
Why are Multicores a Challenge?

David May

Bristol University and XMOS

Bristol September 2012



Multicore, Manycore, Millioncore

What are the challenges?

What are the new challenges?

We’ve been doing parallel computing for 50 years

... with a wide variety of architectures

www.cs.bris.ac.uk/˜dave 2 Bristol September 2012



Background

We can build chips with hundreds of processors

We can build computers with millions of processors

We can support parallel programming in hardware

We can build digital systems in software

But our thinking is still dominated by sequential ideas

www.cs.bris.ac.uk/˜dave 3 Bristol September 2012



Parallel Program Patterns

Parallel Random Access Machines (PRAMs/BSP)

Data Parallelism / Process Arrays

Directed Dataflow Graphs

Task Farms and Server Farms

Event handlers

Recursive use of any of the above

www.cs.bris.ac.uk/˜dave 4 Bristol September 2012



Multicores

Four things that multicores need to do

concurrency

communication

synchronisation

event handling

www.cs.bris.ac.uk/˜dave 5 Bristol September 2012



Multicores

Four things that multicore programmers need to understand

concurrency

communication

synchronisation

event handling

www.cs.bris.ac.uk/˜dave 6 Bristol September 2012



Multicores

Four things that (most) designers of multicores are trying to do

shared memory

shared memory

shared memory

shared memory

www.cs.bris.ac.uk/˜dave 7 Bristol September 2012



Why shared memory is difficult to use

Concurrent write-write, write-read or read-write =⇒ non-determinacy

Formal verification of shared memory programs is ‘challenging’

Empirical verification is impossible except for the simplest cases

Access collisions even for read-read =⇒ latency

www.cs.bris.ac.uk/˜dave 8 Bristol September 2012



Why shared memory is not enough

The writer can put the data where the reader can access it

But the reader doesn’t know it’s there

Either the reader has to look over and over again (polling) - or it has
to be notified by an interrupt

Polling uses processor and memory cycles and wastes energy

Interrupts take a lot of cycles and introduce timing issues

And what about synchronisation?

www.cs.bris.ac.uk/˜dave 9 Bristol September 2012



Why timing matters

In parallel processors, there are many potential sources of timing jitter
- in processors, caches, memory and interconnect

Have to manage latencies in communication
... can’t manage latency if you don’t know how big it is

Have to provide synchronisation (barriers) in control flow or data flow
... these are delayed by the slowest participant

May need to use buffers to maintain rates when processing streams
... can’t determine buffer sizes if you don’t know the variance in timing

www.cs.bris.ac.uk/˜dave 10 Bristol September 2012



Some Probabilities

Probability p of no cache miss when executing program P

Suppose we execute n copies of P in parallel, terminating in a barrier

Probability that the barrier will not be delayed by a cache miss = pn

For n = 100 and p = 0.99, pn = 0.37

For n = 1000 and p = 0.99, pn = 0.00004

If there are caches or other sources of jitter the performance of
sequential composition behaves as expected but the performance of
parallel composition doesn’t

www.cs.bris.ac.uk/˜dave 11 Bristol September 2012



Three programs (1)
{ int i;
int n;
int sum;
sum = 0;
n = 0;
for (i=0; i<maxdata; i++)
{ sum = sum + a[n];
n = n + 1;
if (n > maxdata)
n = n - maxdata;

}
}

www.cs.bris.ac.uk/˜dave 12 Bristol September 2012



Three programs (2)
{ int i;
int n;
int sum;
sum = 0;
n = 0;
for (i=0; i<maxdata; i++)
{ sum = sum + a[n];
n = n + 1000;
if (n > maxdata)
n = n - maxdata;

}
}

www.cs.bris.ac.uk/˜dave 13 Bristol September 2012



Three programs (3)
{ int i;
int n;
int sum;
sum = 0;
n = 0;
for (i=0; i<maxdata; i++)
{ sum = sum + a[n];
n = a[n] + 1000;
if (n > maxdata)
n = n - maxdata;

}
}

www.cs.bris.ac.uk/˜dave 14 Bristol September 2012



Three programs - performance

In 1980, these three programs would have had almost the same
performance

Today, the difference on a state-of-the-art computer is at least 50

How can efficient software be designed for unpredictable machines?

How much software is running 50 times slower than it should?

How many 50-CPU clusters have been bought where a single
computer would do?

www.cs.bris.ac.uk/˜dave 15 Bristol September 2012



And on thousands of processors

... the opportunity for inefficiency is much greater

A recent post about Hadoop (map-reduce):

“... this technique is an astonishing factor of 1340 times less efficient
than an alternative technique for processing sub-graph pattern
matching queries ...”

