TRANSPUTER SPECIFICATION

CONTENTS
1 Transputer Instruction Set

2 Memory Configuration
3 Check, Reset and Analyse

Microcomputer Division -1- Confidential

Issue 14

TRANSPUTER INSTRUCTION SET

1 Notation

In this document the notation used is that of occam, with
the assumption that the variables are infinite-bit two's
complement integers.

Any particular processor is assumed to have a finite word
length, each register in the processor holding the value of
the corresponding variable in the following desceription. . It
is +therefore natural to interpret a word as a fixed length
twos—complement integer. Before and after execution of any
instruction, the numerical value taken by each variable is
correctly representable in the corresponding single word
register. : -

The following constants are used in the description " of the
machine.

BitsInWord The number of bits a machine word.
Range The number of distinct values storeable in
a word.

(Range = 2**BitsInWord).

MaxInt The largest (most positive) value
representable in a word.
(MaxInt = (Range/2) - 1).

MinInt The smallest (most negative) value

representable in a word.
(MinInt = -(Range/2)).

Microcomputer Division -2- Confidential Issue 14

The following three procedures are used. They do not affect
the value held in a processor register; only the value of
the corresponding variable. Consequently, they are used in
the following description to change the interpretation of
the register value, rather than the value itself.

PROC UnSign(Reg) =
IF
Reg < @
Reg := Reg + Range
TRUE
 SKIP =

PROC Sign(Reg) =
IF
Reg > MaxInt
Reg := Reg - Range
TRUE
SKIP -

The following procedure is used +to produce the value of

(Tl APTER T2) appropriate to the wordlength of the
processor.

PROC Later(Tl, T2, LaterFlag) =
VAR TimeDiff
SEQ
TimeDiff s= TI —~ T2
LaterFlag :=
(((TimeDiff > @) AND (TimeDiff <= MaxInt))
OR ((TimeDiff < @) AND (TimeDiff < (MinInt—l) ¥)

Microcomputer Division =-3- Confidential Issue 14

2 Summary of Registers, Flags and Special Locations

Timer:
ClockReg the current value of the processor clock
TPtrLocd either indicates that the level @ timer is

not 1n ‘use or points teo <fthe first process
) on the level @ timer queue
TNextReg[@] indicates the time of the first event on
the level @ timer queue

TPtrLocl either indicates that the level 1 timer is
not in use or points to the first process
on the level 1 timer queue

TNextRegl1l] indicates the time of the first event on
the level 1 timer queue

Priority @ Queue control:

FptrRegl @] pointer to front of active process list
BptrRegl @] pointer to back of active process list

Priority 1 Queue control:
FptrRegl1l] pointer to front of active process list

BptrRegl1l] pointer to back of active process list

Sequential process execution:

IptrReg pointer to next instruction to be executed
WdescReg process descriptor of the current proces
Areg top of evaluation stack

Breg middle of evaluation stack

Creg bottom of evaluation stack

Oreg operand register

StatusReg contains status information - see below

Initialisation, booting and analysis

MemStart this is the most negative word in store not
used by the machine for any special purpose
(eg as a link-channel process word, register
save word or timer pointer).

Microcomputer Division -4- Confidential Issue 14

2.1 StatusReg

The only assembler programmer visible bit in the StatusReg

is the ErrorFlag; this 1is the most significant bit.: MORE
EXPLAINATION.

Bit Name Purpose

GotoSNP Cause processor to execute StartNextProcess
IOBit

MoveBit

TimeDelBit

TimeInsBit

DistAndInsBit

msb ErrorFlag

Ul wN -

Microcomputer Division -5- Confidential Issue 14

3 Workspace

In the following description, the process descriptor of the
current process 1is also held as two variables Wptr and
Prioerity.

Il

Wptr WdescReg /\ (-2)
Priority = WdescReg /\ 1

Consequently, Wptr always holds a pointer to the current
process workspace, and Priority always holds the priority of
the current process.

For each concurrent process, a number of locations are used
to hold scheduling information. These locations are accessed

using fixed word offsets from the workspace pointer, as
follows:

Iptr:s = =l

Link.s = -2

State.s = =3

Pointer.s = -3

TLink.s = -4

Time.s = -5

4 Special values

The special value taken by a channel location:
NotProcess.p = MinInt

The special values taken by the State location in the
implementation of channel guards are:

Enabling.p = MisnEnt. 4. L
Waiting.p MinInt + 2
Ready.p MinInt + 3

Il

The special values taken by the Tlink location in the
implementation of timer guards are:

TimeSet.p MinInt + 1
TimeNotSet.p MinTnt + 2

The values of true and false are:

MachineTRUE A:
MachineFALSE)

Microcomputer Division -6- Confidential Issue 14

5 Memory Access Procedures

In the description of the processor and instruction the
following memory access procedures are used:

AtWord(Base, N, A) sets A to point at the
Nth word past Base

AtByte(Base, N, A) sets A to point at the
Nth byte past Base

RIndexWord(Base, N, X) sets X to the value of the
Nth word past Base

RIndexByte(Base, N, X) sets X to the value of the
Nth byte past Base o

WIndexWord(Base, N, X) sets the value of the
Nth word past Base to X

WIndexByte(Base, N, X) sets the value of the
Nth byte past Base to X

Memory addresses start from MinInt, the process locations of
the 1links and the event channel occupying the first few
locations in memory. The number of process locations used
for the links and the event pin is:

LinkChans

Other very negative addresses are wused for the following
special purposes

Save region - stores the state of an
interrupted process
Timer pointer registers - store pointers to the first

process in the timer queue
An address is a single word value divided into two parts:

a word address
a byte selector

The byte selector occupies the least significant bits in the
word. The number of bits wused for the byte selector is
BsellLength, where

Il

BselLengthTab PABEE L8 By Ya 2,25 8 B3i 3 3.1
BselLength = BselLengthTab I BitsInWord / 8]

Microcomputer Division -7- Confidential Issue 14

6 Processor and Link-Channel interactions

6.1 Overview and terminology

The 1link-channels operate concurrently with, and are
controlled by, the processor.

When a process executes an 'output message' instruction
which specifies a link-channel the processor must cause the
link-channel to transfer the specified message from the
transputer's memory. To do this, the processor makes a
'PerformIO' request on the link-channel. This request
specifies a pointer to the message, the length of the
message and the priority of the process. When the message
has been transferred, the link channel signals the processor
with a 'RunRequest'. This will cause the processor to run
the process which output the message.

When a process excutes an 'input message' instruction the
interactions Dbetween the processor and an input link are
similar. The processor makes a 'PerformIO' request as before
and when the message has been transferred, the link channel
signals the processor with a 'RunRequest' as before.

When a process refers to an input link-channel in a guard of
an alternative construct the processor makes use of two
further requests on the link-channel.

The first of these, called an 'Enable' request, specifies
the priority of the process performing the alternative and
'enables' the link-channel. When an 'enabled' link-channel
starts to receive a message it signals the processor with a
'ReadyRequest’.

The second, called a 'StatusEnquiry', does two things.
Firstly, it causes the link-channel to send a message to the
processor indicating if it has yet started to receive a
message and, secondly, it 'disables' the link-channel 5 & 1
is enabled.

<< RESETABLE LINKS TO BE ADDED >>

6.2 Occam description

Each connection between the processor and a link-channel
uses 4 channels. For the i'th link channel these are

ProcessorToLink[il
LinkToProcessorLg[il
LinkToProcessorLl[i]
LinkToProcessorStatusli]

The protocol used for communication has to resolve the

Microcomputer Division -8- Confidential Issue 14

situation which can arise when an input link-channel signals
the processor with a ReadyRequest at the same time as the
processor makes a StatusEnquiry on that link-channel. This
is solved by adding ReadyAck and DummyRequest messages to
those mentioned above.

