
Version 1.0

X and Hex
David May: May 6, 2014

The X Language

X is a simple sequential programming language. It is easy to compile and an X
compiler written in X is available to simplify porting between architectures. It is
relatively easy to modify the compiler to target new architectures or to and extend
the language.

Notation

The following examples illustrate the notation used in the definition of X.

The meaning of

assignment = variable := expression

is “An assignment is a variable followed by := followed by an expression”

The meaning of

literal = integer | byte | string

is “An literal is an integer or a byte or a string”. This may also be written

literal = integer

literal = byte

literal = string

The notation { process } means “a list of zero or more processes”.

The notation {0 , expression} means “a list of zero or more expressions sepa-
rated from each other by ,”, and {1 , expression} means “a list of one or more
expressions separated from each other by ,”.

The format of an X program is specified by the syntax. Space, tab and line breaks
are ignored and can be inserted in text strings using the escape character *.

Comment

David May: May 6, 2014 1

Version 1.0

comment = | text |

text = {0 character}

A comment is used to describe the operation of the program.

process = comment process

Let C be a comment and P be a process. Then C P behaves like P .

Statement

process = skip
| stop
| assignment
| sequence
| conditional
| loop
| call

skip starts, performs no action, and terminates.

stop starts but never proceeds and never terminates.

assignment = variable := expression

An assignment evaluates the expression, assigns the result to the variable, and
then terminates. All other variables are unchanged in value.

sequence = { {0 ; process} }

A sequence starts with the start of the first process. Each subsequent process starts
if and when its predecessor terminates and the sequence terminates when the last
process terminates. A sequence with no component processes behaves like skip.

Conditional

conditional = if expression then process else process

Let e be an expression and let P and Q be processes. Then

if e then P else Q

behaves like P if the initial value of e is true. Otherwise it behaves like Q.

Loop

loop = while expression do process

David May: May 6, 2014 2

Version 1.0

A loop is defined by

while e do P = if e then { P; while e do P } else skip

Scope

process = specification ; process

specification = declaration
| abbreviation
| definition

A block N : S behaves like its scope S; the specification N specifies a name
which may be used with this specification only within S.

Let x and y be names and let S(x) and S(y) be scopes which are similar except
that S(x) contains x wherever S(y) contains y, and vice versa. Let N(x) and
N(y) be specifications which are similar except that N(x) is a specification of x
and N(y) is a specification of y. Then

N(x) ; S(x) = N(y) ; S(y)

Using this rule it is possible to express a process in a canonical form in which no
name is specified more than once.

Declaration

declaration = var name
| array name [expression]

A declaration declares a name as the name of a variable or of an array.

Abbreviation

abbreviation = val name = expression
| array name = name
| proc name = name
| func name = name

An abbreviation val n = e specifies n as an abbreviation for expression e. Let e
be an expression and P (e) be a process. Then

val n = e ; P (n) = P (e)

Let T be array, proc or func. Then

T n = m ; P (n) = P (m)

David May: May 6, 2014 3

Version 1.0

Procedure

definition = proc name ({0 , formal}) is body

formal = val name
| array name
| proc name
| func name

body = process

The definition

proc n ({0 , formal}) is B

defines n as the name of a procedure.

instance = name ({0 , actual})

actual = expression
| name

Let X be a program expressed in the canonical form in which no name is specified
more than once. If X contains a procedure definition

P(F0, F1, ..., Fn) is B

then within the scope of P

P(A0, A1, ..., An) = F0 = A0 ; F1 = A1 ; ... Fn = An ; B

provided that each abbreviation Fi = Ai is valid.

A procedure can always be compiled either by substitution of its body as described
above or as a closed subroutine.

Element

Elements enable variables or arrays be selected from arrays.

element = element[subscript]
| name

subscript = expression

Let a be an array with n components and e an expression of value s. Then v[e]
is valid only if 0 ≤ s and s < n; it is the component of v selected by s.

David May: May 6, 2014 4

Version 1.0

Variable

variable = element

Every variable has a value that can be changed by assignment or input. The value
of a variable is the value most recently assigned to it, or is arbitrary if no value
has been assigned to it.

