
Heterogeneous Multicores?

Why?

David May
Bristol University and XMOS

Bristol June 2013



The past

Heterogeneous architectures have been around for a long time

... to provide big processors with agile input-output processors

... to add specialised accelerators

... to build general purpose parallel computers

Often using lots of processors

www.cs.bris.ac.uk/˜dave 2 Bristol June 2013



Input-output processors

IBM 360 and its channels

CDC 6600 and its input-output processors

... and now, ARM

Is a chip with several different ARMs heterogeneous?

Note: the IBM 360 was one architecture with multiple implementations

www.cs.bris.ac.uk/˜dave 3 Bristol June 2013



Specialised accelerators

Illiac 3

Attached numeric processors

Evans and Sutherland

Pixel planes

REYES / Renderman

... and a lot of processor/co-processor combinations for DSP and
graphics

www.cs.bris.ac.uk/˜dave 4 Bristol June 2013



General purpose (?)

Illiac 4

Vector processors - CDC and Cray

DAP

SIMD within GP (VIS, MMX, Chameleon)

Scalar-Vector nodes for HPC (and now Scalar-SIMD nodes)

REYES / Renderman again

www.cs.bris.ac.uk/˜dave 5 Bristol June 2013



The last 20 years

We have known how to do general purpose parallel computing since
1990

But the explosive growth of PCs has taken us in a different direction

Implementing Moore’s ‘law’ is only possible with exponential market
growth

But there has been exponential market growth so we have spent 20
years improving on 1980s technologies

... most superscalar techniques date from the 1960s (IBM 360/91)!

www.cs.bris.ac.uk/˜dave 6 Bristol June 2013



The Present

Efficiency of ‘sequential’ processors is static or declining

Most systems have multiple processors

The superscalar applications processors can’t do input-output fast
enough

So we need to add input-output processors

The only way to add more performance is more processors

... but what kind of processors?

www.cs.bris.ac.uk/˜dave 7 Bristol June 2013



Graphics

Graphics is an established and well-understood parallel application

It has become a technology driver and can exploit a lot of processors

It makes (some) sense to design application-specific graphics
hardware

... especially if the hardware is replaced every year

Graphics processors are applicable in some other areas

... such as High Performance Computing

www.cs.bris.ac.uk/˜dave 8 Bristol June 2013



High Performance Computing
In High Performance Computing, aim to maximise peak FLOPS

peak = “the performance we guarantee you can’t exceed”

It’s not important that the FLOPS are useful or not - it’s the Top 500
list that matters

More seriously, there are quite a few data-parallel HPC applications

But the general purpose processing - and the interconnect - is what
really affects performance and efficiency

... along with the languages, tools and algorithms

www.cs.bris.ac.uk/˜dave 9 Bristol June 2013



Parallel Processing

Need general purpose architectures and languages

... not a variety of special purpose architectures and languages

It’s always possible to execute parallel programs on sequential
processors

... but the converse isn’t true

Want to write portable, re-usable, parallel software

But - as in 1990 - there is a lack of standardisation

www.cs.bris.ac.uk/˜dave 10 Bristol June 2013



Parallel Program Patterns

Parallel Random Access Machines (PRAMs/BSP)

Data Parallelism / Process Arrays

Directed Dataflow Graphs

Task Farms and Server Farms

Event handlers

Recursive use of any of the above

www.cs.bris.ac.uk/˜dave 11 Bristol June 2013



The SIMD - MIMD issue

... an old debate!

The cost of instruction handling in a simple processor is very low

Local execution and synchronisation avoids global communication

A MIMD array will run faster and at lower energy than a SIMD array

MIMD can emulate SIMD, but the converse doesn’t work

We’ve already shown how MIMD can unify computation,
communication, synchronisation and event-handling (XMOS)

www.cs.bris.ac.uk/˜dave 12 Bristol June 2013



Heterogeneous architectures
Programming is made complex by multiple tool chains and languages
- and arbitrary architectural restrictions

If we want heterogeneity, we want it in the implementation, not the
architecture

... one programming model, several optimisations

But unless you’re optimising a chip for a specific application program
you don’t know what the ratio between the heterogeneous
components should be

... potentially need a range of chips with varying ratios

www.cs.bris.ac.uk/˜dave 13 Bristol June 2013



Heterogeneous architectures
The distribution of physical resources on a heterogeneous chip is
fixed

... the chip is (almost) an application specific processor

If a new algorithm or optimisation requires a different distribution

... there will be a loss of efficiency

... or a different chip will have to be used

But algorithms have by far the greatest impact on performance and
efficiency

www.cs.bris.ac.uk/˜dave 14 Bristol June 2013



What’s gone wrong?
A general purpose parallel computer should be re-programmable - by
normal people

Software was supposed to be portable - so why do we install a
specific core to run it?