6.2.1 Messages on ProcessorToLink

ProcessorToLink[i] carries requests and their parameters
from the proeessor to the link .channel. Theé pessible
messages sent by the processor are

1) PerformIO <priority> <pointer> <count>

This requests the link-channel to transfer a message of
<count> bytes starting at <pointer>. The priority of the
link-channel for this transfer is <priority>. (Because a
link-channel is one directional there is no need for the
processor to specify the transfer direction).

2) Enable <priority>

This requests an input link-channel to become enabled
and sets the priority of the link-channel to <priority>.

3) StatusEnquiry <priority>

This asks an input link-channel if it has started to
receive a message. It also disables the link-channel if
it was enabled. The link-channel responds on
LinkToProcessorStatus(il, sending TRUE if it has started
to receive a message, FALSE otherwise.

4) AckReady

The processor sends this to acknowiedge a ReadyRequest
made by the link-channel.

Microcomputer Division -9- Confidential Issue 14

6.2.2 Messages on LinkToProcessorL@ and LinktoProcessorLl

The i'th link-channel uses LinkToProcessorL@[i] to signal
the processor when it is at priority @ (high priority) and
LinkToProcessorkl[i]l when dit is at pricrity 1 (low
priority). The messages that sent to the processor on these
channels are i

1) RunRequest

This signals that a link-channel has completed passing a
message.

2) ReadyRequest

This signals that an enabled link-channel has started to
receive a message. : :

3) DummyRequest
If a link-channel has not signalled the processor with a

ReadyRequest it acknowledges receipt of a StatusEnquiry
with a DummyRequest.

6.2.3 Messages on LinkToProcessorStatus

A link-channel wuses this channel to respond to a
StatusEngquiry. It will @gend TRUE 1f it has ‘started to
receive a message; otherwise it will send FALSE.

6.2.4 Summary of message interactions

To clarify the processor and link-channel interactions, a
trace of the behaviour of a link-channel is given below for
all possible interactions. The traces given involve a level
1 process interacting with the 1i'th 1link-channel: ' ‘the
interactions involving a level @ process are similar but
have @ substituted for 1 when the processor sends a priority
and they have LinkToProcessorLd substitutued for
LinkToProcessorLl.

When the processor executes either an 'input message' or
'output message' instruction the interaction is:

SEQ
ProcessorToLink[i] ? Interaction; Priority
i PerformIO; 1
ProcessorToLinkli] ? Pointer; Count
LinkToProcessorL1l[i] ! RunRequest

Microcomputer Division -1@- Confidential Issue 14

When a process perform an alternative input there are four
possible interactions to consider:

1) The processor making a StatusEnquiry on the 1 Y¢h
link-channel.

SEQ
ProcessorToLinkli]l ? Interaction; Priority -- StatusEnquiry; 1
LinkToProcessorL1l[i] ! DummyRequest
ProcessorToLinkl il ? ANY -- AckReady
LinkToProcessorStatusli] ! Ready -- TRUE or FALSE

2) The processor Enabling the i'th link-channel which is not
ready and which does not become ready before the processor
makes a StatusEnquiry

SEQ
ProcessorToLinkl[i] ? Interaction; Priority -- Enable; 1
ProcessorToLink[il ? StatusEnquiry; 1
LinkToProcessorLl[i] ! DummyRequest
ProcessorToLink[i] ? ANY -- AckReady
LinkToProcessorStatus[i] ! FALSE

3) The processor Enabling the i'th link-channel which is
either ready or becomes ready before the processor makes a
StatusEnquiry.

SEQ
ProcessorToLinklil] ? Interaction; Priority -- Enable; 1
LinkToProcessorLl[i] ! ReadyRequest
ProcessorToLink{i]l ? ANY -- AckReady

4) As (3) but where the processor makes a StatusEnquiry at
the same time as the link sends a ReadyRequest

SEQ
ProcessorToLinkl il ? Interaction;: Priority -- Enable; 1
PAR
LinkToProcessorLl[i] ! ReadyRequest
ProcessorToLinklTil ? Interaction; Priority —-- StatusEnquiry; 1
PAR
ProcessorToLink[i] ? ANY —-- AckReady
LinkToProcessorStatusl{i] ! TRUE

Microcomputer Division =-11- Confidential Issue 14

©6.2.5 Link-channel behaviour

PROC SignalProcessor(VALUE i, Signal) =
IF
Priority = @
LinkToProcessorL@[i] ! Signal
Prierity = 1
LinkToProcessorL1l[i] ! Signal :

PROC OutputLinkChannel (VALUE i) =
WHILE TRUE
VAR Request :

SEQ
ProcessorToLinkli] ? Request; Priority; Pointer; Count -- Perf
SEQ Offset = [0 FOR Count]
VAR Byte :
SEQ

RIndexByte(Pointer, Offset, Byte)

... output byte and receive acknowledge
SignalProcessor(i, RunRequest) :

PROC InputLinkChannel(VALUE i) =

VAR Byte, Pointer, Count, Priority, ChannelActive :
VAR Ready, Enabled, Requested :

PROC InputByteAction =
SEQ
... acknowledge Byte and write it to memory
Coumt 3= Count = 1
1E
Count = g
SEQ
SignalProcessor (i, RunRequest)
Requested := FALSE
TRUE
SKIP 3

n

EQ

Ready := FALSE
Enabled := FALSE
Requested := FALSE
WHILE TRUE

(1]

VAR Interaction :
ALT
... byte arrival from outside world into Byte
1P
Requested
InputByteAction

TRUE
Ready := TRUE
(Enabled AND Ready) & SKIP

Microcomputer Division -12- Confidential Issue 14

-— Send ReadyRequest and accept AckReady or StatusRequest

PAR
SignalProcessor(i, ReadyRequest)

accept AckReady or StatusRequest

SEQ
ProcessorToLinkl[i] ? Interaction
IF
Interaction = StatusEnquiry
SEQ

ProcessorToLink[i] ? Priority
LinkToProcessorStatus il ! TRUE

ProcessorToLink[i] ? ANY -- AckReady
Interaction = AckReady
SKIP

Enabled := FALSE

ProcessorToLink[i] ? Interaction
SEQ
ProcessorToLink[i] ? Priority
IF
Interaction = Enable
Enabled := TRUE
Interaction = StatusEnquiry
SEQ
Enabled := FALSE
SignalProcessor(i, DummyRequest)
ProcessorToLink[i] ? ANY
LinkToProcessorStatusli] ! Ready
Interaction = PerformlIO
SEQ
ProcessorToLink!i] ? Pointer; Count
Requested := TRUE
IF
Ready
SEQ
Ready := FALSE
InputByteAction
TRUE
SKIP :

The behaviour of the processor is described later, 1its
interactions with the 1link-channels occur only in the
instruction execution loop and the execution of the 'input

message', 'output message', 'enable channel' and ‘'disable
channel' instructions.

Microcomputer Division -13- Confidential Issue 14

7 Initialisation

The following registers and special locations are not set
when the machine is powered on reset.

