
Version 1.0 Open

X and Arm
David May: April 25, 2013

The X Language

X is a simple sequential programming language. It is easy to compile and an X
compiler written in X is available to simplify porting between architectures. It is
relatively easy to modify the compiler to target new architectures or to and extend
the language.

Notation

The following examples illustrate the notation used in the definition of X.

The meaning of

assignment = variable := expression

is “An assignment is a variable followed by := followed by an expression”

The meaning of

literal = integer | byte | string

is “An literal is an integer or a byte or a string”. This may also be written

literal = integer

literal = byte

literal = string

The notation { process } means “a list of zero or more processes”.

The notation {0 , expression} means “a list of zero or more expressions sepa-
rated from each other by ,”, and {1 , expression} means “a list of one or more
expressions separated from each other by ,”.

The format of an X program is specified by the syntax. Space, tab and line breaks
are ignored and can be inserted in text strings using the escape character *.

Comment

David May: April 25, 2013 1

Version 1.0 Open

comment = | text |

text = {0 character}

A comment is used to describe the operation of the program.

process = comment process

Let C be a comment and P be a process. Then C P behaves like P .

Statement

process = skip
| stop
| assignment
| sequence
| conditional
| loop
| call

skip starts, performs no action, and terminates.

stop starts but never proceeds and never terminates.

assignment = variable := expression

An assignment evaluates the expression, assigns the result to the variable, and
then terminates. All other variables are unchanged in value.

sequence = { {0 ; process} }

A sequence starts with the start of the first process. Each subsequent process starts
if and when its predecessor terminates and the sequence terminates when the last
process terminates. A sequence with no component processes behaves like skip.

Conditional

conditional = if expression then process else process

Let e be an expression and let P and Q be processes. Then

if e then P else Q

behaves like P if the initial value of e is true. Otherwise it behaves like Q.

Loop

loop = while expression do process

David May: April 25, 2013 2

Version 1.0 Open

A loop is defined by

while e do P = if e then { P; while e do P } else skip

Scope

process = specification ; process

specification = declaration
| abbreviation
| definition

A block N : S behaves like its scope S; the specification N specifies a name
which may be used with this specification only within S.

Let x and y be names and let S(x) and S(y) be scopes which are similar except
that S(x) contains x wherever S(y) contains y, and vice versa. Let N(x) and
N(y) be specifications which are similar except that N(x) is a specification of x
and N(y) is a specification of y. Then

N(x) ; S(x) = N(y) ; S(y)

Using this rule it is possible to express a process in a canonical form in which no
name is specified more than once.

Declaration

declaration = var name
| array name [expression]

A declaration declares a name as the name of a variable or of an array.

Abbreviation

abbreviation = val name = expression
| array name = name
| proc name = name
| func name = name

An abbreviation val n = e specifies n as an abbreviation for expression e. Let e
be an expression and P (e) be a process. Then

val n = e ; P (n) = P (e)

Let T be array, proc or func. Then

T n = m ; P (n) = P (m)

David May: April 25, 2013 3

Version 1.0 Open

Procedure

definition = proc name ({0 , formal}) body

formal = val name
| array name
| proc name
| func name

body = process

The definition

proc n ({0 , formal}) B

defines n as the name of a procedure.

instance = name ({0 , actual})

actual = expression
| name

Let X be a program expressed in the canonical form in which no name is specified
more than once. If X contains a procedure definition

P(F0, F1, ..., Fn) B

then within the scope of P

P(A0, A1, ..., An) = F0 = A0 ; F1 = A1 ; ... Fn = An ; B

provided that each abbreviation Fi = Ai is valid.

A procedure can always be compiled either by substitution of its body as described
above or as a closed subroutine.

Element

Elements enable variables or arrays be selected from arrays.

element = element[subscript]
| name

subscript = expression

Let a be an array with n components and e an expression of value s. Then v[e]
is valid only if 0 ≤ s and s < n; it is the component of v selected by s.

