538 R. H. Dalitz

Sakharov, A. D. 1948 J. Exp. Theor. Phys. 18, 631.

Schafroth, R. 1949 Helv. Phys. Acta, 22, (iv), 392.

Schwinger, J. S. 1949 Phys. Bev. 76, 790.

Streib, J. F., Fowler, W. A. & Lauritsen, C. C. 1941 Phys. Rev. 59, 523.
Stuckelberg, E. C. G. 1938 Helv. Phys. Acta, 11, 225.

Thomas, R. 1940 Phys. Rev. 58, T14.

Tomlinson, E. P. 1941 Phys. Rev. 60, 159 (A).

Ward, J. C. 1950 Phys. Rev. 78, 182,

The diagnosis of mistakes in programmes on the EDSAC

By S. Giru
Mathematical Laboratory, University of Cambridge

(Communicated by D. R. Hartree, F.R.S.—Received 13 December 1950)

This paper describes methods developed at the Cambridge University Mathematical
Laboratory for the speedy diagnosis of mistakes in programmes for an automatic high-speed
digital computer. The aim of these methods is to avoid undue wastage of machine time, and
a principal feature is the provision of several standard routines which may be used in con-
junction with faulty programmes to check the operation of the latter. Two of these routines
are considered in detail, and the others are briefly described.

1. INTRODUCTION

Two kinds of mistakes, or blunders, arise in the use of an automatic digital com-
puting machine: (i) those resulting from faults in the machine itself, and (ii) those
arising because the orders or data presented to the machine are not those required
to obtain the results sought. This paper is entirely concerned with mistakes of the
second kind, and describes methods employed for dealing with such mistakes on
the EDSAC at the Cambridge University Mathematical Laboratory. Although it
is written with special reference to this machine, much of the subject-matter is in
principle more generally applicable.

Programmes are presented to the EDSAC in the form of punched tape, the
entries on which are converted into orders and numbers by the machine as the tape
is read. This process has been described in a paper by Wheeler (1950), and it will
be assumed that the reader is already acquainted with that paper and the various
technical terms employed therein. The order code of the machine is repeated here
in appendix 1 for convenience.

It is natural at first to dismiss mistakes in programming as an inevitable but
temporary evil, due to lack of experience, and to assume that if reasonable care
is taken to prevent such mistakes occurring no other remedy is necessary. However,
experience with the EDSAC has shown that although a high proportion of mistakes
can be removed by preliminary checking, there frequently remain mistakes which
could only have been detected in the early stages by prolonged and laborious study.

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [[&
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. STOR

o

®

Www.jstor.org

The diagnosis of mistakes in programmes on the EDSAC 539

Some attention has, therefore, been given to the problem of dealing with mistakes
after the programme has been tried and found to fail.

The difficulty lies not in detecting the presence of a mistake, but in diagnosing it.
In practice its presence is nearly always obvious, for the character of most pro-
grammes is such that even a slight error will usually have an extensive effect. If
its presence is not immediately apparent, it will be detected by the arithmetical
checks which must be incorporated in every calculation.

Every large calculation which is to be performed on the EDSAC is first broken
down into its major components, for example, the evaluation of elementary
functions such as square roots, each of which can conveniently be carried out by
means of a sub-routine. Wherever possible, use is made of sub-routines already
available in the library. The use of a library sub-routine not only saves considerable
time and effort; it also eliminates the risk of mistakes in that part of the programme.
There are at present some eighty sub-routines in the EDSAC library, and the
number is steadily increasing. Every new sub-routine which is constructed for the
library is tested alone in a simple programme before being applied to a serious
calculation, and routines for individual purposes should also be tested before use.

When each programme has been drawn up it is checked, preferably by another
person, for obvious mistakes. A tape is then prepared and the punching is checked.
In due course the tape is presented to the machine. At some stage it may become
apparent that the machine is not behaving as was anticipated. If there is any
doubt as to the serviceability of the machine, it can be settled by applying standard
test tapes which test every part of the machine thoroughly, and by applying the
‘programme tape repeatedly to see whether consistent results are obtained (although
this may not be convenient if the programme fails only after several minutes).
When a machine fault arises, the programme is abandoned until the fault has been
cured. '

The commonest symptom of failure in the EDSAC is stoppage of the machine;
this is nearly always the result of the control unit trying to obey some ‘order’
which is not included in the machine’s order code.* When this occurs, the operator
notes the position of the ‘order’ causing stoppage. Such stoppage may even occur
before the tape has been fully read, if the punching is wrong. Another common
symptom is ‘looping’, in which the machine is seen to be obeying repeatedly a small
cycle of orders, many more times than was intended. Dislocation of the programme
may also affect the signals sent to the teleprinter, thus changing the lay-out of the
printing or inserting unusual symbols. If the EDSAC is working properly, any of
these symptoms indicates that the programme has failed in such a way that the
machine is not carrying out the correct orders in the sequence intended by the
programmer. Such failures are termed ‘order failures’.