... problems with misuse of abstraction: abstraction should be about
managing complexity, not hiding things people need to know about

www.cs.bris.ac.uk/˜dave 16 Bristol September 2012



General Purpose Parallel Processing
Think in terms of Processes and Communication Patterns, not
Algorithms and Data Structures

Scalable interconnect to support any communication patterns (eg
Clos networks, not 2-D meshes)

Low latency communication enables high parallelism and rapid
spread of computation

Bounded latency enables latency hiding by the processors

Collections of processors can be used to execute large sequential
programs

www.cs.bris.ac.uk/˜dave 17 Bristol September 2012



Communication
... is not an “overhead”

Most programs spend a lot of instructions moving data around

Re-arrangement of data is often a key part of the algorithm

“The majority of actual instruction tables will consist almost entirely of
the initiation of subsidiary operations and transfers of material”

Alan Turing, 1945

Design the interconnect first; then design the processors to keep it
busy

www.cs.bris.ac.uk/˜dave 18 Bristol September 2012



Communication Patterns
Communication and data access patterns are often known, especially
in embedded processing

They often involve a series of permutation routing operations between
known endpoints

Compilers can allocate processors and network routes

Timing can be deterministic - potential of real time parallel processing

For unknown patterns, use randomisation

For many-to-one, use hashing and combining (or replication)

www.cs.bris.ac.uk/˜dave 19 Bristol September 2012



Composition
Communication patterns can be composed and embedded within
each other

Sometimes the entire program evolution is visible to a compiler

Sometimes the evolution is data-sensitive

The issues in allocating processors and network routes mirror those
of allocating memory in sequential processing

... global, stack, heap

Want to optimise cases which can be compiler analysed

www.cs.bris.ac.uk/˜dave 20 Bristol September 2012



Why we need parallel languages

We need to express processes and communication patterns easily
and clearly

We want to be able to use different patterns in combination

We want to be able to optimise parallel programs

We need to program events and interactivity - there will be lots of it

And ideally, we’d like to unify hardware and software design

www.cs.bris.ac.uk/˜dave 21 Bristol September 2012



Big Data Structures

Implement big data structures as server farms

Use hashing to even distribution and access load

Provide concurrent access (with combining or replication if needed)

Implement application-specific caching (if needed)

This follows known techniques for implementing scalable PRAMs

www.cs.bris.ac.uk/˜dave 22 Bristol September 2012



Executing Sequential Algorithms
Implement global memory as a server farm

Implement groups of procedures, functions and objects as servers

Accesses to global data are less than 10% of instructions; calls are
less than 5%

Network is under-loaded

Optimisations: concurrent accesses and concurrent calls

We can think of a universal computer as an infinite collection of small
processors, instead of a small collection of infinite processors

www.cs.bris.ac.uk/˜dave 23 Bristol September 2012



Universality and Efficiency
Universal parallel machine = Universal processors + Universal
interconnect

In latency tolerant patterns (such as streaming), optimal

In latency sensitive patterns, subject to log(p) runtime overhead

Potential to replace runtime overhead with log(p) excess parallelism
hiding latency

In sequential patterns, log(p) overhead only affects global accesses
... simulations suggest a factor of 2-3 overhead implementing 4GB
memory using 64-4096 processors

www.cs.bris.ac.uk/˜dave 24 Bristol September 2012



Non-Blocking Networks
Clos networks implement permutations on their inputs

A strict-sense network can always allocate a new route

A re-arrangeable network needs fewer routers but may require
re-arrangement of existing routes

Compiler can implement known permutation patterns on a
re-arrangeable network

Multiple routes per processor can be implemented using time-division
multiplexing

Redundant processors, routers and links can be provided

www.cs.bris.ac.uk/˜dave 25 Bristol September 2012



Processor Node Architecture
Source and sink messages concurrently as fast as the interconnect
can handle them