ClockReg

TPtrLoc@[d]

TPtrlioel[1]

FptrRegl[@]

BptrRegl @]

FptrRegl1l]

BptrRegll]

msb of the StatusReg (ie the errorflag)

The ClockReg does not increment after a power-on, reset or

analyse until a store timer instruction has been executed.
The states of the other registers are set as below:

TNextRegl@] = ClockReg >< (-1)
TNextReg[1l] = ClockReg >< (-1)
Areg = IptxrReg

Breg = WdescReg

Oreg =9

If the machine is booting from external memory then

WdescReg = MemStart \/ 1
IptrReg = MaxInt - 1
Credg = ANY

If the machine is booting from a link channel then

<< MEMORY READ/WRITE TO BE DESCRIBED HERE >>

WdescReg = first word after boot program
IptrReg = MemStart
Creg = pointer to boot channel

Microcomputer Division -14- Confidential Issue 14

8 Instruction execution

<< TO BE AMENDED TO INDICATE INTERRUPTABILITY AND
AN INTERRUPTED PROCESS. >2

WHILE TRUE
SEQ
Get Instruction
Decode into Function and Operand
Oreg := Oreg \/ operand
IF
function = prefix
Oreg := Oreg << 4
function = negative prefix
Oreg := (Oreg << 4) >« (-1)
TRUE
SEQ
IF
function = operate
secondary(oreg)
TRUE
primary
Oreg := @

8.1 Prioritised scheduling

The following instructions are interruptable:
move message
input message
output message

timer alt wait
timer input

disable timer

STATE OF

When the machine is idle any request from the timer or a

channel can be acted upon.

When the machine is at level 1 (low priority) any

level 9

request can be acted upon between instructions or during any

of the interruptable instructions.

When the machine is at level 1 (low priority) any
request can be acted upon between instructions.

When the machine is at level @ (high priority) any
request can be acted upon between instructions.

Microcomputer Division -15- Confidential

level 1

level O

Issue 14

8.2 Action taken in response to timer and link requests

PROC HandleTimerRequest =

s s o

PROC HandleRunRequest (VAR ChanId) =
VAR ProcWord :
SEQ
RIndexWord(ChanId, @, ProcWord)
== check Ffor
IF
ProcWord = NotProcess.p
SKIP
ProcWord <> NotProcess.p
Run(ProcWord) :

PROC HandleReadyRequest =

Microcomputer Division =-16- Confidential Issue 14

9 Procedures Used in the Description of the Instructions

PROC SetErrorFlag =
StatusReg := StatusReg \/ MinInt

PROC ClearErrorFlag =

-
.

StatusReg := (StatusReg /\ NOT (MinInt)) :

PROC ReadErrorFlag(VAR State) =
sk
(StatusReg /\ MinInt) = MinInt
State := TRUE
TRUE
State := FALSE :

PROC OverflowCheck (VAR Register) =
IF
(Reg > MaxInt)

SEQ
SetErrorFlag
Areg := Areg - Range
(Reg < MinInt)
SEQ
SetErrorFlag
Areqg := Areqg + Range
TRUE
SKIP :

Microcomputer Division -17-

Confidential

Issue 14

PROC Wait =

SEQ
WindexWord(Wptr, State.s, Waiting.p)
WindexWord(Wptr, Iptr.s, IptrReg)

StartNextProcess :

-

PROC InsertAndwWait =

SEQ
Areg := Areg + 1
IF
Areg > Maxlnt
Areg := MinInt
TRUE
SKIP
Plusl(Areg, Areg)
Insert
Wait :

Microcomputer Division -18-

Confidential

Issue 14

PROC UpDateWdescReqg(VALUE NewWdescReg) =
-—- modify the current process descriptor
SEQ

WdescReg := NewWdescReg
Wptr := WdescReg /\ (-2)
Priority := WdescReq /\ 1 :

PROC Enqueue(VALUE ProcPtr, VAR FptrRegq, BptrReg) =

-~ add a process to a scheduling list
SEQ
1F
FptrReg = NotProcess.p
FptrReg := ProcPtr
FptrReg <> NotProcess.p
WIndexWord(BptrReg, Link.s, ProcPtr)
BptrReg := ProcPtr :

PROC Dequeue(VALUE Level) =
~— take a process from a scheduling list
SEQ
UpDateWdescReg(FptrReglLevel] \/ Level)
IF
FptrReglLevel] = BptrReglLevell
FptrReglLevel! := NotProcess.p
FptrReglLevel] <> BptrReglLevell

RIndexWord(FptrReglLevell, Link.s, FptrReglLevel]) :

Microcomputer Division =19- Confidential

Issue 14

PROC StartNextProcess =
-— This activates the next process to be run (if one exists).
IF
Priority = &
IF
FptrRegl @] <> NotProcess.p
SEQ
Dequeue (9)
Oreg := 0
RIndexWord(Wptr, Iptr.s, IptrReg)
FptrReg[@]1 = NotProcess.p
SEQ
RestoreRegisters
IF
(Wptr = NotProcess.p) AND (FptrReg[l] <> NotProcess.p)
SEQ —-- there was no interrupted process
Dequeue(1)
Oreg := 0@
RIndexWord(Wptr, Iptr.s, IptrRegq)
TRUE
SKIP
Priority = 1
IF
FptrRegl1l] <> NotProcess.p
SEQ g
Dequeue (1)
Oreg := 0
RIndexWord(Wptr, Iptr.s, IptrRegq)
FptrReglll = NotProcess.p
UpDateWdescReg(NotProcess.p \/ 1) :

Microcomputer Division -29- Confidential Issue 14

PROC Run(VALUE ProcDesc) =
—= schedule a process
VAR ProcPriority, ProcPtr :
SEQ
ProcPriority := ProcDesc /\ 1
ProcPtr := ProcDesc /\ (-2)

IF
Priority = # -- machine at high priority; queue process
Enqueue (ProcPtr, FptrReg[ProcPriorityl, BptrRegl ProcPriority
Priority = 1 -~ machine at low prieority
LE
ProcPriority = @ -- high priority process; execute it
SEQ
SaveRegisters
UpDateWdescReg(ProcDesc)
Oreg := 0@ _
RIndexWord(Wptr, Iptr.s, IptrReg) :
ProcPriority = 1 -- low priority process; queue it
TR
Wptr = NotProcess.p
SEQ
UpDateWdescReg(ProcDesc)
Oreg := 0

RIndexWord(Wptr, Iptr.s, IptrReg) :
Wptr <> NotProcess.p
Enqueue(ProcPtr, FptrReglll], BptrRegf1l) :

Microcomputer Division -21- Confidential Issue 14

PROC Insert =
—— Insert the current process into the timer
—— gueue. The time is in Aregq.
—-— Use Breg as Previous, Creg as Subsequent, Oreg as SubsequentTim

—-— Previous points to the location to be updated if the current
—-— process is to be inserted in front of the process pointed to by
—-— Subsequent.
VAR Previous, Subsequent, SubsequentTime, LaterFlag :
SEQ
WIndexWord(Wptr, Time.s, Areg)
AtWord(TptrLoc#, Priority, Previous)
RIndexWord(Previous, @, Subsequent)
i[5 1
Subsequent <> NotProcess.p
RIndexWord(Subsequent, Time.s, SubsequentTime)
Subsequent = NotProcess.p : '
SKIP
Later(Areg, SubSequentTime, LaterFlag)
WHILE (Subsequent <> NotProcess.p) AND LaterFlag
SEQ
AtWord(Subsequent, Tlink.s, Previous)
RIndexWord(Previous, @, Subsequent)
TR
Subsequent <> NotProcess.p
RIndexWord(Subsequent, Time.s, SubsequentTime)
Subsequent = NotProcess.p
SKIP
Later(Areg, SubSequentTime, LaterFlag)
WIndexWord(Previous, 9, Wptr)
WIndexWord(Wptr, Tlink.s, Subsequent)
—— Get the earliest time
RIndexWord(TptrLocd, Priority, Previous)
RIndexWord(Previous, Time.s, TNextReglPriorityl) :

Microcomputer Division -22- Confidential Issue 14

PROC Delete =
—— Delete the current process from the timer queue
—— Use Breg as Previous, Creg as Subsequent.
VAR Previous, Subsequent :
SEQ
AtWord(TptrLoc@, Priority, Previous)
RIndexWord(Previous, @, Subsequent)
WHILE Subsequent <> Wptr
SEQ
AtWord(Subsequent, Tlink.s, Previous)
RIndexWord(Previous, @, Subsequent)
RIndexWord(Wptr, Tlink.s, Subsequent)
WIndexWord(Previous, @, Subsequent)
—-— Get the earliest time
RIndexWord(TptrLocd, Priority, Previous)
LB
Previous = NotProcess.p
SKIP
Previous <> NotProcess.p
RIndexWord(Previous, Time.s, TNextRegPriority]) :

.