David May: April 25, 2013 4

Version 1.0 Open

Variable

variable = element

Every variable has a value that can be changed by assignment or input. The value
of a variable is the value most recently assigned to it, or is arbitrary if no value
has been assigned to it.

Let a be an array with n components, e be an expression of value s, and x be an
expression. If 0 ≤ s and s < n, then v[e] := x assigns to v a new value in
which the component of v selected by s is replaced by the value of x and all other
components are unchanged. Otherwise the assignment is invalid.

Literal

literal = integer | byte | string | true | false

integer = digits | #digits

byte = ’character’

An integer literal is a decimal number, or # followed by a hexadecimal number.
A byte literal is an ASCII character enclosed in single quotation marks: ’.

A string literal is represented by a sequence of ASCII characters enclosed by
double quotation marks: ". Let s be a string of n characters, where n < 256.
The value of s is an array containing the value n, followed by ASCII values of the
characters in the string. The string is packed into the array.

The literal true represents a bit-pattern consisting entirely of 1 bits and the value
of false represents a bit pattern consisting entirely of zero bits. Numerically,
true = (-1) and false = 0.

Expression

An expression has a data type and a value. Expressions are constructed from
operands, operators and parentheses.

operand = element | literal
| (expression)

The value of an operand is that of an element, literal or expression.

expression = monadic.operator operand
| operand diadic.operator operand
| operand

David May: April 25, 2013 5

Version 1.0 Open

The arithmetic operators +, - and * produce the arithmetic sum, difference, and
product of their operands respectively. Both operands must be integer values and
the result is an integer value. The arithmetic operators treat their operands as
signed integer values and produce signed integer results. If n is an operand, then
-n = (0-n).

The logical operators and, or, xor produce the bitwise and, or and exclusive or
of their operands respectively. Both operands must be integer values and the result
is an integer value. Each bit of the result is produced from the corresponding bits
of the operands according to the following rules:

b xor 0 = b 0 xor 1 = 1 1 xor 1 = 0
b and 0 = 0 b and 1 = b
b or 0 = b b or 1 = 1

where b is 0 or 1. The effect of this is that, for the values true and false:

b xor false = b false xor true = true true xor true = false
b and false = false b and true = b
b or false = b b or true = true

where b is true or false

The logical operator not produces the bitwise not of its operand which must be
an integer value. Each bit of the result is produced from the operand as follows:

not 0 = 1 not 1 = 0

The effect of this is that:

not false = true not true = false

Let n be the number of bits in an integer value. Let xi be bit i of value x. The bits
produced by the shift operators >> and << are defined by:

(a >> s)i = as+i if (s + i) < n
(a >> s)i = 0 if (s + i) ≥ n

(a << s)i = as−i if (s− i) ≥ 0
(a << s)i = 0 if (s− i) < 0

Let O be one of the associative operators +, *, and, or, xor. Then

e1 O e2 O ... O en = (e1 O (e2 O (... O en) ...))

The relational operators =, <>, <, <=, >, >= produce a result of true or false.
The operands must both be integer values. The result of x = y is true if the value

David May: April 25, 2013 6

Version 1.0 Open

of x is equal to that of y. The result of x < y is true if the integer value of x is
strictly less than that of y. The other operators obey the following rules:

(x <> y) = not (x = y) (x >= y) = not (x < y)
(x > y) = (y < x) (x <= y) = not (x > y)

where x and y are any values.

expression = valof process

process = return expression

A valof expression executes a process to produce a value. The final process ex-
ecuted in a valof must be a return. The return evaluates its expression and the
resulting value is the value of the valof.

Function

definition = func name ({0 , formal}) is body

The definition

func n ({0 , formal}) is B

defines n as the name of a function with a body B that computes a value.

expression = name ({0 , actual})

Let X be a program expressed in the canonical form in which no name is specified
more than once. If X contains a function definition

func F(F0, F1, ..., Fn) is B

then within the scope of F

F(A0, A1, ..., An) = valof F0 = A0 ; F1 = A1 ; ... Fn = An ; B

provided that each abbreviation Fi = Ai is valid.