Huge market volumes have supported Moore’s Law investments

Moore’s Law investments have enabled growth of everything -
especially complexity

Persistent ideas about cache-coherent shared memory are inhibiting
simple ways of using parallelism

www.cs.bris.ac.uk/˜dave 15 Bristol June 2013



Design by aggregation
... it started in software design and it has spread into hardware design

Take big components from libraries and put them together

There is confusion about ‘abstraction’ - its supposed to be about
managing complexity, not hiding it

You can’t risk redesigning complex sub-components - or porting
complex software

The ultimate lock-in! Too-complex-to-understand! Too-big-to-fail!

... but it will

www.cs.bris.ac.uk/˜dave 16 Bristol June 2013



Is there an alternative?
We have known how to do homogeneous universal parallel
computing for 20 years

The issue is the interconnect - we don’t want heterogeneity here

Build everything directly on top of scalable message passing

The processors just have to keep up with the interconnect and they
don’t have to be complicated

It probably doesn’t matter if there are different processor architectures

... but - apart from input-output processing - it’s probably not worth it

www.cs.bris.ac.uk/˜dave 17 Bristol June 2013



General Purpose Parallel Processing
Think in terms of Processes and Communication Patterns, not
Algorithms and Data Structures

Scalable interconnect to support any communication patterns (eg
Clos networks, not 2-D meshes)

Low latency communication enables high parallelism and rapid
spread of computation; bounded latency enables latency hiding by
the processors

Collections of processors used to execute large sequential programs

Design the interconnect; then design the processors to keep it busy

www.cs.bris.ac.uk/˜dave 18 Bristol June 2013



Universality and Efficiency
Universal parallel machine = Universal processors + Universal
interconnect

The processors can be optimised for efficiency, not speed

Clos networks implement permutations on their inputs

Compiler can implement known permutation patterns optimally

Efficient hashing techniques can be used for unknown patterns

Potential log(p) emulation overhead but can be hidden by log(p)
excess parallelism

www.cs.bris.ac.uk/˜dave 19 Bristol June 2013



Commodity parallel processing

Ideally, we want to build processing like memory

Choose an economical chip size (70mm2 for DRAM), 100mm2 for logic

... this will hold hundreds of processors

Stack them up in 3D using through-silicon-vias.

Connect them using silicon photonics and wavelength division
multiplexing

General purpose components with behaviour defined by software

www.cs.bris.ac.uk/˜dave 20 Bristol June 2013



The future - an optimist’s view
The new generation is getting bored with more and more graphics
and VR. Reality is more interesting - ‘Things’

Soon we will realise we shouldn’t be throwing away a billion phones
every year - where are they?

General purpose parallelism will emerge. It will surprise you and it will
enable new applications and products

There will probably be heterogeneity at the (many) interfaces - now
we’re doing Reality and Robotics, not VR

But there may also be interesting new places for heterogeneity such
as in classical + quantum computing

www.cs.bris.ac.uk/˜dave 21 Bristol June 2013



The open computing project

How simple can we make a parallel processor?

Simple deterministic processing node

Non-blocking network

Concurrent programming language and operating system

Implementable in anything - including emerging technologies

Nothing hidden by abstraction layers

www.cs.bris.ac.uk/˜dave 22 Bristol June 2013



And finally ...

2014 will be the 30th anniversary of the launch of the Transputer and
Occam

It would be good to re-construct it

It would be good to build a 2014 version

It might be very efficient - and a 2014 chip could hold 1000s

If you’d like to help, get in touch ...

And at the very least, this a a good excuse for a party!

www.cs.bris.ac.uk/˜dave 23 Bristol June 2013


	Heterogeneous Multicores? 
ewline 
ewline Why?
	The past
	Input-output processors
	Specialised accelerators
	General purpose (?)
	The last 20 years
	The Present
	Graphics
	High Performance Computing
	Parallel Processing
	Parallel Program Patterns
	The SIMD - MIMD issue
	Heterogeneous architectures
	Heterogeneous architectures
	What's gone wrong?
	Design by aggregation
	Is there an alternative?
	General Purpose Parallel Processing
	Universality and Efficiency
	Commodity parallel processing
	The future - an optimist's view
	The open computing project
	And finally ... 