PROC TimeSlice =
—-— deschedule and reschedule the current process
TR
(Priority = 1) AND 2?27
WindexWord(Wptr, Iptr.s, Iptr)
Run(WdescReg)
startnextprocess
TRUE
SKIP :

PROC IsThisSelectedProcess =
—— this is used by all the disable instructions
VAR DisableStatus :
SEQ
RIndexWord(Wptr, @, DisableStatus)
IF
DisableStatus = (-1)
SEQ
WIndexWord(Wptr, @, Areg)
Areg := MachineTRUE
DisableStatus <> (-1)
Areg := MachineFALSE :

Microcomputer Division -23- Confidential Issue 14

PROC BlockMove(VALUE Source, Destination, Count) =
SEQ Index = [@ FOR Count]
VAR EightBits :
SEQ
RIndexByte(Source, Index, EightBits)
WIndexByte(Destination, Index, EightBits) :

PROC .Input
VAR ChanNum : -- Areg is count
ChanOffset (Breg, ChanNum) -— Breg is channel
IF -- Creg 1is pointer
ChanNum > LinkChans —— Internal channel
VAR ProcDesc :
SEQ
RindexWord(Breg, @, PrccDesc)
IF :
ProcDesc = NotProcess.p -- Not ready; wait
SEQ
WindexWord(Breg, 9, WdescReg)
WindexWord(Wptr, Iptr.s, IptrReq)
WindexWord (Wptr, Pointer.s, Creg)
StartNextProcess
ProcDesc <> NotProcess.p -- Ready; transfer
VAR. SourcePtr, ProcPtr :
SEQ
WindexWord(Breg, 9, NotProcess.p)
ProcPtr := ProcDesc /\ (-2)
RindexWord(ProcPtr, Pointer.s, SourcePtr)
BlockMove(SourcePtr, Creg, Aregq)
Run(ProcDesc)
ChanNum <= LinkChans —— Link channel
VAR PortStatus :
SEQ

WindexWord(Wptr, Iptr.s, IptrReg)
WindexWord(Breg, @, WdescReg)

ProcessorToLink[ChanNum] ! PerformIO; Priority; Creg: Areg
StartNextProcess

Microcomputer Division -24- Confidential Issue 14

PROC output

VAR ChanNum : ~= Areg is count
SEQ -- Breg is channel
ChanOffset(Breg, ChanNum) -—- Creg is pointer
IF
ChanNum > LinkChans —— Internal channel
VAR ProcDesc :
SEQ
RindexWord(Areqg, @, ProcDesc)
IF
ProcDesc = NotProcess.p —=— Not ready; wait
SEQ
WindexWord(Breg, @, WdescReq)
WindexWord(Wptr, Iptr.s, IptrReqg)

WindexWord(Wptr, Pointer.s, Creg)
StartNextProcess

ProcDesc <> NotProcess.p -~ Ready

VAR DestPtr, ProcPtr

SEQ
ProcPtr := ProcDesc /\ (-2)
RindexWord(ProcPtr, Pointer.s, DestPtr)
IF ——- scheduler interlock for ALT

DestPtr = Enabling.p
SEQ

WindexWord(ProcPtr, Pointer.s, Ready.p)
WindexWord(Breg, @, WdescReg)
WindexWord(Wptr, Iptr.s, IptrReq)
WindexWord(Wptr, Pointer.s, Cregq)
StartNextProcess

DestPtr = Waiting.p

SEQ

" WindexWord(ProcPtr, Pointer.s, Ready.p)
WindexWord(Breg, @, WdescReg)
WindexWord(Wptr, Iptr.s, IptrReqg)
WindexWord(Wptr, Pointer.s, Creg)
Run(ProcDesc)
StartNextProcess

DestPtr = Ready.p

SEQ
WindexWord(Breg, @, WdescReg)
WindexWord(Wptr, Iptr.s, IptrReqg)

WindexWord(Wptr, Pointer.s, Cregq)
StartNextProcess
TRUE —-— Ready for input
SEQ == transfer
WindexWord(Breg, 9, NotProcess.p)
BlockMove(Creg, DestPtr, Areg)
Run(ProcDesc)
ChanNum <= LinkChans —-— Link channel
SEQ
WindexWord(Wptr, Iptr.s, IptrReg)
WIndexWord(Breg, @, WdescReg)
ProcessorToLink[ChanNum] ! PerformIO; Priority; Creg; Arec
StartNextProcess

Microcomputer Division -25- Confidential Issue 14

10 Function Set

The instructions executed by the procesor include direct
functions, the prefixing functions pfix and nfix, and an
indirect function opr which uses the operand register Oreg
to select one of a set of operations.

The set of direct functions and operations is as follows:

19.1 Direct, Prefixing and Indirect Functions

Code No. Abbreviation Name
22 1dl load local
27 stl store local
2?2 1dlp load local pointer
272 1dnl load non-local
22 stnl store non-local
272 ldnlp load non-local pointer
22 eqc equals constant
22 ldc load constant
22 adc add constant
22 | jump
22 cj conditional jump
272 call call
2% ajw adjust workspace
22 pfix prefix
22 nfix negative prefix
27 opr operate

Microcomputer Division -26- Confidential Issue 14

19.2 Operations

Code No. Abbreviation Name
short rev reverse
long ret return
long ldpi load pointer to instruction
long gajw general adjust workspace
short gcall general call
long mint mimimum integer
long : lend loop end
long csubd check subscript from @
long ccntl check count from 1
long testerr test error
long stoperr stop on error
long seterr set error
short bsub byte subscript
short wsub word subscript
long bent byte count
long wcnt word count
short 1b load byte
long sb store byte
long move move message
long and and
long or or
long FOX, exclusive or
long not bitwise not
long shil « ° shift left
long shr shift right
short add add
short sub subtract
long mul multiply
long div divide
long rem remainder
short gt greater than
short diff difference
short sum sum
short prod product

Microcomputer Division —27— Confidential Issue 14

19.3 Operations Continued

Code No. Abbreviation Name
short startp start process
short endp end process
long runp run process
long stopp stop process
long 1Lidpri load current priority
short in input message
short out output message
short outword output word
short outbyte output byte
long resetchan reset channel
long alt alt start
long altwt alt wait
long altend alt end
long enbs enable skip
long diss disable skip
long enbc enable channel
long disc disable channel
long ldtimer load timer
long aulitie! timer input
long talt timer alt start
long taltwt timer alt wait
long enbt - enable timer
long dist disable timer
long xword extend to word
long cword check word
long xdble extend to double
long csngl check single
long ladd long add
long lsub long subtract
long 1sum long sum
long 1diff long diff
long Imul long multiply
long 1div long divide
long l1shl long shift left
long 1shr long shift right
long norm normalise

Microcomputer Division -28- Confidential Issue 14

10.4 Operations Continued

long

long
long

long
long
long
long

long

testpranal

saveh
savel

sthf
sthb
stlf
stlb

sttimer

test processor analysing

save high priority queue registers
save low priority queue registers

store
store
store
store

store

high priority front pointer
high priority back pointer
low priority front pointer
low priority back pointer

timer

¥*%%% test instructions to be included here ****%

Microcomputer Division

DO

Confidential Issue 14

DIRECT FUNCTIONS
load local
SEQ
Creg := Breg

Breg := Areg
RIndexWord(Wptr, Oreg, Areg)

store local

SEQ
WIndexWord(Wptr, Oreg, Areg)
Areg := Breg
Breg := €reg

load local pointer
SEQ
Creg 2= Breg
Breg := Areg
AtWord(Wptr, Oreg, Areqg)

load non-local

RIndexWord(Areg, Oreg, Areq)

store non-local

SEQ
WIndexWord(Areg, Oreg, Breg)
Areg := Creg

load non-local pointer

AtWord(Areg, Oreg, Areg)

