1. Introduction

This document describes the Simple 42. This is the machine
currently being implemented.

3 " CONTENTS

To TREPOINBETON o mom S moimsmsmmnd s s oo, 1 i
de PrOCOSSON we v sw wens oo ss s some 5 5emmes
25 0 REGUSEORE o5 as miseimisim sl sie:s kauesl s latn oo
2o @s MOPKSPDACE omwwwmamvmseowsw s e sss
2ube Sobedil NG crssussanisnnimatiimansm
B B CHREIRNE L8 nvi o i o v o s it i) o i
2.5 SynchronysatTon e ees s s e
2.6 Input and QUEDUL & ws smeess as oas
2 s RIAPESETRG 5.5 55 56 @555 vim o ammieis’ oom i s

2.8 Tndtial ot Hom die eve e wie w s wuis siel e

2.9. Logical operations

2-10. Arithmetic operations e sw= sisanmee
2006 Ts OUEr FLOW o ww o s s wsssmse e s s
2.10.2. Addition and Subtraction
2005 MULTTPLICAEION. w oin wieinm wis mis e sie
2T e DAVASTON wu v sivws o e a9 Srese 2

23171 INSERUCETON TOFMEES w e o sie simm o

e 212 Primary Instructlons ee ewss sbe e e

2.13. Secondary Instructions = Group ONE eeecesacses

2.14. Secondary Instructions = Group tWO .s.seesssss

2. T3 IosStruction SUMMBPY s pens toe e e e e sk

2:19: s PEABBEY: I0STPEUCEIONE 5sises sdiednd bie bom wimimis

2.15.2. Secondary Instructions

(AN

N

20

26

26

27

SO SE——

2. Processor

2.1. Registers

There are seven registers, each of length 1 word. They are
i the pointer to the next instruction to be executed
w the pointer to the current process workspace
pw the pointer to the end of the Llist of active processes
a the primary accumulator
b the secondary accumulator
¢ the carry accumulator
o the operand accumulator

The dnstruction pointer always points to the next
instruction to be executed.

The workspace pointer is used to access all data used by the
process.

The pw pointer is used only to manipulate the active process
Lists

The a and b registers are the sources for most arithmetic
and logical operations, The c¢ register is used to extend the
Length of a for operations manipulating double word values.
In particular, 9t is wused to hold the carry word for
multiple length arithmetic.

The a and b registers are organised as a two word stack;
loading a value pushes a into b and loads a, storing a value
stores a and pops b into a. The ¢ register is Lloaded and
stored explicitly.

The o register is used in the formation of dinstruction
operands

2.2. YWorkspace

A process workspace consists of a vector of words in memory.
It 4is used to hold the local variables and temporary values
manipulated by the process. The first word Clink)s wof each
workspace is wused to hold the Link to the next process on
the active process list; the second word (iptr) is wused to
hold the current instruction pointer of the process.

2.3+ Scheduling

A queue of active processes is maintained; this is a Linked
list 1in which the Llink word of each workspace points to the
next workspace. The pw register always points to the
workspace behind the current one; this facilitates adding
new processes to the Llist.

The processor executes the processes on the List in
seqguence, advancing to the next process whenever .a pause
instruction is executed, and whenever a process deschedules
itself by executing a wait or synchronise instruction.

Processes may be added to the end of the Llist by a run
instruction. A process which is descheduled when it performs
a synchronise instruction on a channel is added to the end
of the Llist when another process performs a synchronise
instruction on the same channel.

(In a2 multiprocessor system, the implementation of run must
cause a process to be scheduled on the appropriate
processor; this is assumed to be the processor in whose
loccal memory the process workspace resides.)

2.4. Channels

A channel is used to allow two processes to synchronise and
communicate. It consists of one (or more) consecutive words
in memory. The first of these is either set to 0, indicating
that neither process is waiting to synchronise, or it points
to the workspace of the waiting process. The second (and
subsequent) words are used to hold data being communicated.

2+.5. Synchronisation

Hhen a process executes a synchronise instruction on a
c¢hannel, the first word of <the <c¢hannel 1is tested to
determine whether another process has executed a synchronise
instruction on the channel (and is therefore halted). If so,
the waiting process is released (by adding it to the end of
the active process Llist); otherwise a pointer to the current
process workspace is written to the channel and the —current
process halted (by removing it from the active process
List) s

A process may test whether a channel is ready to synchronise
by testing whether the first word of the channel is C.