Let a be an array with n components, e be an expression of value s, and x be an
expression. If 0 ≤ s and s < n, then v[e] := x assigns to v a new value in
which the component of v selected by s is replaced by the value of x and all other
components are unchanged. Otherwise the assignment is invalid.

Literal

literal = integer | byte | string | true | false

integer = digits | #digits

byte = ’character’

An integer literal is a decimal number, or # followed by a hexadecimal number.
A byte literal is an ASCII character enclosed in single quotation marks: ’.

A string literal is represented by a sequence of ASCII characters enclosed by
double quotation marks: ". Let s be a string of n characters, where n < 256.
The value of s is an array containing the value n, followed by ASCII values of the
characters in the string. The string is packed into the array.

The literal true represents the logical value true; numerically true = 1. The
literal false represents the logical value false; numerically false = 0.

Expression

An expression has a data type and a value. Expressions are constructed from
operands, operators and parentheses.

operand = element | literal
| (expression)

The value of an operand is that of an element, literal or expression.

expression = monadic.operator operand
| operand diadic.operator operand
| operand

The arithmetic operators + and - produce the arithmetic sum and difference of

David May: May 6, 2014 5

Version 1.0

their operands respectively. Both operands must be integer values and the result
is an integer value. The arithmetic operators treat their operands as signed integer
values and produce signed integer results. If n is an operand, then -n = (0-n).

The logical operator and produces the logical and of its operands, both of which
must have value true or false. If the value of the first operand is false, the
result is false; otherwise the result is the value of the second operand.

The logical operator or produces the logical or of its operands, both of which
must have value true or false. If the value of the first operand is true, the
result is true; otherwise the result is the value of the second operand.

The logical operator not produces the logical not of its operand which must have
value true or false:

not false = true not true = false

Let O be one of the associative operators +, and, or. Then

e1 O e2 O ... O en = (e1 O (e2 O (... O en) ...))

The relational operators =, <>, <, <=, >, >= produce a result of true or false.
The operands must both be integer values. The result of x = y is true if the value
of x is equal to that of y. The result of x < y is true if the integer value of x is
strictly less than that of y. The other operators obey the following rules:

(x <> y) = not (x = y) (x >= y) = not (x < y)
(x > y) = (y < x) (x <= y) = not (x > y)

where x and y are any values.

expression = valof process

process = return expression

A valof expression executes a process to produce a value. The final process ex-
ecuted in a valof must be a return. The return evaluates its expression and the
resulting value is the value of the valof.

Function

definition = func name ({0 , formal}) is body

The definition

func n ({0 , formal}) is B

David May: May 6, 2014 6

Version 1.0

defines n as the name of a function with a body B that computes a value.

expression = name ({0 , actual})

Let X be a program expressed in the canonical form in which no name is specified
more than once. If X contains a function definition

func F(F0, F1, ..., Fn) is B

then within the scope of F

F(A0, A1, ..., An) = valof F0 = A0 ; F1 = A1 ; ... Fn = An ; B

provided that each abbreviation Fi = Ai is valid.

A function can always be compiled either by substitution of its body as described
above or as a closed subroutine.

David May: May 6, 2014 7

Version 1.0

Character set

The characters used in X are as follows.

Alphabetic characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Digits

0123456789

Special characters

!"#&’()*+,-_./:;<=>?[]{}

Strings and character constants may contain any X character except *, ’ and ".
Certain characters are represented as follows:

*c carriage return
*n newline
*t horizontal tabulate
*s space
*’ quotation mark
*" double quotation mark
** asterisk

If a string contains the character pair *l immediately following the opening ",
then the value of byte 0 of the string is the subscript of the last character in the
string.

Any character can be represented by *# followed by two hexadecimal digits.

A name consists of a sequence of alphabetic characters, decimal digits and under-
scores (_), the first of which must be an alphabetic character. Two names are the
same only if they consist of the same sequence of characters and corresponding
characters have the same case.

David May: May 6, 2014 8

Version 1.0

The Instructions

The main features of the instruction set used by the X HEX compiler are:

• Short instructions are provided to allow efficient access to the stack and
other data regions allocated by compilers; these also provide efficient branch-
ing and subroutine calling.