Microcomputer Division =-30- Confidential

Issue 14

equals constant

IF
Areg = Oreg
Areg := MachineTRUE
Arcg <> Oreq
Areg := MachineFALSE

load constant

SEQ
Creg := Breg
Breg := Areg
Areg := Oreg
add constant
SEQ
Areg := Areg + Oreg
OverflowCheck(Areg)
jump

AtByte(IptrReg, Oreg, IptrReqg)
timeslice

conditional jump

IF
Areg = 0
AtByte(IptrReg, Oreg, IptrReg)
Areg <> ¢
SEQ
Areg := Breg
Breg := Creg

Microcomputer Division =-31- Confidential

Issue 14

call

SEQ

WIndexWord(Wptr, -1, Cregqg)
WIndexWord(Wptr, -2, Breg)
WIndexWord(Wptr, -3, Areg)
WIndexWord(Wptr, -4, IptrReq)
Areg := IptrReg
VAR Temp :
SEQ
AtWord(Wptr, -4, Temp)
UpDateWdescReg(Temp \/ Priority)
AtByte(IptrReg, Oreg, IptrReg)

adjust workspace

VAR Temp :
SEQ

Microcomputer Division -32- Confidential

AtWord(Wptr, Oreg, Temp)
UpDateWdescReg(Temp \/ Priority)

Issue 14

1.5 Register Manipulation Etc

reverse
SEQ
Oreg := Areg
Areg := Breg

Breg := Oreg

return

SEQ
RIndexWord(Wptr, @, IptrReg)
VAR Temp :
SEQ
AtWord(Wptr, 4, Temp)
UpDateWdescReg(Temp \/ Priority)

load pointer to instruction

AtByte(IptrReg, Areg, Aregq)

general adjust workspace

VAR temp:

SEQ
temp := Wptr
UpDateWdescReg(Areqg \/ Priority)
Areg := temp -

general call

VAR temp:

SEQ
temp := IptrReg
IptrReg := Areg

Areg := temp

Microcomputer Division -33- Confidential

Issue 14

minimum integer

SEQ

Creg := Breg

Breg := Areg

Areg := MinInt

loop end
SEQ

RIndexWord(Breq, 1, Creg)

Creg := Creg - 1

WIndexWord(Breg, 1, Cregq)

IF

Creg > @
SEQ
RIndexWord(Breg, 0, Creg)
Creg: i= Creg + 1
WIndexWord(Breg, 9, Creg)
AtByte(IptrReg, -Areg, IptrReg)
Creg <= 0
SKIP
TimeSlice
Microcomputer Division =-34- Confidential

Issue 14

10.6 Checking

check subscript from 9

SEQ
UnSign(Areqg)
UnSign(Breg)

IF
Breg >= Areg -- unsigned compare
SetErrorFlag
TRUE
SKIP
Sign(Breg)
Areg := Breg
Breg := Creg

check count from 1

SEQ
UnSign(Aregqg)
UnSign(Bregqg)
ER

(Breg = @) OR (Breg > Areg) -- unsigned comparison

SetErrorFlag
TRUE
SKIP
Sign(Breg)
Areg := Breg
Breg := Creg

test error false and clear

VAR ErrorSet :
SEQ
Creg := Breg
Breg := Areg
ReadErrorFlag(ErrorSet)
IF
ErrorSet
Areg := MachineFALSE
NOT ErrorSet
Areg := MachineTRUE
ClearErrorFlag

Stop ‘on errer

VAR ErrorSet :
SEQ
ReadErrorFlag(ErrorSet)
IF
ErroxrSet
SEQ
WIndexWord(Wptr, Iptr.s, IptrReg)
StartNextProcess
NOT ErrorSet

Microcomputer Division =-35- Confidential

Issue 14

SKIP
set error

SetErrorFlag

Microcomputer Division =-36- Confidential Issue 14

10.7 Addressing

byte subscript
SEQ
AtByte(Areg, Breg, Areg)
Breg := Creg
word subscript
SEQ
AtWord(Areg, Breg, Areq)
Breg == Creg

byte count

Areg := Areg * (BitsInWord / 8)

word count

SEQ
Creg := Breg
Breg := Areg /\ ((1 << BselLength) - 1)
Areg := Areg >> BsellLength

Microcomputer Division =37- Confidential Issue 14

10.8 Data Access and Move

load byte

RIndexByte(Areqg, 4, Areq)

store byte
SEQ
WIndexByte(Areg, @, Breg)
Areg = Creg
move message

BlockMove(Creg, Breg, Areg)

Microcomputer Division -38-

Confidential

Issue 14

19.9 Logic and Bits

and
SEQ
Areg := Areg /\ Breg
Breg := Creg
oxr
SEQ
Areg := Breg \/ Areg
Breg == Creg
XOr
SEQ
Areg := Breg >< Areg
Breg := Creg
not
Areg := Areg >< (-1)

shitt laft

SEQ
Unsign(Areq)
IF
Areg > BitsInWord
SKIP
TRUE
SEQ
Unsign(Breg)
Areg := (Breg << Areg) \ Range
Sign(Areqg)
Breg: = Grieg

shift right

SEQ
UnSign(Bregqg)
IE
Areg > BitsInWord
SKIP
TRUE
Areg := Breg >> Areg
Sign(Areqg)
Breg === Creg

Microcomputer Division -39- Confidential

Issue 14

1.1 Basic Arithmetic

add
SEQ
Areg := (Breg + Areqg)
OverflowCheck (Areqg)
Breg := ‘€reg
subtract
SEQ
Areg := (Breg - Areg)
OverflowCheck(Areqg)

Breg := Creg

Microcomputer Division

1,

Confidential

Issue 14

multiply

SEQ
UnSign(Areq)
UnSign(Bregq)
Areg := Breg * Areg
Breg := Areg / Range
Areg := Areg \ Range
Sign(Areg)
Sign(Bregqg)
IF

((Areg < @) AND (Breg <> -1)) OR
((Areg >=@) AND (Breg <> 4))
SetErrorFlag
TRUE
SKIP
Breg := Creg

divide

SEQ
IF
({Breg = MinInt) AND (Areg = (-1))) OR (Areqg = 0)
SetErrorFlag
TRUE
Areg := Breg / Areg
Breg := Creg

remainder

SEQ
IF
((Breg = MinInt) AND (Areg = (-1))) OR (Areg = 9)
SetErrorFlag
TRUE
Areg := Breg \ Areg
Breg := Creg

Microcomputer Division -41- Confidential Issue 14

19.11 Comparison and modulo arithmetic

greater than

SEQ
TE
Breg >. Areq

Areg := MachineTRUE
Breg <= Areg

Areg := MachineFALSE
Breg == Creg
difference
SEQ
Areg := (Breg - Areq)
IF
(Areg > MaxInt)
Areg s= Areg = Range
(Areg < MinInt)
Areg := Areg + Range
TRUE
SKIP

Breg := Creg

sum

SEQ

Areg := Breg + Areg
IF g
(Areg > MaxInt)
Areg := Areg -— Range
(Areg < MinInt)

Areg := Areg + Range
TRUE

SKIP
Breg := Creg

product

SEQ —-— guick unchecked multiply
UnSign(Areq) -— short operand in Areg
UnSign(Breg)

Areg := Breg * Areg
Areg := Areg \ Range
Sign(Areqg)