When two processes share the same address space, the
synchronise instruction must be implemented as an
'indivisible operation'.

2.6. Input and Cutput

OQutput is performed by storing the data to be output in the
second and subsequent words of the channel, and executing
two synchronise instructions on the channel; the first of
these serves to indicate that the channel contains data; the
second that the data has been taken (effectively a null
input).

Input is performed by executing a synchronise instruction on
the channel, taking the data from the channel and executing
a further synchronise instruction on the channel
(effectively a null output).

Output followed by input may be optimised by returning data
instead of null on the second synchronisation.

Physical dinput and output is provided by channels which are
connected directly to physical devices; the data words of
the channel being connected directly to pins, or shift
registers. The 'handshake' pins (if there are any) may be
used to synchronise using the channel in the same way as the
synchronise instruction.

It is expected that all other input and output mechanisms
(such as block transfer devices) are regarded as degenerate
processors; and communicate via <channels (to receive
pointers to blocks to be output etc.) in the manner
described above.

2.7. Addressing

The memory may be addressed &as either bytes or words.
Incrementing & word address gives the address of the next
word, and incrementing a byte address gives the address of
the next byte. Consequently, the word address of a location
is not the same as the byte address of the location.

If x is the word address of a location, the byte address of
the Llocation dis bytesperword * x (for @ 16 bit machine,
bytesperword = 2).

The arrangement of bytes within a word is such that the byte
at byte address (bytesperword * x) occupies the Lleast
significant 8 bits of the word at word address x.

The w and pw registers always hold word addresses; the i
register always holds a byte address; dinstructions can
therefor be executed only from the bottom (256 * %
bytesperword) byte addresses in memory.

—ty -

2.8. Initialisation

Initiatly the m, pw and 1 regigters are undefined. The
processor executes instructions from an input channel; these
instructions serve to bootstrap (and test) the processor. An
instruction (switch) 4is wused to Lload the w, pw and i
registers and to switch the processor between the run state
(in which dinstructions are executed using the instruction
pointer) and the initial state.

2.9. Logical operations

Logical operators perform bitwise operations on single word
operands. The representation of false is assumed to be 0;
the representation of true is assumed to be -4 (a word
consisting entirely of '1*' bits).

2.10. Arithmetic operations

The arithmetic operations are designed to implement single
length 2's complement arithmetic. They also provide for
unsigned and multiple precision arithmetic.

2:10.%. 0Overftlow

It is possible to generate numbers which are too large to
fit into a single word. This condition is knouwn as overflow.
An analysis of how this <can occur 1in the arithmetic
instructions follows.

2.10.2. Addition and Subtraction

These operations work both on signed and unsigned numbers.
The only difference in usage is the overflow/carry condtion.
In the case of unsigned arithmetic overflow occurs when the
result 1is too large to fit into one word. This is indicated
by the carry being set. In the case of signed arithmetic
there 1is never overflow when adding numbers of different
sign or subtractng numbers of the same sign. However,
overflow can occur when adding numbers of the same sign or
subtracting numbers of differing sign. Overflow is detected
by checking the sign of the result against the sign that
would be expected on performing the operation. For example,
when adding positive numbers the result is expected to be
positive. If a negative result 1is obtained overflow has
occured. For example, in 16 bit 2's complement

(Paxl5 = 1) # @#%15 = 1) = 2*x16 ~ 2)

which is =2 when interpreted as a2 2's complement number.

2. 10.3. Multiplication

In both signed and unsigned multiplication two single Llength
numbers are used to produce a double length result. The
result can always be expressed correctly as a double Llength
number, so no overflow <c¢an occur. However, it is also
possible that the result can be <correctly expressed as a
single Length number. For this to happen using signed
arithmetic, the more significant word of the product must be
a sign extension of the least significant word (ie all bits
of the top word must ecgual the sign bit of the bottom word).
This is the overflow condition set by the signed
multipl ication = dnstruction. For wunsigned arithmetic the
result can be correctly expressed as a single lLength number
if the more significant word of the result is zero.