Tt is possible for the machine to carry out the orders as planned by the pro-
grammer, and yet to arrive at the wrong numerical results. This may be due to
errors in the data or constants, to the capacity of a storage register being exceeded,

* Most machines would not stop in such a situation. The fact that the EDSAC does stop
is often valuable, since it rapidly arrests the machine in the event of serious dislocation of
the programme.

540 S. Gill

or to a fault in the mathematical theory. If arithmetical checks are included in the
programme they should indicate such a failure, otherwise it will only be detected
by inspecting the printed results. These failures are called ‘numerical failures’.
There is no clear distinction between the two types of failure because the course
of the calculation is nearly always affected by the results obtained, but the
classification is a useful guide in the early stages of investigating a mistake.

If the programmer is present in person when his programme fails, he may be able
to obtain some useful information by noting the timing of events, or by watching
the monitors attached to the arithmetical unit and the store, but it is not usually
possible to get relevant data in the short time available. Otherwise the facts
reported by the operator, together with any printing which might have been
produced, are the only evidence available. Before consuming any further machine
time, the programme is re-examined in the light of this evidence. Often the
mistakes can be diagnosed at this stage. On the other hand, the programmer
might still be unable to deduce exactly what must have happened inside the machine
during the execution of the programme. In this case it is necessary to return to the
machine to obtain more detailed information about the operation of the pro-
gramme by repeating the calculation, perhaps in a modified form. Ways in which
this may be done are discussed in the next section.

2. METHODS OF CHECKING

All high-speed computers are equipped with a means of causing orders to be
obeyed singly, at the press of a button, to enable the progress of a calculation to be
followed by eye. However, this facility is not very suitable for the purpose of
checking a programme. The most serious disadvantage is the extravagant waste
of machine time involved. In the EDSAC, orders are normally obeyed at the rate
of about 500 per second. Even if it is possible to follow them by eye at the rate of
one every second, it requires 8 min. to work through the equivalent of 1 sec. of
normal operating time, and the machine is computing for only 0-2 9, of the time.
This disadvantage could be reduced slightly by the provision of special facilities
such as conditional stop orders (which stop the machine only if a manual control is
operated) or slow-motion operation (in which the machine obeys about 10 orders
per second).

Any record of the information obtained in push-button operation must be made
by hand, while the machine is idle; moreover, the operator must decide immediately
which information to record. The task is rendered more difficult by the fact that in
the EDSAC, as in most machines, numbers are displayed on the monitors in a coded
form and must be interpreted by the operator. In addition to consuming time,
this introduces a serious risk of human errors. All these facts make the process an
extremely inefficient one for the checking of programmes. Single-order operation
is a useful facility for the maintenance engineer, but the programmer can only
regard it as a last resort.

It would no doubt be possible to obtain photographically a motre or less complete
record of the contents of the machine throughout the operation of a programme,

The diagnosis of mistakes in programmes on the EDSAC 541

with little reduction in the speed of operation. Such a record would probably
enable any mistake to be traced in a comparatively short time. The equipment,
with its maintenance requirements and large consumption of film, would, however,
be very expensive. It would in fact be a means of high-speed output from the
machine; if it were to be used solely for checking programmes its use would hardly
be justified.

There exists, however, the possibility of obtaining the required information via
the machine’s normal output channel (the teleprinter in the case of the EDSAC).
This can be done without any alteration whatever to the machine, and, moreover,
it utilizes the machine at a speed limited only by the teleprinter. Itisnot practicable
to print as much information as is often desirable, and the type of information to
be printed must be chosen according to the circumstances. However, this method
is much faster than following the calculation by eye, and it has the great advantage
of providing an immediately legible and intelligible record, which can, moreover,
be taken away from the machine and studied at leisure.

One way of obtaining such a record is to insert into the machine, after the
operation of the original programme has stopped, a second programme causing the
teleprinter to print the contents of relevant parts of the store. This method has
come to be known as the ‘post-mortem’ technique. It gives the programmer
a static picture of the machine, which may have been stopped in order to apply
the check, or may have stopped automatically on encountering a meaningless order.
Such a check may be useful when investigating either order failures or numerical
failures. Routines which print information from the store are simple in design,
and will not be described here. Tapes carrying such routines are kept available near
the EDSAC, for use as and when required.