Breg := Creg

Microcomputer Division -42-

Confidential Issue 14

10.12 Scheduling

start process

VAR Temp :

SEQ
AtByte(IptrReg, Breg, Temp)
WIndexWord(Areg, Iptr.s, Temp)
Run(Areg \/ Priority)

end process

VAR Temp :
SEQ
RIndexWord(Areg, 1, Temp)
IF
Temp = 1
SEQ

RIndexWord(Areg, @, IptrReg)

UpDateWdescReg(Areg \/ Priority)
Temp <> 1

SEQ

WIndexWord(Areg, 1, Temp-1)
StartNextProcess

run process
run(Aregqg)
stop process
SEQ
WIndexWord(Wptr, Iptr.s, IptrReg)

StartNextProcess

load eurrent priority

SEQ
Creg := Breg
Breg := Areg
Breqg »=r Pxiority
Microcomputer Division -43- Confidential

Issue 14

19.13 Communication

input message
input
output message
output
output word
SEQ
WIndexWord(Wptr, @, Areg)
Areg := BitsInWord / 8
Creg := Wptr
output

output byte

SEQ
WIndexWord(Wptr, @, Aregqg)
Areg := 3
Creq := Wptr
output

Reset Channel

VAR Temp :
SEQ
—— Channel ID in Areg
RIndexWord(Areg, @, Temp)
WIndexWord(Areg, @, NotProcess.p)
IF
hard(Areq)
VAR ChanId :
SEQ
... decode channel ID into ChanId
ProcessorToLink[ChanID] ! ForceEndOfMessage
.+. any consequent housekeeping
soft(Areqg)
SKIP
Areg := Temp

Microcomputer Division -44- Confidential

Issue 14

10.14 Timer Input

read timer

SEQ
Creg := Breg
Preg := Areg

Areg := ClockReg

timer input

VAR LaterFlag :
SEQ
Later(Clockreg, Areg, LaterFlag)
B
LaterFlag
SKIP
NOT LaterFlag
InsertAndwait

Microcomputer Division -45- Confidential Issue 14

19.15 Alternative Input

alt start

WIndexWord(Wptr, State.s, Enabling.p)

alt wait

SEQ
== et up —1 1f local B +£o signify
—— that the no ready process has been selected
WIndexWord(Wptr, @, -1)
—— Is any channel or skip guard ready?
RIndexWord(Wptr, State.s, Areg)
IE
Areg = Ready.p
SKIP
TRUE
Wait

alt end
VAR Temp :
SEQ

RIndexWord(Wptr, @, Temp)
AtByte(IptrReg, Temp, IptrReg)

Microcomputer Division -46- Confidential

Issue 14

19.16 Skip Guards

enable skip

IF
Areg <> MachineFALSE

WIndexWord(Wptr, State.s, Ready.p)
TRUE
SKIP

disable skip

SEQ
Iy
Breg <> MachineFALSE

IsThisSelectedProcess
TRUE

Areg := MachineFALSE
Breg == Creg

Microcomputer Division -47- Confidential Issue 14

1d.17 Channel Guards

enable channel

SEQ
ip
Areg <> MachineFALSE
VAR ChanNum:
SEQ
ChanOffset(Breg, ChanNum)
L
ChanNum > LinkChans
VAR Temp :
SEQ
RIndexWord(Breg, @, Temp)
IF
Temp = NotProcess.p
WIndexWord(Breg, O, WdescReg)
Temp = WdescReg
SKIP
TRUE
WIndexWord(Wptr, State.s, Ready.p)

ChanNum <= LinkChans
VAR Ready :
SEQ
—-— is channel ready
ProcessorToLinkl ChanNum] ! StatusEnquiry; Priority
PAR
LinkToProcessorStatuslChanNum] ? Ready
ConditionalOutputInhibit(ChanNum)

IF

Ready
WIndexWord(Wptr, State.s, Ready.p)
NOT Ready
SEQ
ProcessorToLink[ChanNum] ! Enable; Priority
WIndexWord(Breg, @, WdescReg)
TRUE
SKIP
Breg := Creg

Microcomputer Division -48- Confidential Issue 14

disable channel

IE
Breg <> MachineFALSE
VAR ChanNum:

SEQ
ChanOffset(Creg, ChanNum)
EE
ChanNum > LinkChans
SEQ
RindexWord(Creg, @, Breg)
IF

Breg = NotProcess.p
Areg := MachineFALSE
Breg = WdescReg

SEQ
WIndexWord(Creg, @, NotProcess.p)
Areg := MachineFALSE
TRUE

IsThisSelectedProcess

ChanNum <= LinkChans
VAR Ready :
SEQ
WIndexWord(Creg, @, NotProcess.p)
—-— Ask if channel is ready and hence switch off char
ProcessorToLink[ChanNum] ! StatusEnquiry; Priority
PAR
LinkToProessorStatus[ChanNum] ? Ready
ConditionalOutputInhibit(ChanNum)

IF
Ready
IsThisSelectedProcess
NOT Ready
Areg := MachineFALSE
TRUE
Areg := MachineFALSE

Microcomputer Division -49- Confidential Issue 14

10.18 Alternative Timer Input

timer alt ‘start

SEQ
WIndexWord(Wptr, TLink.s, TimeNotSet.p)
WIndexWord(Wptr, State.s, #nabling.p)

timer alt wait

VAR LaterFlag :
SEQ
== =1 .in locdl B signifies that
—— no process has yet been selected
WIndexWord(Wptr, @, -1)
RIndexWord(Wptr, State.s, Creg)
212
Creg = Ready.p
WIndexWord(Wptr, Time.s, ClockReg)
Creg <> Ready.p
SEQ
RIndexWord(Wptr, Tlink.s, Breg)
IF
Breg <> TimeSet.p
Wait
Breg = TimeSet.p
SEQ
RIndexWord(Wptr, Time.s, Areg)
Later(ClockReg, Areg, LaterFlag)

IF
" LaterFlag
SEQ
—-— ready due to clock
WIndexWord(Wptr, State.s, Ready.p)
WIndexWord(Wptr, Time.s, ClockReqg)
TRUE

InsertAndwWait

Microcomputer Division -58- Confidential Issue 14

14.19 Timer Guards

enable timer

SEQ
IE>
Areg <> MachineFALSE
VAR Temp :

SEQ
RIndexWord(Wptr, Tlink.s, Temp)
iF
Temp = TimeNotSet.p

SEQ
WIndexWord(Wptr, Tlink.s, TimeSet.p
WIndexWord(Wptr, Time.s, Breg)
Temp = TimeSet.p
VAR LaterFlag :
SEQ
RIndexWord(Wptr, Time.s, Temp)
Later(Temp, Breg, LaterFlag)
ey
LaterFlag
WIndexWord(Wptr, Time.s, Breg)
NOT LaterFlag
SKIP
Areg = MachineFALSE
SKIP
Breg := Creg

disable timer

L
Breg <> MachineFALSE
SEQ
RIndexWord(Wptr, Tlink.s, Oreg)
L¥
Oreg = TimeNotSet.p
Areg := MachineFALSE
Oreg = TimeSet.p
VAR LaterFlag :
SEQ
RIndexWord(Wptr, Time.s, Oreg)
Later(Oreg, Creg, LaterFlag)
IF
LaterFlag
IsThisSelectedProcess
NOT LaterFlag
Areg := MachineFALSE
TRUE
SEQ -- remove process from timer queue
Delete
WIndexWord(Wptr, Tlink.s, TimeNotSet.p)
Areg := MachineFALSE
Breg = MachineFALSE
Areg := MachineFALSE

