
Version 1 Simple, Understandable, Reliable, Efficient

The SURE Architecture
David May: December 11, 2016

Background

Computer programming is changing. Object-oriented languages, functional lan-
guages and others have accelerated software development. But these languages
rely on automatic memory management which imposes high overheads when im-
plemented on conventional computer architectures. It seems timely to investigate
whether a change in architecture is now needed - similar to the shift from CISC to
RISC in the 1980s in response to the shift from assembly programming to high-
level languages.

Along with the change in programming languages, there has been a change in
computer systems and their applications. Increasingly, computers are commu-
nicating with each other and with users, or they are interacting with a physical
environment. This gives rise to a need for trust, achieved via an appropriate com-
bination of simplicity, verification, testing and error containment. Again, it seems
timely to investigate whether a change in architecture is needed.

An experimental architecture

The architecture described here employs a novel technique for allocating memory;
a hardware garbage collector is embedded in the processor sharing memory cycles
with the processor. The garbage collector runs continually and is normally fast
enough to retrieve unused memory space as fast as new space is allocated.

It also checks that memory accesses are valid; dangling pointers and buffer over-
flows are detected by hardware. An address consists of two parts. One specifies
a memory region; the other specifies a location within the region. For a mem-
ory access operation, the processor checks that one operand is an address and the
other is a value to be used as an offset. It also checks that the offset specified in a
memory access instruction lies within the region specified by the address operand.

The principles can be used in conjunction with any processor architecture; it
would be simple to create an Intel, ARM, MIPS, SPARC or RISC-V processor
including the memory management system described here. There would be a
small cost in the hardware needed for the garbage collector; for a 32-bit archi-
tecture it needs about 400kbytes of high-speed memory for the garbage collector
data-structures and about 3% more main memory.

David May: December 11, 2016 1



Version 1 Simple, Understandable, Reliable, Efficient

It is also practical to implement a memory subsystem incorporating these princi-
ples, with one or more processors sharing access to it.

The principles are also compatible with most modern programming languages.
They would provide more efficient implementations along with checks for mem-
ory errors. Buffer overflows and dangling pointers are detected by hardware.

The architecture has the potential to save energy. Along with a reducing the oper-
ations needed for memory allocation, the garbage collector creates a single region
of unused memory which can be powered down.

Memory allocation

Memory is allocated in tuples. A GETM instruction allocates a new tuple contain-
ing n words numbered from 0 to n − 1, and produces a pointer to word 0 of the
tuple. A pointer differs from a data value. Every word in memory contains infor-
mation to specify whether it holds a pointer value or a data value. The processor
registers also contain information to specify whether they hold a pointer value or
a data value; registers such as a program counter pc or a stack pointer sp always
hold pointer values.

Each instruction checks to ensure that the register contents are appropriate for the
operation it performs. For example, an instruction to load a word from memory
must have a pointer operand. The memory access instructions that use a pointer to
a tuple along with an offset check that the specified location falls within the tuple.

When a tuple is no longer needed, the memory space it occupies is recovered
automatically by a garbage collector implemented by hardware in the processor.
The garbage collector runs continually; each cycle of the garbage collector marks
all of the tuples in use, then copies them all towards the bottom of the memory,
recovering space occupied by the tuples no longer in use. Newly created tuples
occupy space above the existing tuples, at an address held in a register heappoint.

To support the memory allocation and garbage collection, a tuple directory is
used. Each tuple has a corresponding entry in the directory which contains the
address of the tuple in memory and the number of words in the tuple. It also has
space to hold the address of another tuple which is used to form a list of unused
directory entries (and is also used by the garbage collector). When a memory
access is performed using a pointer, the most significant bits of the pointer are
used as a handle to address a directory entry. This provides the memory address
of word 0 of the tuple; the least significant bits of the pointer determine the offset
of the word to be accessed. A check is made to ensure that the offset is less than
the size of the tuple.

David May: December 11, 2016 2



Version 1 Simple, Understandable, Reliable, Efficient

Each tuple in memory has a control word which contains the handle of the direc-
tory entry corresponding to the tuple. It can also be used to hold a small value to
indicate, for example, the type of the tuple. This is known as a tag.

The garbage collector is implemented as a state machine. Each state transition per-
forms at most one memory access. The state transitions are normally performed
when the memory is not required for instruction fetch or instruction execution. If
the memory or the directory is full, instruction execution stops until the garbage
collector completes its current cycle.