A function can always be compiled either by substitution of its body as described
above or as a closed subroutine.

David May: April 25, 2013 7

Version 1.0 Open

Character set

The characters used in X are as follows.

Alphabetic characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Digits

0123456789

Special characters

!"#&’()*+,-_./:;<=>?[]{}

Strings and character constants may contain any X character except *, ’ and ".
Certain characters are represented as follows:

*c carriage return
*n newline
*t horizontal tabulate
*s space
*’ quotation mark
*" double quotation mark
** asterisk

If a string contains the character pair *l immediately following the opening ",
then the value of byte 0 of the string is the subscript of the last character in the
string.

Any character can be represented by *# followed by two hexadecimal digits.

A name consists of a sequence of alphabetic characters, decimal digits and under-
scores (_), the first of which must be an alphabetic character. Two names are the
same only if they consist of the same sequence of characters and corresponding
characters have the same case.

David May: April 25, 2013 8

Version 1.0 Open

The Instructions

The main features of the instruction set used by the ARM X compiler are as fol-
lows.

• The instructions are a subset of ARM Thumb. The short (16-bit) instruc-
tions allow efficient access to the stack and other data regions allocated by
compilers; these also provide efficient branching and subroutine calling.

• The memory is byte addressed; however all accesses must be aligned on
natural boundaries so that, for example, the addresses used in 32-bit loads
and stores have the two least significant bits zero.

• Input and output is performed using memory mapped registers accessed in
the normal by load and store instructions. A supervisor call instruction is
provided.

Some instructions contain immediate operands which are used to access locations
relative to the program counter pc or the stack pointer sp. As the pc is used to ac-
cess two byte (16-bit) locations, the operands of instructions that access locations
relative to the pc are multiplied by 2. Similarly, As the sp is used to access four
byte (32-bit) locations, the operands of instructions that access locations relative
to the sp are multiplied by 4.

The normal state of a program is represented by 8 operand registers and some
special purpose registers.

The eight operand registers r0 - r7 are used by instructions which perform arith-
metic and logical operations and access data structures.

The special purpose registers are:

register use

pc the program counter
lr the link register
sp the stack pointer
rs the result register

Instruction set Notation and Definitions

In the following description

David May: April 25, 2013 9

Version 1.0 Open

mem represents the memory

pc represents the program counter
sp represents the stack pointer
lr represents the link register

rs represents the result register

r0 . . . r7 represent specific operand registers

x (a single small letter) represents one of r0 . . . r7
u5 is a 5-bit unsigned source operand in the range [0 : 31]
u7 is a 7-bit unsigned source operand in the range [0 : 127]
u8 is an 8-bit unsigned source operand in the range [0 : 255]
s8 is an 8-bit signed source operand in the range [−128 : 127]
s11 is an 11-bit signed source operand in the range [−1024 : 1023]
s22 is a 22-bit signed source operand in the range [−1048576 : 1048575]

David May: April 25, 2013 10

Version 1.0 Open

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDRSPI d← mem[sp + u8×4] load word from stack
STRSPI mem[sp + u8×4]← s store word to stack
ADDSPI d← sp + u8×4 load address of word in stack

Another is similar, but provides access via the data pointer.

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or load them from a constant pool.

MOVI d← u8 load constant
LDRPCI d← mem[pc + u8×4] load word from constant pool
ADDPCI d← pc + u8×4 load address in program forward

Access to data structures is provided by instructions which use any of the operand
registers as a base address, and combine this with a scaled offset. In the case of
word accesses, the operand may be a small constant or another operand register,
and the instructions are as follows:

LDRI d← mem[b + u5×4] load word
STRI mem[b + u5×4]← s store word

LDR d← mem[b + i] load word
STR mem[b + i]← s store word

Expression evaluation

Expressions are evaluated by instructions which operate on values in the general
purpose registers r0 to r7. Some instructions have a constant operand, together
with one or two register operands.