Alternatively, the original programme may be modified in such a way as to
cause the printing of suitable information, and the modified form presented to the
machine in place of the original. It will be shown that valuable results may be
obtained by modifications which are not extensive or difficult to make. This
method is more commonly useful than the post-mortem technique, since it can
provide information relating to successive stages in the operation of the original
programme. A simple example of this procedure is the alteration of a programme
to cause the printing of a funetion at smaller intervals than are ultimately
required, the additional values serving purely as checks. This may assist in
locating a numerical failure. An order failure may be investigated by inserting,
at suitable points in the programme, extra print orders to cause the printing of
distinctive symbols. For example, a convenient system is to place such a print
order at the head of each sub-routine. This procedure may be difficult to adopt
after a programme has been made up, and is more often used as an anticipatory
measure, being incorporated in the original programme and later removed (since
it is much easier to remove orders from a programme than to insert them). The
insertion of the print orders can in many cases be carried out by a special form of
assembly routine. (An assembly routine is one which may be used to organize the
input .of a whole programme, marshalling the various sub-routines in suitable
places in the store, and making the necessary adjustments in the orders. The

542 S. Gill

method of inserting extra print orders was originated by M. V. Wilkes, who also
constructed the first assembly routine.)

Methods like the foregoing are too limited in scope to deal with many of the
questions that arise. In such cases a considerable modification of, or addition to,
the original programme is necessary. It has been found possible to construct
general sub-routines which incorporate all these modifications and additions, and
which can be applied to any original programme in order to provide certain
standard types of information. Such sub-routines are called checking routines.

3. PRINCIPLES OF CHECKING ROUTINES

There are at present seven checking routines in the EDSAC library. These have
been so designed that they can be applied in as simple a manner as possible, and
with the least modification of the programme to be checked ; in general, it is merely
necessary to change a few symbols at the end of the original programme tape, and
to add the checking routine. This simplicity of use, important for any sub-routine,
is doubly important for a checking routine because a mistake that is made in the
application of a checking routine might lead the programmer into even worse
difficulties than those he is trying to resolve.

A checking routine can of course only be used if room is available to accom-
modate it in the store. This limitation is not so great as may at first appear.
Comparatively few programmes require so much storage space that an extra sub-
routine cannot be added, and such programmes are always composed of sub-routines
which can be tested individually. Moreover, as will be explained later, it is usually
possible to put a checking routine in place of the print routine in the original
programme.

There are two distinet techniques upon which checking routines can be based.
In the simplest of these a single order, known as a blocking order, is inserted into
the original programme. The blocking order is an K order (see appendix 1), which
when obeyed causes control to be transferred to the checking routine. The latter
then prints some selected information about the state of the calculation, and
returns control to the original programme at the order immediately following the
blocking order. Thus if the blocking order is situated in a cycle in the original pro-
gramme, the checking routine will be called into operation once each time the cycle
operates. The technique is suitable for investigating numerical failures, particularly
in studying the convergence of an iterative process, but is of little value for checking
the order sequence.

The second technique will be referred to as the ‘step-by-step’ technique. In this,
the control unit of the machine never obeys any of the orders of the original
programme directly. The machine remains under the control of the checking
routine, which is so constructed that the orders of the original programme are
examined one by one, and carried out in exactly the same manner and sequence as
if they were being obeyed directly. If this were all that the checking routine
accomplished, it would be merely a means of carrying out machine operations in
slow motion—slowed down, in fact, by a factor of the order of 10. The reason for

The diagnosis of mustakes tn programmes on the EDSAC 543

adopting this type of operation is that it is now open to the author of the checking
routine to insert additional orders into it, causing it to print useful information as
it proceeds. This information may be chosen so as to assist in the investigation of
either order or numerical failures. :

In some checking routines these two techniques are combined: a blocking order
is planted, and the original programme allowed to operate directly until it
encounters this order. This switches control to the checking routine, which then
continues the calculation by the step-by-step process.

The actual forms taken by checking routines must depend to a great extent on
the design of the machine, both on its logical plan and on the output organs
available. The design of the EDSAC has made possible some very useful forms,
which have played a large part in facilitating the use of the machine. These are
described in the following sections.

4. EXAMPLE OF BLOCKING ORDER TECHNIQUE

The simplest checking routine in the EDSAC library employs the blocking order
technique alone. It is known as C'1, and its purpose is to print the number standing
in a given location in the store, whenever the blocking order is obeyed.