2.10.4%4. Division

In division, a double length number is divided by a single
Length divisor giving a single length quotient and single
Length remainder. Overflow can occur 1in two ways; in
dividing by zero, and in generating a quotient which is too
large to fit into a single word.

2.11. Instruction formats

Each instruction is one byte long, and is divided into two 4
bit parts. The four least significant bits of the byte hold
the instruction code, and the four most significant bits
hold the operand. Instructions are executed by Loading the 4
operand bits into the least significant four bits of the
operand accumulator, which 1is then used as the actual
operand of the dnstruction. An instruction (pfix) is
provided to shift up the contents of the operand register by
4 places, thus allowing actual operands of any length up to
one word to be represented. A further dinstruction (npfix) is
provided to allow negaetive operands up to one word Llong to
be efficiently represented.

2.12. Primary Instructions

load from workspace

Ldw
code: 0
def: o := o + opd
b := a
2 :1=w ! o
o :=10
purpose: to Load the value of a location

process workspace

store to workspace

in the current

S stw
code: g
def: o := o + opd
w ! o := a
a := b
o := 0
purpose: to store a value in a location in the current

process workspace

load pointer
Ldpw
code:

def:

purpose:

into workspace

2

o = o + opd
b := a

a :=uw + o0

o := 0

to Load a pointer to a location in the current
process workspace

to lLload a pointer to the first lLocation of a
vector of Llocations in the current process
workspace

Load from workspace and increment

Ldwi

code:

def:

purpose:

3

0O := o % opd

b := a

a :=w ! o

Ww ! o= a+ 1
o = 0

to load the value of a location in the current
process workspace, and increment the location

to facilitate the use of workspace locations
as loop counters, incrementing towards zero

to facilitate the use of workspace locations
as incrementing pointers to vectors of words
or bytes

load from table

Ldt
code: 4
def: 0O := o + opd
a :=al!o
o := 0
purpose: to load a word from an outer workspace

to Load & word from a table of values

to load 2 word, using a word as a pointer

(indirection) — in this case opd = 0
store to table
PON
stt
code: 5
def: o := o + opd
a ! o :=b
o := 0
purpose: to store a vaealue in a location in an

outer workspace
to store a value in a table of values

to store a word, using a word as & pointer
(indirection) - in this case opd = 0

s~

load pointer into table

Ldpt
code: é
def: o := o + opd
a := a+t+ o
o :=0
purpose: to Load a pointer to a location in an outer

workspace

to load a pointer to a location in a table
of values

to add a value to the accumulator

ik Load from table and increment
Ldti
code: 7
def: o := o + opd
a, alo := alo, alo + 1
o :=0
purpose: to lLoad the value of a location in an outer
workspace, and increment the location
to Load the value of a location in a table
of values, and increment the location
s‘\

jump

j
code: &
def: 0 = o + opd
i & 3 20
o :=20
purpose: to transfer control forwards or backwards,

providing loops, exits from loops, continuation
after conditional sections of program

jump non zero

jnz
= code: g
def: o := o + opd
if a "= 0 then § z= 4 #% ©
a := b
o :=0
purpose: to transfer control forwards or backwards only

if a non-zero value is loaded, providing
conditional execution of sections of program and
conditional loop exits

to facilitate comparison of a value against
a set of values

=

load Lliteral
Ldl
code:

def:

purpose:
load pointer to
Ldpi
code:

def:

purpose:

10

o := o + opd
b 1= a

a = o©

o := 0

to Load a value

instruction

14

o := o + opd
b 1= a

a == 19 % o0

o := 0

to lLoad a pointer to a section of program

operate one
opr1
code:

def:

purpose:

operate two
opr2

code:

def:

purpose:

12

(execute opd as a group one secondary instruction)
o := 0

perform a secondary instruction, using the operand
as a group one secondary instruction code.

13

(execute o as a group two secondary instruction)
o :=0

perform a secondary instruction, using the operand
as a group two secondary instruction code.

prefix
pfix
code:

def:

purpose:

negative prefix
npfix
code:
def:

purpose:

to allow instruction operands which are not in the
range 0 - 15 to be represented using one or more
prefix instructions.