David May: April 25, 2013 11

Version 1.0 Open

ADDI d← d + u8 add immediate
ADDR d← l + r add
SUBI d← d− u8 subtract immediate
SUBR d← l − r subtract
NEGR d← −s negate

ANDR d← d ∧ r and
ORR d← d ∨ r or
XORR d← d⊕ r exclusive or
MVNR d← −1⊕ s not

SHLI d← l << u5 logical shift left immediate
SHL d← d << r logical shift left
SHRI d← l >> u5 logical shift right immediate
SHR d← d >> r logical shift right
ASHRI d← l >>sgn u5 arithmetic shift right immediate

MUL d← d× r multiply

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
These test the result register rs which holds the same value as the destination
register of the last arithmetic or logical instruction.

BEQ if rs = 0 then pc← pc + s8×2 branch relative equal
BNE if rs 6= 0 then pc← pc + s8×2 branch relative not equal
BLT if rs < 0 then pc← pc + s8×2 branch relative less than
BGE if rs ≥ 0 then pc← pc + s8×2 branch relative greater or equal

BU pc← pc + s11×2 branch relative unconditional

In some cases, the calling instructions described below can be used to optimise
branches; as they overwrite the link register they are not suitable for use in leaf
procedures which do not save the link register.

The procedure call instructions include a relative call and a call using an address
in a register. The relative call is encoded as two instructions and can therefore
support most calls within a single program module.

David May: April 25, 2013 12

Version 1.0 Open

BL lr ← pc; branch and link relative forward
pc← pc + s22×2

BLR lr ← pc; branch and link via register
pc← s

Calling normally requires saving and restoring the link register lr and may require
modification of the stack. Typically, the link is saved and the stack is extended on
procedure entry; the stack is contracted and the pc is restored from the stack on
exit. The instructions to support this are shown below.

PUSH sp← sp− 1×4; push link to stack
mem[sp]← lr

POP pc← mem[sp]; pop link from stack to pc
sp← sp + 1×4

DECSP sp← sp + u7×4 extend stack
INCSP sp← sp− u7×4 contract stack

At the start of a program, and in some other situations, it is necessary to set the
stack pointer to a new value.

SETSP sp← s set stack pointer

David May: April 25, 2013 13

Version 1.0 Open

Instruction set by format

In the following description

rd is a destination register r0 - r7
rs is a source register r0 - r7
rsd is a source and destination register r0 - r7
u5 is a 5-bit unsigned source operand in the range [0 : 31]
u7 is a 7-bit unsigned source operand in the range [0 : 127]
u8 is an 8-bit unsigned source operand in the range [0 : 255]
s8 is an 8-bit signed source operand in the range [−128 : 127]
s11 is an 11-bit signed source operand in the range [−1024 : 1023]
s22 is a 22-bit signed source operand in the range [−1048576 : 1048575]

Three register

op dest src1 src2 Description
ADD rd rs rs Add
SUB rd rs rs Subtract
LDW rd rs rs Load word
STW rs rs rs Load word
SHL rd rs rs Shift left
SHR rd rs rs Shift right

Two register and immediate

op dest src1 src2 Description
SHLI rd rs u5 Shift left immediate
SHRI rd rs u5 Shift right immediate
ASHRI rd rs u5 Shift right immediate
STWI gs rs u5 Store word
LDWI rd rs u5 Load word

Two register

op src/dest imm Description
AND rsd rs And
OR rsd rs Or
XOR rsd rs And
MUL rsd rs And
MVN rd rs Or
NEG rd rs Or

Register and immediate

David May: April 25, 2013 14

Version 1.0 Open

op src/dest imm Description
ADDI rsd u8 Add immediate
SUBI rsd u8 Subtract immediate
LDWSP rd u8 Load word from the stack
STWSP rs u8 Store word to the stack
ADDSP rd u8 Store word to the stack
LDWPC rd u8 Load word from the stack
ADDPC rd u8 Store word to the stack
MOV rd u8 Load constant