The use of a blocking order in a programme for the EDSAC is attended by some
difficulties which must now be discussed. First, in the order code of the EDSAC
there is no order which causes a transfer of control unconditionally; there are only
the £ and G orders (see appendix 1), which transfer control if the number in the
accumulator is non-negative and negative respectively. If, therefore, the sign of
the number in the accumulator were unknown, it would be necessary to use two
blocking orders, an E order and a G order, to ensure transfer. If, however, we
restrict the blocking order to a point at which the number in the accumulator is
known to be non-negative, only an ¥ order is required. A further advantage is
gained by restricting the number in the accumulator to zero, for the following
reason. The accumulator is required for use by the checking routine; if it isnot empty
its contents must be stored somewhere until the checking routine has finished its
work. The storing, and subsequent recovery, of the entire contents of the accumulator
is a rather lengthy operation for the EDSAC, and is avoided by the stipulation that
the accumulator shall contain zero.

The blocking order may be inserted either in place of one of the orders of the
original programme, or between two such orders. In the latter case some rearrange-
ment of the original programme would be necessary to make room for the blocking
order; this might involve alterations to many other orders, a tedious and error-
provoking task. The former method is therefore adopted. In order that the
operation of the original programme shall be unaffected, it is necessary to reproduce
in another part of the store the order which is replaced by the blocking order, so
that the original order may be carried out after the checking routine-has operated,
and before control is returned to the original programme. C'1 itself carries out these
preparatory operations, before directing control to the entry point of the original
programme; the programmer merely has to specify where the blocking order is to
be placed.

544 S. Gill

In addition to the condition that the accumulator shall be empty when the
blocking order is obeyed, the programmer must also observe that the order which
is to be replaced by the blocking order must not be an order which is altered during
the operation of the programme, or which is taken into the arithmetical unit. If
the second condition is not satisfied, then when checking, the blocking order will
be either destroyed or used in the arithmetical unit in place of the original order,
and the programme will fail. In practice these restrictions do not seriously limit
the application. of C'1. There are frequent points throughout any programme at
which the accumulator is known to be empty, and comparatively few orders are
altered or used arithmetically. However, there does exist a danger of C'1 being
misapplied and yielding erroneous results.

The routine occupies a total of 44 storage locations. The check numbers are
printed to 11 decimal places, preceded by a sign, in a single column at the left-hand
side of the sheet. Numbers printed by the original programme normally appear
to the right-hand side of the previous check number. Preset parameters* are used
to specify the location whose content is printed, the position of the blocking order,
and the position of entry into the original programme.

The actual orders of C'1 are given in appendix 2.

5. BXAMPLE OF STEP-BY-STEP TECHNIQUE

Routine €11 forms the basis of all the step-by-step routines in the EDSAC
library, and will therefore be treated in some detail. The purpose of this routine
is to print the function letterst of the orders in the original programme in the
sequence in which they would be obeyed. This information is valuable when
investigating an order failure.

C'11 occupies 32 storage locations. Its speed of operation is determined almost
entirely by the teleprinter, and it examines about five orders of the original
programme per second. Difficulties arise when print orders in the original programme
are encountered (see appendix 3, note 5).

The letters are normally printed in line across the page; a new line of printing is
started whenever a transfer of control occurs. Thus each line of printing corresponds
to a sequence of orders in consecutive locations. This fact assists the programmer in
identifying the orders which have been obeyed, and in practice it is very rare for
any ambiguity to arise. An earlier routine indicated the sequence in which orders
were obeyed by printing the actual locations to which and from which each transfer
of control occurred, thus removing all ambiguity. It was found, however, that the
information provided by C11 was more useful to the programmer, for when
a programme is drawn up its orders are usually numbered only with respect to the
beginning of the routine to which they belong, and their absolute positions can only
be deduced by performing an addition, whereas their function letters remain
invariant. Moreover, C'11 is a much simpler routine as it involves no binary-to-
decimal conversion.

* See Wheeler (1950, §6).
t For example, 4 for add, S for subtract, etc. See appendix 1.

The diagnosis of mistakes in programmes on the EDSAC 545

The manner in which C'11 operates is best explained by means of a flow diagram
(see figure 1). The functions of the components of this djagram will now be
described.

I. Select next order. The ‘current order’, that is, the order in the original pro-
gramme which is to be examined, is taken into the checking routine via the
accumulator. The order in I which extracts the current order from the store is
called the ‘select order’.

II. Print function letter. The function digits of the current order are read out to
the teleprinter from the checking routine.

V. Carry out current order. The current order is obeyed, bemg read by the control
unit from the checking routine, not from the original programme.

VIIL. Advance address in select order. Since orders are normally obeyed in serial
sequence, it is necessary to arrange that the next order to be examined shall be
extracted from the following location in the store. This requires that the address
specified in the select order shall be increased by 1

1. Select . II. Print - II1. Test for
next order function letter transfer of control]

No
\ , Transfer / transfer

IX. Form new

\ X. New line ~< select order [
VIII. Advance IV. Restore top
address of accumulator
in select order
VII. Store sign VI. Store top V. Carry out
of accumulator of accumulator current order

Ficure 1.