Addresses and the Directory

Each word w in memory or in a register holds a pointer value or a data value wvalue

and a flag wptr which is true if w is a pointer, false otherwise. If w is a pointer,
then wvalue has two components:

whandle identifies a directory entry of a tuple
woffset identifies an address within a tuple

The handle is represented by the upper half of the word, the offset by the lower
half.

Each directory entry d of a tuple has four components:

daddr the address of the tuple in memory
dsize the size of the tuple (in words)
dmark the marking flag for garbage collection
ddeep a flag to indicate whether the tuple contains pointers

For a 32-bit wordlength, there will be up to 65536 tuples each of size up to 65536
bytes and the directory will have 65536 entries each with 48 bits (only 14 are
needed for the length).

The Garbage Collector - Marking

The marking process uses two lists, current and next. The current list contains
tuples that have been marked but which need to be scanned to determine if they
contain pointers to other tuples that must be marked. Tuples are taken from the
current list and their contents are examined; when a pointer is found, the corre-
sponding tuple is marked and added to the next list. When the current list is
empty, normally the next list wlll contain new tuples to be scanned; the next
list replaces the current list and scanning continues. If the next list is empty
when the current list becomes empty, the marking is complete and the garbage
collector will move to the sweeping process.

David May: December 11, 2016 3



Version 1 Simple, Understandable, Reliable, Efficient

During the marking process, it is possible that new tuples will be created; these are
added to the next list. This also occurs whenever a tuple is assigned to a location
in another tuple.

It is common for there to be tuples which contain data but no pointers. Each
directory entry has an additional deep marker. This is cleared when a tuple is
created and is only set when a pointer is assigned to a location in the tuple. It is
used to prevent unnecessary scanning during the marking process.

As the marking proceeds, a record livesize is kept of the total amount of space
that will be used by tuples that have been marked and that will be retained; this is
used to optimise the sweeping process.

The Garbage Collector - Sweeping

The sweeping process accesses all of the locations in memory up to the heappoint.
It uses two address registers, src and dest to copy each tuple from its current
location to its final location. It uses the control word of each tuple to access the
tuple’s handle. This enables it to determine the size of the tuple and whether the
tuple is marked. If the tuple is marked it is copied one word at a time from src
to dest. This copying step is omitted if src and dest are equal; this occurs if all
tuples up to the current value of src have been retained.

The marking process can only operate correctly if newly created tuples are ini-
tialised so that their components are data (not pointer) values. This means that
when marked tuples are moved, the locations they move from must be re-initialised.
However, there is no need to do this if a tuple (or a tuple component) is moved
from a location that will be occupied by other tuples moved during the sweeping
process. This is controlled by comparing the source addresses against livesize.
Similary, the locations occupied by unmarked tuples must be re-initialised unless
they will be occupied by tuples moved during the sweeping process.

The sweeping process terminates when the src address matches the heappoint.
Additional tuples may be created during the sweeping process; these will be
marked as they are created so that they will be copied. When the sweeping process
terminates, the heappoint is set to the dest address.

Memory allocation and access

Memory for a tuple is allocated using one of the GETM instructions. This allo-
cates a handle from the list of free handles and also allocates memory for the tuple
at the heappoint. The control word of the new tuple is set and the tuple is marked.

The garbage collector operates at the same time that the processor is performing

David May: December 11, 2016 4



Version 1 Simple, Understandable, Reliable, Efficient

memory accesses. It is therefore possible that a tuple is being moved during the
sweeping process when the processor attempts to read or write locations within it.
This is detected by the hardware and the read or write access is made to the actual
location of the data.

When writing a pointer to memory during the marking process, the tuple ad-
dressed by the pointer must be marked and added to the next list. Otherwise
it would be possible for a tuple to remain unmarked because the pointer to it is
moved by the executing program from a tuple that has not yet been marked into
one that has already been marked. Also, if a pointer is written to a location in
a tuple, the tuple must be marked by setting its deep indicator to ensure that its
contents are scanned during the marking process.

An experimental processor

The memory allocation system described above has been tested using a simple
processor in conjunction with a simple programming language and self-hosting
compiler. The initial results of this suggest that in many practical situations, the
garbage collector will be able to retrieve unused memory space as fast as new
space is allocated.

David May: December 11, 2016 5