Register

op imm Description
SETSP rs Branch link relative forward
BLR rs Branch link relative back

Immediate 7-bit

op imm Description
INCSP u7 Branch link relative forward
DECSP u7 Branch link relative back

Immediate 8-bit

op imm Description
BEQ s8 Branch relative forward true
BNE s8 Branch relative forward false
BLT s8 Branch relative back true
BGE s8 Branch relative back false
SVC u8 Branch relative back false

Immediate 11-bit

op imm Description
BL1 s11 Branch link relative forward
BL2 u11 Branch link relative back
BU s11 Branch link absolute via pool

None

op Description
PUSH Branch link relative forward
POP Branch link relative back

David May: April 25, 2013 15

Version 1.0 Open

The Compiler

The compiler compiles X into a subset of the ARM Thumb instructions. It is writ-
ten in X and can be enhanced by bootstrapping. It has been written so as to be
fairly easy to understand and modify. It performs a only a few simple optimisa-
tions which makes the object code and its relationship to the source program is
easy to follow.

The compiler generates executable binary. The object code is position indepen-
dent and can be placed anywhere in memory; only the location of the stack top
is predefined. The executable form of the compiler occupies about 17,000 bytes
(8,500 instructions) and it requires about 150,000 bytes in order to compile itself.

Structure

The compiler operates by first translating the source text into an internal data
structure; this is a tree built from nodes. The first word in each node contains a
symbol; the number of words and their meaning is defined by this symbol.

The compiler has the following main components

• The lexical analyser that translates the source text into internal symbols.
The lexical analyser includes a nametable which is used to look up both
pre-defined names and program defined names.

• The syntax analyser that calls the lexical analyser each time it needs a new
symbol and builds the tree representing the incoming symbol stream. It
operates by recursive descent and many of its component functions follow
the BNF representation of the syntactic structure they read.

• The translator that converts the tree into a sequence of instructions. It calls
the codebuffer procedures so as to build up an internal representation of the
instruction sequence. The translator maintains a stack of program defined
names so as to implement the scope rules of X. It contains an optimiser
which performs simple optimisations, such as replacing x + 0 with x, by
modifying the tree.

• The codebuffer that stores a representation of the compiled program which
it converts into an executable binary and outputs. The codebuffer calculates
program offsets used for branches and access to constant data.

Use of Registers

The registers are used as follows:

David May: April 25, 2013 16

Version 1.0 Open

• the pc and lr are used in the normal way. lr is only loaded by a call and is
only stored by a push.

• the sp is used in the normal way. it is changed on initialisation, by increment
and decrement instructions and by push and pop instructions.

• register r7 is used to access the global variable region.

• register r6 is used as a temporary location.

• registers r0 to r5 are used for parameter passing.

• register r0 is used for function results.

To evaluate an expression leaving a result in register rn, registers rn+1, rn+2 ... r6

are used. If more registers are needed, temporary locations are allocated on the
stack.

Globals

The global variables and arrays are allocated space in a region at the top of mem-
ory. The space for the arrays is allocated at the top of this region. Beneath this is
a set of word locations; each of these is either a variable or holds the address of
the lowest location of one of the arrays.

The compiler generates a sequence of instructions to initialise the locations in the
global region that hold the addresses of arrays, and to initialise r7 and sp to the
address of the lowest location in the global region.

The stack is located just beneath the global region and r7 can be used to access
global variables and arrays. The use of locations to hold the addresses of arrays
means that most global variables and arrays can be accessed using only one or two
instructions in conjunction with r7.