IIT. Test for tramsfer of control. If the current order is such as to cause a transfer
of control, it must not be obeyed, because that would direct control to the original
programme and the checking routine would no longer operate. Control must
therefore be switched to IX and X.

IX. Form mew select order. The new select order, after a transfer of control, must
specify the address to which control is transferred, that is, the address specified in
the last current order.

X. New line. Suitable instructions are sent to the teleprinter.

VI. Store top of accumulator. Most of the above operations require the use of the
accumulator, which must therefore be cleared after each current order has been

546 S. Gill

obeyed. In fact it is only necessary to clear the 17 most significant binary digits.
These must be stored elsewhere, while the above operations are carried out.

IV. Restore top of accumulator. Before each current order is obeyed, the accumu-
lator must be restored to the exact state which it occupied immediately after
obeying the previous current order.

VIIL. Store sign of accwmulator. In III, the criterion for transfer of control
involves the sign of the number in the accumulator, that is, the number which was
in the accumulator after obeying the last current order. This sign could be obtained
from the 17 digits stored by VI, but it is convenient to record the sign separately
in a suitable coded form, ready for use in III.

Appendix 3 contains the orders of C'11, with an example of its application.

6. MORE ELABORATE CHECKING ROUTINES

C11 suffers from two disadvantages. First, it may fail when it encounters
printing orders in the original programme. Secondly, if information is only
required concerning a small part of the original programme, time is wasted in
checking through other parts which are known to be correct.

The first disadvantage could be overcome by causing the routine to react in
a special way to O and F orders (see appendix 1), besides transfers of control, in
the original programme. However, it is rarely necessary to check print routines,
which can usually be taken from the library. The best course is therefore to remove
the printing orders from the original programme. Usually all the printing in
a programme is carried out within a single closed sub-routine, which can be put
out of action without affecting the progress of the calculation. To do this it is
merely necessary to replace the print routine in the store by a short sub-routine,
usually known as a ‘dummy print routine’, which does nothing but return control
to the master routine (otherwise called the main programme). ~

A dummy print routine consists of very few orders, so that most of the storage
space originally occupied by the print routine is now vacant. This space can be used
to store the checking routine. In fact, the dummy print routine and the checking
routine can be provided together on the same length of tape. This procedure is
adopted in C'12, which like C'11 prints the function letters of orders as they are
obeyed. C'12 has one other distinguishing feature: it employs a blocking order to
provide a delayed start of checking. The original programme operates at full speed
until the blocking order is obeyed for the nth time. The blocking order is then
replaced by the order originally in that position, and checking commences, function
letters being printed. The number % and the position of the blocking order must be
specified by preset parameters. The whole routine occupies 40 locations.

There are two other checking routines, C'7 and C'9, which check the order
sequence by printing function letters. C7 is so constructed that, although it
examines every order of the original programme in turn, it only prints the function
letter in certain cases, namely, if the order is drawn from certain regions of the
store, specified in advance. The user can therefore specify the regions containing
those orders whose operation he wishes to check. Other parts of the programme

The dvagnosis of mistakes in programmes on the EDSAC 547

are worked through by the checking routine at a higher speed, since no printing
is involved.

When using C'7, the store may be divided into four regions, orders in two of
which have their function letters printed. The regions are specified by preset
parameters. The speed of operation is about 5 orders per second when printing
function letters, and about 30 orders per second when not printing. Print routines
in the original programme must be arranged to lie in regions from which function
letters are not printed. Characters printed by such routines appear as figures.
A new line of printing is commenced at each transfer of control; a clear line is left
where orders have been obeyed silently, unless such orders themselves cause
printing to appear on this line. The routine C'7 occupies 61 locations.

C9 is used when the orders to be examined are all within the master routine.
It provides for a cessation of checking whenever a closed sub-routine is encountered.
By convention, closed sub-routines in the EDSAC are always called into operation
in a certain distinctive way;* C'9 recognizes such an event and takes appropriate
action. This action results in the sub-routine being obeyed at full speed. The fact
that the sub-routine has been obeyed is indicated by printing the letter @; checking
then recommences. The process is arranged so that sub-routines with one pro-
gramme parameter operate correctly, but C'9 must not be applied to programmes
containing sub-routines which have more than one programme parameter.
A blocking order is used to provide a delayed start of checking.

C8 and C10 employ the step-by-step technique to provide numerical checks.
The principal difficulty in devising a numerical checking routine lies in arranging
for the routine to provide sufficient useful information, without using a large
number of preset parameters to specify what information is required. C'1 is very
limited in scope; it only checks the content of one storage register at one point in
the programme. To extend this method many preset parameters would be required,
to specify the positions of several blocking orders, or several registers whose
contents were required to be known.