• The memory is word addressed; however the instructions are all single byte
so instruction addresses refer to a specific byte position within a word.

• The same instruction set can be used for processors with different wordlengths;
the only requirement is that the wordlength is a number of bytes.

• The processor has a small number of registers. Some registers are used for
specific purposes such as accessing the program or building large constants.

• Instructions are easy to decode.

All instructions are 8-bit; each instruction contains 4 bits representing an operation
and 4 bits of immediate data. A special instruction, OPR causes its operand to be
interpreted as an inter-register operation. Instruction prefixes are used to extend
the range of immediate operands and to provide more inter-register operations:

• PFIX concatenates its 4-bit immediate with the 4-bit immediate of the next
8-bit instruction.

• NFIX complements its its 4-bit immediate and then concatenates the result
with the 4-bit immediate of the next 8-bit instruction.

The prefixes are inserted automatically by the compiler.

The normal state of a processor is represented by 4 registers. Two of the registers
are used to hold the sources and destination of arithmetic and logic operations.
Another (the operand register) is used to accumulate the operands of the prefixes.

register use

pc the program counter

oreg the operand register

areg left-hand operand and result of arithmetic
breg right-hand operand of arithmetic

David May: May 6, 2014 9

Version 1.0

Instruction set Notation and Definitions

In the following description

mem represents the memory

pc represents the program counter
oreg represents the operand register
areg represents the left-hand operand register
breg represents the right-hand operand register

u4 is a 4-bit unsigned source operand in the range [0 : 15]

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or enable them to be loaded from a location in the pro-
gram:

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc + oreg load address in program

Access to data structures is provided by instructions which combine an address
with an offset:

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
A branch using an offset in the stack is provided to support jump tables.

David May: May 6, 2014 10

Version 1.0

BR pc← pc + oreg branch relative unconditional
BRZ if areg = 0 then pc← pc + oreg branch relative zero
BRN if areg < 0 then pc← pc + oreg branch relative negative

BRB pc← breg branch absolute

SVC system call

To call a procedure, the return address can be loaded using the LDAP instruction
and the BR instruction can be used to branch to the procedure entrypoint. The
procedure entry will store the return address; the exit will load this return address
into breg and use a BRB instruction to branch back to the calling procedure.

Expression evaluation

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

Instruction summary

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc + oreg load address in program

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

BR pc← pc + oreg branch relative unconditional
BRZ if areg = 0 then pc← pc + oreg branch relative zero
BRN if areg < 0 then pc← pc + oreg branch relative negative

BRB pc← breg branch absolute

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

SVC system call

David May: May 6, 2014 11

Version 1.0

The Compiler

The compiler compiles X into a the HEX instruction set. It is written in X and
can be enhanced by bootstrapping. It has been written so as to be fairly easy
to understand and modify. It performs a only a few simple optimisations which
makes the object code and its relationship to the source program is easy to follow.

The compiler generates executable binary. The object code is position indepen-
dent and can be placed anywhere in memory; only the highest used address in
memory is predefined. The executable form of the compiler occupies about 17,000
bytes and it requires about 150,000 bytes in order to compile itself.

Structure

The compiler operates by first translating the source text into an internal data
structure; this is a tree built from nodes. The first word in each node contains a
symbol; the number of words and their meaning is defined by this symbol.

The compiler has the following main components

• The lexical analyser that translates the source text into internal symbols.
The lexical analyser includes a nametable which is used to look up both
pre-defined names and program defined names.

• The syntax analyser that calls the lexical analyser each time it needs a new
symbol and builds the tree representing the incoming symbol stream. It
operates by recursive descent and many of its component functions follow
the BNF representation of the syntactic structure they read.

• The translator that converts the tree into a sequence of instructions. It calls
the codebuffer procedures so as to build up an internal representation of the
instruction sequence. The translator maintains a stack of program defined
names so as to implement the scope rules of X. It contains an optimiser
which performs simple optimisations, such as replacing x + 0 with x, by
modifying the tree.