Stack, Parameters and Locals

Local variables and formal parameters of procedures and functions are held on the
stack and accessed relative to sp. On entry to a procedure or function:

1. the link register is pushed on to the stack

2. the stack pointer sp is decremented by the number of locations needed
to store the formal parameters, local variables and any temporary values
needed during expression evaluation

David May: April 25, 2013 17

Version 1.0 Open

3. the formal parameters are stored in their stack locations

On exit from a procedure or function:

1. in a function, register r0 is loaded with the value to be returned

2. the stack pointer sp is incremented by the number of locations needed to
store the formal parameters, local variables and temporary values needed
during expression evaluation

3. the program counter is popped from the stack

A procedure of function is called by loading the actual parameters into registers
r0 to r5 and performing a branch and link instruction. The values returned by
functions are in r0. One effect of this is that where a function call appears as the
first actual parameter of a call, the value returned from the function call is already
in the correct location ready for the next call.

Control structure

When translating a statement, the translator keeps track of where execution is
to continue after the statement has been executed. This is done using parameter
seq of genstatement. If seq is true then execution can continue with the next
statement in sequence; otherwise the statement is compiled so as to transfer to a
specified label (the value of parameter clab).

In addition, a parameter tail of genstatement is used to identify the statements
which must be immediately followed by a return; this parameter is used to elim-
inate tail recursions where possible by branching to the point just after the stack
adjustment in the procedure entry sequence.

A simple optimisation removes code that would otherwise be generated for con-
ditionals with skip components.

Arithmetic and Logic

The arithmetic and logical operators all correspond directly to instructions. The
value -1 is used as the representation of true. There is no difference between
boolean and bitwise operations and no use is (currently) made of short-circuit
evaluation.

Access to local variables is provided by LDRSPI and access to global variables
by LDRI using r7 as the base address (or in cases where the offset is greater than

David May: April 25, 2013 18

Version 1.0 Open

31, by LDR using r7 as the base address having first loaded the offset into another
register).

In a few cases a constant can be used as an instruction operand. These include
addition and subtraction of an 8-bit unsigned value and shifting by a constant. In
all other cases, a constant must first be loaded into a register.

Comparisons and Conditionals

The Thumb instruction set has no direct method of producing a boolean value as
a result of a comparison. This has to be implemented using a subtraction and then
converting the result of the subtraction into a boolean:

d← l = r SUBR d, l, r
BEQ 1
MOVI d, 1
SUBI d, d, 1

d← l 6= r SUBR d, l, r
BEQ 1
MOVI d, 1
NEG d, d

d← l < r SUBR d, l, r
ASHRI d, d, 31

d← l ≥ r SUBR d, l, r
ASHRI d, d, 31
MVN d, d

In the common case of using a comparison in a conditional branch, there is no
need to convert the result to a boolean. However, there is another problem in that
the range of a conditional branch is limited because only a signed 8-bit operand is
provided in the conditional branch instructions. This is handled in the codebuffer.

Another issue arises where the conditional in a branch is a boolean variable in that
the result register rs is not set by load instructions. So, for example, if v is a local
variable:

if v then ...

must be implemented by

LDRSPI r, v; ADDI r, 0; BNE

David May: April 25, 2013 19

Version 1.0 Open

Whether the range of a branch is sufficient can only be determined when the in-
structions have reached the codebuffer; if the range is not sufficient the condi-
tional branch must be replaced by a pair of instructions including an unconditional
branch:

BEQ L = BNE 1; BU L

BNE L = BEQ 1; BU L

BLT L = BGE 1; BU L

BGE L = BLT 1; BU L

Constants and Strings

Constants can be loaded into a register using a MOVI instruction, provided that
they are in the range 0...255. A negative constant c in the range −255... − 1 can
be loaded by MOVI r, -c; NEGR r, r. Certain larger constants can be loaded by an
instruction sequence of the form MOVI, r, c; LSL3I r, r, offset.

All other constants are allocated space in a constant pool which is placed in the
instruction stream after the LDRPCI instruction that refers to the constant. An
item in a constant pool must occur within 256 words of the instruction that refers
to it; as a result a program will normally contain a collection of constant pools dis-
tributed through the instruction stream. The compiler places these after procedure
returns, or after unconditional transfers of control.

Strings are also located in the constant pools. Access to a string is provided by the
ADDPCI instruction which forms the address of the first word in the string.

David May: April 25, 2013 20