Instead, C'8 and C'10 provide systematic checks, throughout the calculation, of
quantities that are most likely to be useful to a programmer. They print the
number that is transferred from the accumulator by each 7' order (see appendix 1).
Except during input and output, every number in the store is first formed in the
accumulator, so that the numerical progress of a calculation can be followed if
the behaviour of the accumulator is known. Furthermore, the only order in the
EDSAC code which clears the accumulator is the 7' order, so that normally any
error in the content of the accumulator persists until the next 7' order is obeyed.
This system of checking is therefore the most generally useful, and since the
accumulator is known to be empty after a 7' order, its content does not have to be
stored during printing.

The checking routine must examine every order of the original programme to
detect 7' orders, and therefore the step-by-step technique must be employed.
C'8 and C'10 are similar, except that C'10 ceases checking during the operation of
closed sub-routines, and '8 only prints when it encounters 7' orders referring to

* See Wheeler (1950, §9).

548 S. Gill

addresses less than a specified number. Usually orders are placed in the upper part
of the store and numbers at the lower end, and therefore the latter provision
enables the user to cut out checks on those parts of the calculation which are con-
cerned purely with such things as counting and the alteration of orders. Both
routines incorporate a dummy print routine, and use a blocking order to provide
a delayed start. As an example, some details of '10 are given below. .

T'itle. Numerical check with delayed start, dummy print routine, and suppression
of check during closed sub-routines.

Description. May be applied to a programme to print C'(4cc) before obeying
T orders. May not be applied to programmes containing sub-routines with more
than one programme parameter. '

Notes. (1) When inserted into the store, C'10 is split into two parts. One occupies
37 locations, the first of which must bear an even address. The other occupies
51 locations; it includes the dummy print routine, and may therefore be put in
place of a print routine in the original programme. (The reason for splitting C'10
is that the whole routine cannot be accommodated in the space normally occupied
by a print routine.) i

(2) A new line of printing is commenced at each transfer of control. A blank line
is left when a sub-routine is encountered.

(3) Checking commences the first time the blocking order is encountered.

(4) The number of digits to be printed, the location of the second part of C'10,
and the location of the blocking order, are specified by preset parameters.

The author is indebted to D. J. Wheeler, who contributed many useful suggestions
and was in particular responsible for the development of routines C'8, C9, C'10, and
the ‘post-mortem’ test, and also to A. Glennie and K. N. Dodd, who assisted in the
preparation of some of the routines. The author also wishes to acknowledge the
award of a Maintenance Allowance by the Department of Scientific and Industrial
Research.

ApPENDIX 1

The EDSAC order code

An Add the number in storage location » into the accumulator.

S n Subtract the number in storage location n from the accumulator.

Hn Copy the number in storage location n into the multiplier register.

V n Multiply the number in storage location » by the number in the
multiplier register and add the product into the accumulator.

Nn Multiply the number in storage location n by the number in the
multiplier register and subtract the product from the accumulator.

T n Transfer the contents of the accumulator to storage location » and
clear the accumulator.

Un Transfer the contents of the accumulator to storage location n and do

not clear the accumulator.

The diagnosis of mistakes in programmes on the EDSAC 549

Cn Collate the number in storage location n with the number in the
multiplier register and add the result into the accumulator; that is,
add a ‘1’ into the accumulator in digital positions where both
numbers have a ‘1’°, and a ‘0’ in other digital positions.

R D* Shift the number in the accumulator 1 place to the right; that is,
multiply by 2-1. :

R 2v-2F1 Shift the number in the accumulator p places to the right; that is,
multiply by 22 (2<p<12).

R F Shift the number in the accumulator 15 places to the right; that is,
multiply by 2-15.
L D* - Shift the number in the accumulator 1 place to the left; that is,

multiply by 2.
L 2v-2F+ Shift the number in the accumulator p places to the left; that is,
multiply by 27 (2<p<12).

L F Shift the number in the accumulator 13 places to the left; that is,
multiply by 213,
EanrF If the number in the accumulator is greater than or equal to zero,

transfer control to », i.e. execute next the order which stands in
storage location n; otherwise proceed serially.

GnF If the number in the accumulator is less than zero, transfer control
to m; otherwise proceed serially.

In Read the next row of holes on the input tape and place the resulting
integer, multiplied by 2-16, in storage location n.

0 n Print the character now set up on the teleprinter and set up on the

teleprinter the character represented by the five most significant
digits in storage location .

Fn Place the five digits which represent the character next to be printed
by the teleprinter in the five most significant places in storage
location 7, clearing the remainder of this location.