15
o := (-opd) << 4

to allow negative operands to be efficiently
represented

2.13. Secondary Instructions - Group one

reverse
rev
code: b
def: a, b 2= b, a
purpose: to reverse operands of asymmetric operators,
where this cannot conveniently be done in 2
compiler
equal to zero
eqgz
s code: 1
def: a = a =20
purpose: to test that a2 holds a non zero value
to implement logical (but not bitwise) negation
to implement
a =0 as eqgz
a "= 0 as eqz, eqz
1€ a 50 wes as jnz
if a8 ™= 0 wwe as eqz; inz
greater
ot
code: 2
def: a := b > a (signed)
c :=b > a (unsigned)
purpose: to compare a and b (treating them as twos

complement integers), loading -1 (true) if
b is greater than a, 0 (false) otherwise

to implement b > a (unsigned) as gt, Lldac
to facilitate multiple precision comparisons
to implement b < a by reversing ocperands

to implement b <= a3 as (gt, eqz), and b >= a
by reversing operands, and (gt, eqz)

S

and

or

Xor

and

code:

def:

purpose:

or

code:
def:

purpose:

Xxor

code:

def:

purpose:

to Load the logical and of a and b, setting
each bit to 1 if the corresponding bits in
both a and b are set to 1, 0 otherwise

to logically and two truth values

to extract fields from words, in conjunction
with the shift instructions

to Load the logical or of a and b, setting
each bit to 1 if either of the corresponding
bits of a and b is set, 0 otherwise

to logically or two truth values

5

a := b xor a

to lLoad the logical exclusive or of a and b,
setting each bit to 1 if the corresponding

bits of a and b are different, 0 otherwise

to implement bitwise not as (lLdl =1, xor)

clear carry

cle

code: é

def: el s 0

purpose: to clear ¢ before multiple precision arithmetic

Load from carry

ldac
code: 7
def: b := a
a = ¢
it purpose: to load c after multiple precision arithmetic

to facilitate unsigned comparisons

store to carry

stac
code: 8
def: c = a
a := b
purpose: to set ¢ before multiple precision arithmetic

_1 7-

add
add
code:
def:

purpose:

add with carry
addc
code:

def:

purpose:

subtract
sub
code:
def:

purpose:

9
a := b + &
to Load the sum of b and a

to compute addresses of words or bytes in vectors

a := b + a + c<0>

b := overflow(b + a + ¢<0>)

¢ == carrylh € & % ¢<0>»)

to lLload the sum of a, b and the least significant
bit of ¢, setting b to indicate arithmetic
overflow, ¢ to indicate carry

to facilitate multiple precision addition

11
a := b - a
to subtract a from b, loading the result.

to implement

a = b as sub, egz

a "= b as sub, eqz, eqz

AF Y8 "= b wa as - suUby Jinz, as

1if a "= 'b <5 as Siub; '©dZ,; SRz, ses

subtract with borrow

subc
code:

def:

purpose :

12

a := b - a - c<0>

b := overflow(b = a = ¢<0>)
¢ := carry(b = a = c<0>)

to subtract a and the least significaent bit

of ¢ from b, Loading the result, setting b

to dndicate arithmetic overflow, € to inmdicate
carry (borrow)

to facilitate multiple precisicn subtraction

-18-

signed multiply

mul
code: 13
def: c, a :=b * a (signed)
b := overflow(b * a)
purpose: to multiply a and b, lLoading the least significant

part of the result into a2, the more significant
into c. b is set if the double length result
cannot be reduced to single length without Lloss
of accuracy.

unsigned multiply and add

4 umul
code: 14
def: c, a := a*b + ¢ (unsigned)
b t= b
purpose: to multiply a and b, adding ¢ into the result,

loading the least significant part of the result
into a and stting ¢ to the most significant part.

to facilitate multiple precision arithmetic

signed divide

div
code: 15
= def: a := c.a / b (signed - a takes sign of c.a/b)
b := overflow(c.a / b)
¢ 2= ¢+a REM b (signed - ¢ takes sign of c.a)
purpose: to divide ¢ and a by b, Loading the result and

setting ¢ to the remainder.

b is set to overflow (can be caused by divide
by 0 or by having c.a/b too large for a single
word)

to facilitate single length division

-19-

2alb.