Low latency on very short messages

Multi-threading for latency hiding

Time-deterministic execution

Simple architecture enabling on-the-fly compilation/optimisation is
useful

... although in fact, almost any architecture can be used provided it
doesn’t introduce too much jitter

www.cs.bris.ac.uk/˜dave 26 Bristol September 2012



Time-deterministic execution

Use simple execution architecture

Eliminate caches - memory operations should take one CPU cycle

... or at least, reduce memory hierarchy using stacked DRAM

Use non-blocking networks

Use lots of processors - idle processors are good for responsiveness

www.cs.bris.ac.uk/˜dave 27 Bristol September 2012



Summary

Scalable, real-time, parallel architecture

Supports all patterns with low overhead

Software topology independent of physical topology

Homogeneous or Heterogeneous processing nodes

Energy efficient - idle processors can be switched off

Redundancy

www.cs.bris.ac.uk/˜dave 28 Bristol September 2012



Commodity parallel processing

Ideally, we want to build processing like memory

Choose an economical chip size (70mm2 for DRAM), 100mm2 for logic

... this will hold hundreds of processors

Stack them up in 3D using through silicon vias.

Connect them using silicon photonics and wavelength division
multiplexing

General purpose components with behaviour defined by software

www.cs.bris.ac.uk/˜dave 29 Bristol September 2012



Heterogeneous architectures

Really want heterogeneity in the implementation, not the architecture

... one programming model, several optimisations

Even then, unless you’re optimising for a specific application you
don’t know what the ratio between the heterogeneous components
should be

... potentially need a whole range of products with varying ratios

Attached accelerators have been coming and going for a long time!

www.cs.bris.ac.uk/˜dave 30 Bristol September 2012



Parallelising compilers

... for ‘legacy’ software have been promised for a long time!

It seems unlikely that programs expressed in terms of sequentially
traversing large data structures can be automatically converted into
programs expressed in terms of efficient communication patterns

... with or without cache coherent shared memory

And the legacy programs keep on growing and becoming more
complex

... so the prospects for auto-parallelisation are probably not as good
now as they were in the 1980s!

www.cs.bris.ac.uk/˜dave 31 Bristol September 2012



Verification
Eliminate race conditions: disjointness of variables for parallelism;
synchronised communication for event-handling

Make a clear distinction between data-sensitive and data-insensitive
communication patterns

Ideally, communication patterns and their evolution is data insensitive;
optimisable and verifiable

If it’s data sensitive, it should probably be expressed in ways that can
be reasoned about (eg recursion)

And sometimes we need to verify timing; sometimes we need to verify
external interactions

www.cs.bris.ac.uk/˜dave 32 Bristol September 2012



The education project
We have an opportunity to build systems of unprecedented capability:
we need to educate a generation of concurrent thinkers

Processes and Communication Patterns, not Algorithms and Data
Structures

They should learn about Sequence, Concurrency and Event-handling
(interaction) at the same time

In schools, a good way to do this is through robotics: “I want my robot
to dance and sing at the same time”

In Universities, we need to re-think the curriculum: today most
systems involve concurrency but most courses don’t

www.cs.bris.ac.uk/˜dave 33 Bristol September 2012



The open computing project

How simple can we make a parallel processor?

Simple deterministic processing node

Non-blocking network

Concurrent programming language and operating system

Implementable in anything - including emerging technologies

Nothing hidden by abstraction layers

www.cs.bris.ac.uk/˜dave 34 Bristol September 2012



The embedded HPC project
There will be many new applications involving embedded intelligence
and real-time HPC

interaction: sensors, actuators and haptics

vision, language

robotics

real-time emulation

high-performance control

...

www.cs.bris.ac.uk/˜dave 35 Bristol September 2012



The Multicore Opportunity

Commodity high performance processing

Scalability: processing, communication, event-handling

Rapid design of innovative consumer products

Embedded Intelligence and Real-time HPC

Systems that learn replacing systems that have to be programmed

Energy efficiency: the dark silicon opportunity

www.cs.bris.ac.uk/˜dave 36 Bristol September 2012


	Why are Multicores a Challenge?
	Multicore, Manycore, Millioncore
	Background
	Parallel Program Patterns
	Multicores
	Multicores
	Multicores
	Why shared memory is difficult to use
	Why shared memory is not enough
	Why timing matters
	Some Probabilities
	Three programs (1)
	Three programs (2)
	Three programs (3)
	Three programs - performance
	And on thousands of processors
	General Purpose Parallel Processing
	Communication
	Communication Patterns
	Composition
	Why we need parallel languages
	Big Data Structures
	Executing Sequential Algorithms
	Universality and Efficiency
	Non-Blocking Networks
	Processor Node Architecture
	Time-deterministic execution
	Summary
	Commodity parallel processing
	Heterogeneous architectures
	Parallelising compilers
	Verification
	The education project
	The open computing project
	The embedded HPC project
	The Multicore Opportunity