X* Ineffective; machine proceeds to next order (previously used as
a round-off order).

Y Round-off the number in the accumulator to 34 binary digits; that is,
add 273 into the accumulator.

7% Stop the machine.

APPENDIX 2

Library sub-routine C'1
Preset parameters:

code

letter parameter significance
H PhD AD is the location whose content is to be printed
N PnF position of blocking order
M PmVF point of entry into original programme

The first order of C'1 must be placed in an even-numbered location.

* The addresses in these orders need not be zero.
1 The addresses in these orders may be k.27-2, where k is odd, provided that the addresses
do not exceed 2047.

Vo'. 206. A. 36

550

location with
respect to
first order

© 00T U WO

et
L=}

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32

33

34
35

37
39
40
41
42

43

11F
100

2 w0

S. Gill

notes
control combination
(1) fig. shift)
(i) C(n) to 41

(i) work space

(ii) store C(R)

(i) plant blocking order (ii) count digits
enter original programme

blocking order

= 10/16

line feed = —1/2
space

carriage return
+

number of digits
carriage return

store C(R)
line feed

10/16 to multiplier register
C(hD) to accumulator

test sign
print ‘=’
change sign negative
print ‘4’ positive

set digit count

digit print cycle

gpace
restore C(R)
order from %

return to n+1

The diagnosis of mistakes in programmes on the EDSAC 551

Notes

(1) The following notation is employed:

Transfers of control are indicated on the left of the page by means of arrows
opposite the order to which the transfer occurs.

Unconditional transfers: a horizontal line is shown underneath every K or ¢
order which is intended to produce a transfer of control each time it is encountered.

Pseudo-orders, namely, entries which are written as orders but which are intended
never to be obeyed as orders, are indicated by vertical lines immediately to their
left.

Variable orders, i.e. orders and pseudo-orders which are to be changed during
the course of the calculation, are shown in brackets.

The content of storage location » is written C(n), and that of the multiplier
register C(R). The long location % is now referred to as AD, not A’ as in the paper
by Wheeler (1950).

(2) The multiplier register is used by the checking routine in performing the
binary-to-decimal conversion for printing. While this is being carried out, the
number originally held in the multiplier register must be stored elsewhere in
the machine: positions 2 and 3 of C'1 are used.

(3) All working space, including space for the storage of C(R), must be within
C1 itself, to avoid interfering with numbers required by the original programme.

(4) When the original order in location #» is copied by C'1 it is copied into a
position at the end of C'1, so that it will be obeyed at the appropriate time. After
it has been obeyed, control must be returned to the original programme by means
of an ¥ order and a G order, since the state of the accumulator is unknown.

36-2

552 S. Gill

APPENDIX 3

Library sub-routine C11
location with

respect to
first order " order notes
G K control combination
0 (P) storage for sign of C(4
1 (P F) stor&;gre for C(gA) ()} (note 2)
2 7 F
i j ? ; B }ﬁ constants
5 Q r =+1/16
18— 6 A 40 form new select order (note 4) IX
7 0 20 teleprinter carriage return} X
8 0 30 teleprinter line feed
31— 1?) g }} z } place select order} {;;I(H
11 (Z F) select order \[
12 U 22 0 place current order |
Enter - 13 (0] 22 0 print function letter (note 6) 1T
14 S 14 3/16 <x<4/16 1
15 A 40 —-1/16<2<0
16 E 190 / (note 4) 1y
17 A 50 0<z<1/16
18 B 60
16 - ;(9) g z } clear top 17 digits of accumulatorl v
21 A 160 restore C(4)
22 (K 3000 F) current order (note 6) V
23 U 10 store O(A) VI
24 E 26 0 test sign of C(4)
25 A 30 add —1/2if C(4)<0]
24 — 26 S 10 subtract C(A) VII
27 U 0 .
28 S 0 } store sign of C(4) (note 2) [
29 A 1160 select order to accumulatorl
30 A 2 F add unity to address VIII
31 ¢ 90 |
VA 13 7

Followed on tape by
EmF punched by user

When this has been read, control is switched to order 13 of this routine, with

E m F in the accumulator.
Notes

(1) The notation described in appendix 2, note 1, is used.

(2) Asin C1, all working space must lie within the routine itself. This includes a
location for the storage of the 17 digits, referred to as C'(4), which would be at the
top (most significant end) of the accumulator if the original programme were
operating directly, and also a location for recording separately the sign of C(4).
The latter is coded thus: 0 if 0(4)>0; —1/2 if C(4)<O.