Secondary Instructions = Group two

unsigned divide

udiv

code:

def:

purpose:

sign extend

sex

code:

def:

purpose:

test Llong

tlng
code:

def:

purpose:

o

a = c.a l b
b ==

s .2 REM

to divide ¢ and a by b,

c
overfltow(c.a/’/b)
c

b

(unsigned)

(unsigned)

setting ¢ to the remainder.

to facilitate multiple length division.

1

1% a <€ 0 the

to convert a single length signed
a double length signed

2

n ¢

-1 else ¢ :=

integer

loading the result and

into

b = *C € ¢=0 /N 250) N € c==1 I\ a0))

to test if a double length signed value can

be reduced to a single length signed value

B g

ik load byte

Lb

code: 3

def: a :=b 7% a

purpose: to Load a byte from a string or vector of bytes

store byte

sb
code: 4
def: b %4 a := ¢
&= purpose: to store a byte in a string or vector of bytes

-21-

shift Left
sl
code:
def:

purpose:

shift right
sr
code:
def:

purpose:

jump indexed
] %
code:
def:

purpose:

C.a 2= eua €< b

to shift ¢ and a Left by b places, Filling
unused bits with 0, and shifting bits from
the most significant end of a into the Lleast
significant end of ¢

6

Cwd. i5 Caa D> b

to shift ¢ and a right by b places, filling
unused bits with C, and shifting bits from
the lLeast significant end of ¢ into the most

significent end of a

to provide field extraction in conjunction
with the and dinstruction

7
i1+ e
to transfer control to one of a number of

sections of program, depending on the value
in the accumulator

wait

wait

code:

def:

purpose:

run
run
code:

def:

purpose:

pause
pse
code:

def:

purpose:

8

w ! diptr == 4
w :=w ! Llink
pw ! link := w
i = w ! dptr

to remove the current process from the active
process List and advance to the next process on
the active process Llist

w ! oL
W

3
a
n

©» T T

! Llink 2= w

to add a process to the end of the active process
List

10

w ! aptr =13
pw = W

w t=w ! Link
i 2= w I 9pEe

to share the processor time between the processes
currently on the active process Llist

DB

e call process

call
code: 11
def: w ! dptr o= i
pw ! Llink := a
a ! Llink := w ! Llink
W, a = a, w
i = b
purpose: to replace the current process on the active

process list with a (newly created) process

to facilitate code sharing, where two identical
processes are executed on the same processor

(fails if only one active process)

return from process

ret
code: 12
def: pw ! link == 2
a ! Link :=w ! Link
W o= a2
1 s=m L ipte
purpose: to replace the current process with its
caller
synchronise
- sync
code: 13
def: if a!0 =0
then a!0 = w
wait
else runCa!0)
2!0 := 0
purpose: to allow two processes to synchronise and

communicate using a channel

switch
switch
code:

def:

purpose:

move block
move
= code:

def:

purpose:

to switch the processor between the run
state and the initial state

15

do ¢ times
ta = 1b
unless iochan{(a) do a :=

A
unless iochan(b) do b B # 1
to provide rapid transfer of blocks of
data from

memory to memory

memory to channel

channel to memory

channels to channel

-25-

2.15. Instruction summary

2.15.1. Primary ‘instructions

workspace operations

load from workspace

store to workspace

load pointer into workspace

load from workspace and increment
table operations

load from table

store to table

Lload pointer into table

load from table and dincrement

jumps

jump
jump non zero

Literal and address loads

load Lliteral
load pointer to instruction

operations on registers

operate one
operate two

long operands

prefix
negative prefix

-2 6 -

2.15.2. Secondary Instructions

operand preparation
reverse
relational

equal to zero
greater

logical
and
or
exclusive or
carry accumulator operations
clear carry
Load from carry
store to carry

arithmetic

add
add with carry

subtract
subtract with borrow

signed multiply
unsigned multiply and ad

signed divide
unsigned divide

sign extend
test long

d

-27-

%

byte operations

Lload byte
store byte

shifts

shift lLeft
shift: :right

table jump

jump indexed
scheduling

wait

run

pause

code sharing and calling

call process
return from process

synchronisation
synchronise

initialisation
switch

block moves

move block

-2 8=

iy e e e P