Microcomputer Division -51- Confidential Issue 14

10.20 Partword arithmetic

extend to word

SEQ
Unsign(Areq)
IF
(Breg < Areg)
Areg := Breg
TRUE
Areg := Breg - (2*Areg)
Breg := Creg

check word

SEQ
Unsign(Areg)
IF
(Breg >= Areg) OR (Breg < —-Aregq)
SetErrorFlag
TRUE
SKIP
Areg := Breg
Breg := Creg

Microcomputer Division -52- Confidential Issue 14

14.21 Long arithmetic

extend to double

SEQ
Creg := Breg
LE
Areg < 0
Breg := -1
Areg >=0
Breg := @

check single

SEQ
LE

((Areg < @) AND (Breg <> (-1))) OR
((Areg >= @) AND (Breg <> @))
SetErrorFlag

TRUE

SKIP
Breg := Creg

long add
SEQ
Areg := (Breg + Areg) + (Cregqg /\ 1)
OverflowCheck (Areq)
Microcomputer Division -53- Confidential Issue 14

long subtract

SEQ
Areg := (Breg - Areg) - (Creg /\ 1)
OverflowCheck (Areqg)

long sum

SEQ
UnSign(Aregq)
UnSign(Breg)
Areg := (Breg + Areg) + (Creqg /\ 1)
LB
(Areg > Range)
SEQ
Breg :=1
Areg := Areg - Range
TRUE
Breg := 0
Sign(Areg)
long diff
SEQ

UnSign(Aregq)
UnSign(Bregqg)
Areqg := Areqg + (Creg /\ 1)

IF
Breg > Areg
Areg 2= Breg = Areg
Breg := ¢

Breg <= Areg
Areg := (Breg - Areg) + Range
Breg := 1
Sign(Areq)

Microcomputer Division -54- Confidential Issue 14

long multiply

SEQ
UnSign(Areq)
UnSign(Breg)
UnSign(Creqg)
Areg := (Breg * Areg) + Creg
Breg := Areg / Range
Areg := Areg \ Range
Sign(Areqg)
Sign(Breg)

long divide

SEQ
UnSign(Areg)
UnSign(Breqg)
UnSign(Cregqg)
IF
Creg >= Areg
SetErrorFlag
Creg < Areg
VAR Temp :
SEQ
Temp := Areg
Breg := (Creg * Range) + Breg
Areg := Breg / Temp
Breg := Breg \ Temp
Sign(Areqg)
Sign(Breg)
normalise
IF

(Breg = @) AND (Areg = @)
Creg := 2*BitsInWord
TRUE
SEQ
UnSign(Areq)
UnSign(Breg)
Areg := (Breg * Range) + Areg
Creg := 0
WHILE Areg < ((Range * Range) / 2)
SEQ
Areg := Areg << 1
Creg := Creg + 1
Breg := Areg / Range
Areg := Areg \ Range
Sign(Areq)
Sign(Breg)

Microcomputer Division -55- Confidential Issue 14

long shift left

RED
(Areg < @) OR (Areg > (2 * BitsInWord))
SKIP
TRUE
SEQ
UnSign(Breg)
UnSign(Creq)
Breg := (Creg * Range) + Breg
Breg := Breg << Areg

Areg := Areg \ Range

Breg := (Breg / Range) \ Range
Sign(Breg)

Sign(Areqg)

long shift right

LE
(Areg < @) OR (Areg > (2 * BitsInWord))
SKIP
TRUE
SEQ
UnSign(Breg)
UnSign(Creqg)
Breg := (Creg * Range) + Breg
Breg := Breg >> Areg
Breg := Breqg / Range
Areg := Areg \ Range
Sign(Breg)
Sign(Areqg)

Microcomputer Division -56- Confidential Issue 14

10.22 Booting and analysing

test processor analysing
IF
analysing
Areqg := TRUE
TRUE
Areg := FALSE
save high priority queue registers
SEQ
WindexWord(Areg, @, FptrRegl@])
WindexWord(Areg, 1, BptrRegl@l)
save low priority queue registers
SEQ

WindexWord(Areg, @, FptrRegl
WindexWord(Areg, 1, BptrRegl

11)
11}
store high priority front pointer

FptrRegl @] := Areg

store high priority back pointer

BptrRegl @] := Areg

store low priority front pointer

FptrRegl[l] := Areg

store low priority back pointer

BptrReg[l] := Areg

store timer
SEQ

TimerReg := Areg
StartTimer

Microcomputer Division -57- Confidential

Issue 14

MEMORY CONFIGURATION

Ll <©Configuratioini regigter Bits 36, 37, 38 and 39

These have no use and should be removed. This leaves a

36-bit configuration register and the remainder of this note
assumes this.

12 Order of reading configuration information

The configuration register is loaded starting at bit @ and
finishing at bit 35. We should make sure that this is stated
in the manual as this is necessary information for anyone
trying to configure without an address decoder.

13 Memory interface configuration address

The configuration addresses are word addresses. The values
put out on the memory interface will have bits AD2 to AD31l
corresponding to the word address. Bits ADl1 and AD@ should
be 1 since neither a byte write nor a refresh cycle is being
performed.

We want to waste as little memory space as possible so the
configuration information should be held as close to the top
of memory as possible. The two highest byte location of the
address space are occupied by the ROM boot instructions so
the first available full word is #7FFFFFF8. Therefore
addresses #7FFFFF6C through #7FFFFFF8 should be used to
contain the memory interface configuration information.

In keeping with the standard 'little endian' convention used
elsewhere in the transputer architecture the 1least
significant bit should correspond with the least significant
address. This means that #7FFFFF6C should contain bit @ and
#7FFFFFF8 should contain bit 35.

Microcomputer Division -58- Confidential Issue 14

This gives the following association of addresses with Dbits
in the configuration register.

Word address

#7FFFFFF6C
#7FFFFFF79
+7FFFFFF74
#+ 7FFFFFF78
#7FFFFFF7C
+7FFFFFF8Q
#7FFFFFF84
#+7FFFFFF88
7FFFFFF8C
#7FFFFFF90
#7FFFFFF94
#7FFFFFFO8
#7FFFFFFOC
#7FFFFFFAQ
4+ 7FFFFFFA4
#7FFFFFFAS
#7FFFFFFAC
#7FFFFFFBY
#7FFFFFFB4
#7FFFFFFB8
$#7FFFFFFRC
#7FFFFFFCY
+7FFFFFFC4
+7FFFFFFCS8
#7FFFFFFCC
#7FFFFFFDY
#7FFFFFFD4
#7FFFFFFD8
#7FFFFFFDC
#7FFFFFFEY
#7FFFFFFE4
#7FFFFFFES8
#7FFFFFFEC
+7FFFFFFFO
4+7FFFFFFF4
¥ 7FFFFFFF8

Microcomputer Division

WO~ WN -

Bit of configuration
register

O o

71, Isb

Tl msb

T2 1sb

T2 msb

T3 lsb

T3 msb

T4 1sb

T4 msb

TS5 1sb

T5 msb

T6 1lsb

T6 msb
notSl 1sb
notS1
notS1l
notS1l
notSl msb
notS2 1lsb
notS2
notS2
notS2
notS2 msb
notS3 1sb
notS3
notS3
notS3
notS3 msb
notS4 1lsb
notS4
notS4
notS4
notS4 msb

Function

RefreshInterval 1sb
RefreshInterval msb

RefreshEnable

LateWrite

Confidential

Issue 14

CHECK, ANALYSE AND RESET

14 Introduction

This note sets out the change in function of the Analyse and
Reset pins and the replacement of the Stop pin by the Check
pin. It also notes potential future improvements to this
specification.

15 Check

The Check pin causes the transputer processor to be brought
to an immediate clean halt when the Error flag is set by an
instruction.

The Check pin is sampled on the falling edge of Reset. If
the pin is high then the machine will halt when the Error
flag next changes from O to 1. If the pin is low then the
setting or unsetting of the Error bit will not affect the
transputer.