(3) The whole of the accumulator, except the top 17 digits, must remain
undisturbed from the obeying of one current order to that of the next. Hence

The diagnosis of mistakes in programmes on the EDSAC 553

a T order cannot be used in C'11, as this would clear the whole accumulator. When
it is necessary to clear the top 17 digits (as at orders 10, 20 and 28) an S order
following a U order is used, so that these digits are subtracted from themselves.

(4) Operation III to test for a transfer of control is carried out as follows. The
numerical value of the function letter E is 3/16, so that with the address part
added, an E order is numerically equal to a number in the range 3/16 <x < 4/16.
Similarly a G order lies in the range —5/16<x < —4/16. Consideration of the
effect of E and G orders (appendix 1) shows that by adding 1/2 to any order if, and
only if, the accumulator contains a negative number, then the necessary and
sufficient condition for a transfer of control can be stated thus: that the modified
order shall lie in the range 3/16 <x < 4/16.

The current order is placed in the accumulator by the select order, and remains
there until order 14 is obeyed; this modifies the current order as above. The
remainder of the test merely determines whether x lies in the necessary range.
Opposite orders 14, 15 and 17 are shown the conditions satisfied by the number in
the accumulator at each stage if transfer is to occur. It will be seen that control is
switched to order 6 under these conditions.

On arriving at order 6, the function digits of the order have been reduced to
zero, but the address part has not been changed. To form the new select order it is
therefore only necessary to insert the function letter A.

(5) There are two ways in which C'11 may fail if printing ordered by the original
programme is encountered. If an output order in the original programme shifts
the teleprinter to print figures, all subsequent function letters will appear as their
figure equivalents in the teleprinter code. Also if the original programme contains
an F order (appendix 1) this order will place in the store, when C11 is used, not
the symbol last set up on the teleprinter by the original programme, but the last
symbol set up on the teleprinter, which is ¥ (set up by order 13 of C'11).

(6) The first time that order 13 is obeyed it prints not a function letter, but
a symbol that is initially placed in position 22 to set the teleprinter on letter-shift.
Then C11 proceeds as though it had just selected the order £ m F': it sets the tele-
printer to begin a new line, and puts 4 m F in the select order position, so that the
first current order is drawn from position m.

As an illustration, the effect of applying C'11 to the initial orders will be shown.
This is not a practical example, since the initial orders are fixed and their correct-
ness established. However, they afford an excellent example of the possible
complexity of a programme, and have already been described in detail by Wheeler
(1950); appendix III to that paper gives the present initial orders in full, and may
be referred to in following this example.

The initial orders will be examined in the process of reading a tape which is
punched as follows:

T 60 K
G K
A 8 nf
T 310 D

ete.

554 S. Gill

In order to carry out this example, C'11 would first have to be placed in the store
and then directed to examine the initial orders, starting at a suitable point, say
order 34, If C'11 is placed in locations from 100 onwards, the complete tape would

consist of
T 100 K

sub-routine C'11
E 34 F

followed by the symbols to be read during the test.

Below is shown the result. Only the letters on the left are actually produced by
the machine, the other columns being given for the guidance of the reader, but it
will be seen that the letters themselves are in fact sufficient to show the course of
the programme. The time required, including tape input, to obtain the results
shown is less than a minute.

positions of symbols read
symbols printed by corresponding from tape by
teleprinter orders I order

IARTE 34 to 38 T
TIASG 8 to 12 6
ARVLTIASG . 4to 12 0
ARVLTIASGLSESATAE 4 to 20 K
AE 30 to 31

TE 25 to 26

ITARTE 34 to 38 G
TIASGLSESATAE 8 to 20 K
ABATIARTE 30 to 38 A
TIASG 8 to 12 8
ARVLTIASGLSESATAE 4 to 20 T
AE 27 to 28

TIASGLSE 8 to 15 7
ATAAATAATE 17 to 26

IARTE 34 to 38 T
TIASG 8 to 12 3
ARVLTIASG 4 to 12 1
ARVLTIASG 4 to 12 0
ARVLTIASGLSE 4 to 15 D
ATAAATAATE 17 to 26

ete.
REFERENCES

Wheeler, D. J. 1950 Proc. Roy. Soc. A, 202, 573.

Wilkes, M. V. 1949 J. Sci. Instrum. 26, 217.

Wilkes, M. V. 1950 Appl. Sci. Res. B1, 429.

Wilkes, M. V. & Renwick, W. 1949 J. Sci. Instrum. 26, 385.

Wilkes, M. V. & Renwick, W. 1950 M.T.4.C. 4, 61.

Wilkes, M. V., Wheeler, D. J. & Gill, 8. 1951 The preparation of programs for an electronic
digital computer, with special reference to the EDSAC and the use of a library of subroutines.
Cambridge, Mass: Addison-Wesley Press Inc.

