	Introduction
	Architecture
	Example System
	Programming
	Scalability
	Threads
	XCore Architecture
	Instruction set
	XCore Instruction Encodings
	Thread Scheduler
	Thread Scheduler
	Concurrency and Thread Scheduler
	Instruction Execution
	XCore pipeline
	Communication
	Channels and Interconnect
	Communication: Addressing
	Communication: Messages & Streams
	Communication: Sharing
	Routing
	Routing Example
	Link Protocol
	Ports, Input and Output
	Event-based scheduling
	Events
	Applications
	XMOS XS1-G4
	XMOS XS1-L1
	