The definition that the processor will halt on & @ +o 1
transition of the Error bit ensures that a transputer which
has been halted as the result of the Error bit being set can
be Dbooted and analysed whilst preserving the Error bit. The
act of clearing the Error bit then re-enables the check.

When the processor halts as a result of the Error bit
becoming set, the Iptr will point to the byte of memory
which follows the instruction which generated the error. The
processor does not execute any further instructions or
respond to any Run or Ready requests from the links.

A list of the instructions which can cause the Error flag to
be set is appended.

16 RESET and ANALYSE

When not used in conjunction with +the BAnalyse pin the
specification of the Reset pin is unchanged.

The purpose of the Analyse pin is to enable a transputer
system to be brought to a 'clean' halt so that the state of
the processors in that system can be examined.

A system is analysed by analysing all transputers in the
system in the following amnner. First the Analyse pin is
taken high: this will cause the system to come to a ‘'clean'
halt after a specifiable time. The Reset pin is then taken
high for at least the specified Reset hold time. The Reset
pin 1is then taken low whilst still holding the Analyse pin
high; this will prevent both the re-initialisation of the

Microcomputer Division -68- Confidential Issue 14

external memory interface and the start of the booting
sequence. The Analyse pin is then taken 1low which permits
the transputer to boot. Note that the earliest time at which
the transputer is guarenteed to be able to receive a (boot)
message remains specified relative to the fall of Reset
rather than the fall of Analyse.

16.1 Analyse

This describes what happens in response to Analyse Dbeing
brought high.

16.1.1 Processor

The processor will respond to Analyse only at specific times
during its operation. The processor responds to Analyse by
halting any process which is executing and then ignoring any
scheduling requests which may be made by the links or the
timer.

If the processor is not executing a process the processor
responds to Analyse at once and halts immediately.

If the processor 1is executing a process the processor
responds to Analyse by halting either at the next
descheduling point (ie "start next process") or at the next
point at which a low priority process would be timesliced

(this will be an wunconditional jump or a loop end
instruction). Note that this permits a high priority process
to pre-empt a 1low priority process, in which case the

processor will halt during the execution of the high
priority process. The Iptr of a process which has been
halted will point to the byte of memory following the final
byte of the instruction which caused the process to be
halted.

A list of instructions on which a process can halt is
appended.

16.1.2 Timer

The clock responds to Analyse by stopping. Any processes on
the timer queue will either be scheduled or will remain on
the queue.

161 .3 links

Analyse has no effect on input 1links: they continue to
operate normally, sending acknowledges and making scheduling
requests as appropriate.

Microcomputer Division =-61- Confidential Issue 14

Analyse causes output links to output at most a few more
data packets. They respond correctly to acknowledge packets
and will make scheduling requests as appropriate. The number
of data packets which a link will output after Analyse is
asserted is bounded by the number of bytes in a processor
word.

16.2 Reset

If the Analyse pin is held low when Reset is brought 1low
then the external memory interface will be re-initialised
and subsequent TestProcessorAnalysing instructions will
generate 'false'.

If the Analyse pin is held high when Reset is brought low

then the external memory interface will not be
re—initialised and subsequent TestProcessorAnalysing
instructions will generate 'true'. In addition the processor

will not restart until the Analyse pin has been brought low.

When the processor restarts, the values which were in the
processor's Wdesc and Iptr when it halted are placed in the
processor's stack.

The values which the process words and counts of the 1links
had at the time that the links halted are readable when the
transputer is booted. The count associated with an input
link indicates the number of bytes which it has input and
acknowledged. The count associated with an output 1link
indicates the number of acknowledgements it has received.

Provided . that the process word of a 1link had been
initialised (either on bootstrap or before use) the process
word indicates whether a 1link was in use, and, if the
process using that link was performing an input or an output
then the count indicates how much of the message had been
transferred. If a link which was in use contains a count of
zero then the message had been completely transferred but
the process had not been scheduled.

If the processor was not executing a process when it halted
the Breg will contain NotProcess.p.

If the processor was executing a process when the processor
halted the Breg will contain the value of the Wdesc of that

process and the Areg will contain the value of the 1Iptr of
that process (which will be as described above).

If the processor was booted from a channel the Creg contains
the identity of that channel.

The processor will be at low priority.
The Wptr will contain a pointer to the first free word of

Microcomputer Division -62- Confidential Issue 14

memory. This will be MemStart in the case of booting from
ROM, or the first word after the end of the 1loaded program
if booting from a channel.

16.3 Information available

If the process word associated with a 1link contains a

process descriptor then the link is being used for output,
(unconditional) input or alternative input.

If the link was being used for output then the value in the
link's count register indicates whether the message transfer
had completed. If the count is @ then the message transfer
had completed and the process would have been scheduled if
the processor had not halted.

If the link was being used for (unconditional) input then
the value in the link's count register indicates whether the
message had completed just as for a 1link which was being
used for output.

If two processes are communicating and waiting on either end
of a link then the message being transferred is held in the
outputing transputer. If a process has input a message Dbut
has not yet resumed execution then the message is held
correctly in the inputting transputer.

1) Timer lists
NB These require initialisation by software

2) Process queues
NB These require initialisation by software. The low
priority front pointer must be saved and initialised by
the first analysis program.

3) Channel process words
NB For complete integrity these must be initialised by
software to NotProcess

4) Channel counts.

16.4 TImprovements to Reset and Analyse

There are two improvements to this specification for analyse
which we should consider in future revisions.

1) Readiness of links.

It should be possible to determine what the readiness of the
links were when a transputer was analysed. To be more
precise, it should be possible to determine if a 1link was
ready (had received an 'unsolicited byte') when analyse was
deasserted. This would greatly simplify the analysis of

interconnected transputer systems, and would increase the
robustness of such analysis in the presence of hardware
failures. It would also improve the degree of analysis

Microcomputer Division -63- Confidential Issue 14

possible for transputers connected to non—-transputers and
would aid certain hardware debugging.

2) Queueing of processes

After the processor has responded to Analyse it should not
ignore Ready and Run requests from links as specified here.
Rather, it should place waiting processes on the appropriate
scheduling 1list. This change would give rise to a situation
where processes would not wait on channels if their message
transfer has completed, nor would processes performing
alternative input continue to wait on a link channel after
that 1link channel had become ready. This would simplify
analysis and hardware debugging.

Microcomputer Division -64- Confidential Issue 14

Instructions which may cause the processor to halt

Appendix 1

and the

consequence of the processor halting on that instruction.

1) Jump

2)

8)

o)

19)

Microcomputer Division

Loop end

End Process

Stop Process
Stop On. Error
Input Message

Output Message
Output Word
Output Byte

Timer Input

Alt Wait

Timer Alt Wait

the jump would have been taken.

the instruction has updated the count
locations and the consequential jump would
have occured.

the process count will have been

updated and the process would have been
descheduled
the process
the process

would have been descheduled
would have been descheduled
the process descriptor will have been
left in the channel and the process
would have been descheduled. .

the process descriptor will have been
left in the channel and if the process
has output to a channel from which
another process was performing
alternative input that other process
will have been scheduled. The process
would have been descheduled.

the process will have been inserted
into the timer queue and would have
been descheduled.

the value Waiting.p will have been
written into the State location

and the process would have

been descheduled.

the value Waiting.p will have been
written into the State location, the
process will have been inserted into
the timer queue if appropriate and the
process would have been descheduled.

-65- Confidential Issue 14

Appendix 2

Instructions which may cause the Error flag to be set.

19)
11)
12)
13)
14)

Microcomputer Division =-66- Confidential

Add Constant

Check subscript from 9
Check count from 1
Set Error

Add

Subtract

Multiply

Divide

Remainder

Check word

Check single

Long Add

Long Subtract

Long Divide

Issue 14