• The codebuffer that stores a representation of the compiled program which
it converts into an executable binary and outputs. The codebuffer calculates
program offsets used for branches and access to constant data.

Memory layout

The compiler uses the memory as follows:

David May: May 6, 2014 12

Version 1.0

• jump to start of program (word 0)

• stack pointer (word 1)

• global variables

• large constants

• strings

• program

• stack

• arrays

Each global variable and array is allocated a word location at the bottom of mem-
ory. In the case of a global array, this word location holds the address of the array
itself, which is allocated space at the top of memory. The array can then be ac-
cessed by first loading its associated word location at the bottom of memory using
a LDAM or LDBM instruction.

The compiler initialises the locations in the global region that hold the addresses
of arrays, and also initialises the stack pointer to the address of the location just
below the arrays at the top of memory.

Most constants can be loaded directly as instruction operands. The compiler
uses the minimum number of prefix instructions needed to represent the constant.
Large constants are stored in memory locations above the globals and are accessed
using LDAM and LDBM instructions. These are followed by strings which are
accessed by LDAC and LDBC instructions.

Stack, Parameters and Locals

Local variables and formal parameters of procedures and functions are held on
the stack and accessed relative to the stack pointer. On entry to a procedure or
function:

1. areg, which holds the return address, is stored on to the stack

2. the stack pointer is decremented by the number of locations needed to store
the formal parameters, local variables and any temporary values needed dur-
ing expression evaluation

David May: May 6, 2014 13

Version 1.0

On exit from a procedure or function:

1. in a function, the value to be returned is stored on the stack

2. the stack pointer is incremented by the number of locations needed to store
the formal parameters, local variables and temporary values needed during
expression evaluation

3. the return address is loaded from the stack to breg and a BRB instruction is
executed to transfer control back to the caller

A procedure or function is called by storing the actual parameters on the stack,
loading the return address into areg using the LDAP instruction, and branching
to the procedure of function entrypoint. The branch is performed using a BRU
instruction unless the entrypoint has been passed as a parameter to the caller in
which case the branch is performed by loading the entrypoint and using a BRB
instruction.

Control structure

When translating a statement, the translator keeps track of where execution is to
continue after the statement has been executed. This is done using parameter seq
of genstatement. If seq is true then execution can continue with the next state-
ment in sequence; otherwise the statement is compiled so as to end by branching
to a specified label (the value of parameter clab).

In addition, a parameter tail of genstatement is used to identify the statements
which must be immediately followed by a return; this parameter is used to elim-
inate tail recursions where possible by branching to the point just after the stack
adjustment in the procedure entry sequence.

A simple optimisation removes code that would otherwise be generated for con-
ditionals with skip components.

Arithmetic and Logic

The arithmetic operators (+, −) correspond directly to instructions.

The logical operators (or, and, ∼) are implemented using conditional branches.

Access to local variables is performed via the stack pointer using a pair of instruc-
tions such as (LDAM 1, LDAI n). Access to global variables is performed by an
instruction such as LDAM n.

David May: May 6, 2014 14

Version 1.0

Constants can normally be loaded directly as instruction operands, but large con-
stants are accessed from memory.

Comparisons and Conditionals

The is no direct method of producing a boolean value as a result of a comparison.
This has to be implemented using a subtraction and then converting the result of
the subtraction into a boolean:

areg ← areg = breg SUB
BRZ 2
LDAC 0
BRU 1
LDAC 1

areg ← areg 6= breg SUB
BRZ 1
LDAC 1

areg ← areg < breg SUB
BRN 2
LDAC 0
BRU 1
LDAC 1

areg ← areg ≥ breg SUB
BRN 2
LDAC 1
BRU 1
LDAC 0

In the common case of using a comparison in a conditional branch, there is no
need to convert the result to a logical value.

Footnote

The absence of any bit-manipulation instructions (such as bitwise logicals and
shifts) helps to keep the instruction set and processor small. The compiler includes
functions for multiplication, division and remainder which are written using only
addition and subtraction; packing and unpacking of data is then expressed in terms
of these.

David May: May 6, 2014 15

